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The activation of innate immunity by viral nucleic acids present in the cytoplasm plays

an essential role in controlling viral infection in both immune and non-immune cells.

The dsDNA and dsRNA viral mimics can stimulate the cytosolic nucleic acids sensors

and activate the antiviral innate immunity. In this study, taking advantage of dsDNA and

dsRNA viral mimics, we investigated the global transcriptome changes after the antiviral

immunity activation in mouse embryonic fibroblasts. Results from our data identified a

positive feedback up-regulation of sensors (e.g., Tlr2, Tlr3, Ddx58, cGAS), transducers

(e.g., Traf2, Tbk1) and transcription factors (e.g., Irf7, Jun, Stat1, Stat2) in multiple

pathways involved in detecting viral or microbial infections upon viral mimic stimulation.

A group of genes involved in DNA damage response and DNA repair such as Parp9,

Dtx3l, Rad52 were also up-regulated, implying the involvement of these genes in antiviral

immunity. Molecular function analysis further showed that groups of helicase genes (e.g.,

Dhx58, Helz2), nuclease genes (e.g.,Dnase1l3,Rsph10b), methyltransferase genes (e.g.,

histone methyltransferase Prdm9, Setdb2; RNA methyltransferase Mettl3, Mttl14), and

protein ubiquitin-ligase genes (e.g., Trim genes and Rnf genes) were up-regulated upon

antiviral immunity activation. In contrast, viral mimic stimulation down-regulated genes

involved in a broad range of general biological processes (e.g., cell division, metabolism),

cellular components (e.g., mitochondria and ribosome), and molecular functions (e.g.,

cell-cell adhesion, microtubule binding). In summary, our study provides valuable

information about the global transcriptome changes upon antiviral immunity activation.

The identification of novel groups of genes up-regulated upon antiviral immunity activation

serves as useful resource for mining new antiviral sensors and effectors.

Keywords: transcriptional profiling, genome-wide analysis, viral mimic stimulation, innate immunity, mouse

embryonic fibroblasts

INTRODUCTION

Antiviral innate immunity serves as a primary barrier to control viral infection in both immune and
non-immune cells before the development of sophisticated adaptive immunity. Previous studies
unveiled several pathways that are involved in sensing viral infection and mounting the subsequent
antiviral immunity. Toll-like receptors (TLRs) 3, 7, 8, and 9 are a group of pattern recognition
receptors (PRRs) detecting early viral infection events in endosome (1). In the cytoplasm, dsRNA
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or 5′triphosphate-modified RNA derived from virus can be
sensed by RIG-I like receptors (RLRs), such as RIG-I, MDA5,
LGP2 (2, 3). Cytosolic DNA sensors such as cGAS, DAI and
AIM2 are responsible for the detection of viral dsDNA (4). The
activation of these nucleic acids sensors recruits and activates
different adaptors for signal transduction. For example, TLRs
except for TLR3 utilize MyD88 as an adaptor molecule to recruit
downstream signaling transducers including protein kinases
IRAK4 and IRAK1, and the ubiquitin ligase TRAF6 (5). Upon
the binding of dsRNA, RIG-I and MDA5 leads to the activation
and polymerization of mitochondrial membrane protein MAVS
for signal amplification (6). The signal transduction from the
activation of TLRs or RLRs eventually activates the protein kinase
TBK1, which phosphorylates and activates transcription factors
IRF3 and IRF7 to promote the production of type I interferons
(7). The secretion of type I interferons such as IFN-α and
IFN-β, acts in an autocrine or paracrine manner to stimulate the
expression of interferon-stimulated genes (ISGs) which exhibit
anti-proliferative and antiviral effects (8).

Recent studies further identified more genes with RNA and
DNA sensing ability, which may serve as sensors for viral
infection. Nod2, a previously identified bacterial peptidoglycan
sensor (9), can also detect the RNA genome of virus and activate
IRF3 to produce type I interferon (10). DDX41 has been proposed
to be a cytosolic DNA sensor as it has been shown to bind dsDNA
and associate with STING and TBK1 (11). Interestingly, some
genes involved in DNA damage response and repair were also
found to have cytosolic DNA sensing activity, such as DNA-
PK (DNA-dependent protein kinase) (12) and Rad50 (13). It is
anticipated that novel cytosolic RNA and DNA sensors remain to
be discovered by future studies.

Antiviral innate immunity is dynamically regulated by cellular
ubiquitin system. For certain virus, ubiquitination of viral
proteins can promote their degradation and restrict viral
infection (14, 15). The ubiquitination also controls the activity
of sensors or effectors in antiviral immunity. For example, the
activation of RNA sensor RIG-I depends on its ubiquitination,
which can be mediated by ubiquitin ligases Trim4, Trim25,
and Rnf135 (16–19). Trim6 and Herc6 can ubiquitinate other
antiviral effectors to modulate their activity (20, 21). In contrast,
Trim29 negatively regulates RIG-I-mediated innate immune
response and targets DNA sensor STING for degradation
(11, 22, 23). Therefore, multiple ubiquitin-transferases or ligases
serves as a layer of post-translational regulation of antiviral
innate immunity.

Poly(deoxyadenylic-deoxythymidylic) acid [poly(dA-
dT)] and Polyinosinic-polycytidylic acid [poly(I:C)] are
widely used viral nucleic acids analogs in antiviral immune
responses (24–27). poly(dA-dT) is recognized by several
cytosolic DNA sensors including ZBP1/DAI and cGAS
(25, 26). The synthetic dsRNA analog poly(I:C) binds and
activates RNA sensors such as RIG-I and MDA-5 (27). RIG-I
can also sense poly(dA-dT) indirectly by recognizing the
dsRNA with a 5′-triphosphate derived from poly(dA-dT)
(24). These viral mimics have been shown to activate the
antiviral immune responses and induce the expression of type
I interferon in a variety of mammalian cells, including mouse

embryonic fibroblasts, human epithelial cells, rat hepatocyte, dog
keratinocyte (28–31).

In this study, we are mainly investigating the global
transcriptome changes after the antiviral immunity activation
in mouse embryonic fibroblasts, with the aim to identify novel
biological processes, molecular functions and pathways being
up or down-regulated at transcription level. We stimulated cells
with poly(dA-dT) and poly(I:C) to mimic dsDNA and dsRNA
virus, and analyzed the genes commonly affected by both viral
mimics. Our analysis first demonstrated a widespread positive
feedback up-regulation of sensors, transducers, and transcription
factors in multiple pathways involved in detecting viral or
microbial infections, suggesting a self-enhancement of antiviral
pathways at transcription level upon viral infection. Viral mimic
stimulation also up-regulated a group of genes involved in DNA
damage response and DNA repair, implying the involvement of
these genes in antiviral immunity. Molecular function analysis
further showed that groups of helicase genes, nuclease genes,
methyltransferase genes and protein ubiquitin-ligase genes were
up-regulated upon antiviral immunity activation. Some of those
genes have been characterized as antiviral sensors, effectors
or regulators by previous studies, while the potential function
of many of those genes in antiviral immunity remain to be
investigated. In contrast, viral mimic stimulation down-regulated
genes involved in a wide spectrum of general biological processes,
cellular components and molecular functions. Taken together,
our study provides valuable information about the global
transcriptome changes upon the activation of antiviral immunity.
We identified novel groups of genes being up-regulated upon
antiviral immunity activation, which serves as useful resources
for mining new antiviral sensors and effectors.

MATERIALS AND METHODS

Cell Culture
The mouse embryonic fibroblasts (MEFs) (Wilde type mouse
embryonic fibroblast from the lab of Dr. Christophe Ampe,
University of Gent, Belgium) (32) were maintained and cultured
with Dulbecco’s modified Eagle medium (DMEM) with high
glucose (Sigma, D5671), 10% fetal bovine serum (Sigma, F0804),
and 100 units/mL penicillin and 100 µg/mL streptomycin
(Sigma, P4333), in a humidified incubator with 5% CO2 at 37◦C.

Viral Mimic Stimulation
MEFs were seeded at 5 × 105 cells/well in 6-well plates the day
before treatment. Poly (I:C) LMW (InvivoGen, tlrl-picw) and
Poly (dA:dT) naked (InvivoGen, tlrl-patn) were re-constituted
in sterile/endotoxin-free physiological water (InvivoGen, tlrl-
phy10). Transfection was performed using Lipofectamine 2000
reagent (Invitrogen, 11668019). Fifteen micrograms Poly (I:C)
or 15 µg Poly (dA:dT) was mixed with 9 µL Lipofectamine
2000 reagent in 250 µL Opti-MEMTM I reduced serum medium
(Gibco, 31985070) and incubated for 10min. The culture
medium in 6 well plate were replaced with 1.25mL Opti-MEMTM

I reduced serum medium and the Poly (I:C) or Poly (dA:dT)
transfection mixture were added to the cells (Final concentration
for both Poly (I:C) or Poly (dA:dT) is 10µg/ml). For the mock
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group, medium mixed with 9 µL Lipofectamine 2000 only was
added to the cells. Cells were further cultured in the incubator
for 6 h before total RNA extraction for both mock and treatment
groups. For each condition, 3 biological replicates were prepared
for RNA isolation.

RNA Library Construction and Sequencing
Three biological replicates of each experimental group were
prepared for RNA-seq analysis. Briefly, cells inmock or treatment
group were washed once with cold PBS and then total RNA were
purified using RNeasy Mini Kit (Qiagen, 74106) according to
the manufacturer’s instruction. RNA-sequencing libraries were
prepared using TruSeq RNA Library Prep Kit v2 (Illumina, RS-
122-2002). Briefly, total RNA was mixed with magnetic Oligo-
dT beads to purify the mRNA. Then the purified mRNA on
beads were fragmented and primed for cDNA synthesis. The first
strand and second strand cDNA synthesis was performed using
SuperScriptTM double-stranded cDNA synthesis kit (Invitrogen,
11917020) with random primers. The cDNA were then purified
using AMPure XP Beads (Beckman Coulter, A63881). The cDNA
was end-repaired and adenylated at 3′ end, followed by the
ligation of the adaptors. The cDNA was then amplified with
index primers using the following protocol: 98◦C 30 s; 15 cycles
of: 98◦C 10 s, 60◦C 30 s, and 72◦C 30 s; 72◦C 5min. The PCR
product was purified using AMPure XP Beads and the library
quality and size was analyzed using 2100 Bioanalyzer (Agilent
Genomics). Libraries with compatible index primers were pooled
at equal amount and deep-sequencing was performed using
Illumina HiSEq 2500 sequencing platform (New York University
Abu Dhabi Sequencing Center). RNA-seq data were deposited in
GEO database: Accession number: GSE111938.

RNA-Seq Data Analysis
The data was processed through the standard RNAseq analysis
pipeline at NYUAD. Briefly, raw read alignment was performed
using tophat2 v2.1.0, with the parameters “–no-novel-junctions”
and “–G” when specifying the genome file. The reference
genome and GFF annotation correspond to the Mus musculus
GRCm38.p4 genome version. Following the tophat2 alignment,
read counts mapped to each gene were generated using HTseq
count (33). The differential expression analysis of the raw counts
were performed based on the DESeq2 R library (34). The
STARTWeb-based RNA-seq analysis and visualization resources
(35) was used to perform the differential expression test and
visualization. FDR-adjusted p-value after Benjamini–Hochberg
correction formultiple-testing were used as the statistics to define
the differential expression. Genes with FDR-adjusted p < 0.05
are considered to be significantly differentially expressed between
two samples.

Gene Ontology Enrichment and KEGG
Pathway Analysis
Genes with FDR-adjusted p < 0.05 were considered to be
differentially expressed between Poly(I:C) vs. Mock group or
Poly(dA:dT) vs. Mock group. The commonly up-regulated and
down-regulated genes in Poly(I:C) group and Poly(dA:dT) group
in comparison to Mock group were submitted to gene ontology

(GO) enrichment and KEGG pathway analysis using the Web-
based DAVID bioinformatics resources 6.8 (36). For the GO
terms or KEGG pathway terms to be considered as over-
represented or enriched in each gene list, the following criteria
was applied: 1. ≥20 genes were found to be associated with the
GO term or KEGG term in the database; 2. The test p-value
[a modified Fisher Exact Test P-value (EASE Score): the smaller,
the more enriched] is<0.01; 3. The fold of enrichment (observed
number of genes in the term/expected number of genes in the
term) is ≥1.5. The GO terms or KEGG pathway terms that were
observed exclusively in up-regulated or down-regulated gene list
were further analyzed in details.

Quantitative Real-Time qPCR Analysis
Total RNA was extracted using RNeasy Mini Kit (Qiagen)
according to the manufacturer’s instructions. RNA was reverse
transcribed to cDNA by RevertAid First Strand cDNA synthesis
Kit (Thermo Fisher Scientific), based on the manufacturer’s
instructions. Diluted cDNA was subjected to quantitative real-
time PCR analysis using Maxima SYBR Green qPCR Mix
(Thermo Fisher Scientific) on StepOne Plus Real-Time PCR
system (Applied Biosystems). All the target gene expression
level was normalized to the expression of Nono reference gene.
Primers of qPCR were listed in Table S1.

RESULTS

Viral Mimic Stimulation Leads to Skewed
Distribution of Gene Expression Change in
Mouse Embryonic Fibroblasts
In this study, we investigated the global transcriptome changes
in response to viral infection in non-immune cells. We applied
poly(deoxyadenylic-deoxythymidylic) acid [poly(dA-dT)] and
Polyinosinic-polycytidylic acid [poly(I:C)] to mouse embryonic
fibroblast (MEFs). Both poly(dA-dT) and (poly(I:C) are pathogen
associated molecular pattern associated with dsDNA and dsRNA
viral infection (37, 38). After 6 h treatment with poly(dA-dT),
poly(I:C) and mock solution containing transfection reagent
alone, we isolated RNA from three biological replicates in each
condition and subjected it to RNA-seq analysis. Hierarchical
clustering analysis showed that biological replicates in each
condition were grouped together and samples stimulated with
poly(dA-dT) and poly(I:C) were clustered together (Figure 1A).
We next compared the transcriptomes of poly(dA-dT)- and
poly(I:C)-treated cells with those from the Mock group. Genes
with false discovery rate (FDR)-adjusted p < 0.05 were
considered as differentially expressed (Figures 1B,D, red dots).
We observed a highly skewed distribution of differentially
expressed (DE) genes in both poly(dA-dT) and poly(I:C) treated
groups, in comparison to mock group. The overall fold change
of genes being up-regulated were significantly higher than that
of genes being down-regulated (Figures 1B–E). However, the
number of genes being down-regulated was approximately equal
to that of the up-regulate ones (Figures 1C,E). These data
altogether suggests that viral infection can lead to both induction
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FIGURE 1 | Gene expression changes caused by viral mimic stimulation. (A) Quantification of the similarity in gene expression profiles of MEFs stimulated by

poly(dA:dT) or poly(I:C) for 6 h. Mock groups: treated with transfection reagent alone. Euclidean distances were calculated from normalized log-transformed read

counts in three biological replicates of each group. (B) Volcano plot showing the relative expression of genes in PolydAdT group vs. Mock group. X-axis shows the log

(fold change), Y axis is the FDR-adjusted p-value. Genes with FDR-adjusted p-value < 0.05 was considered to be differentially expressed (Red dots). (C) Violin plot of

the absolute log2 (fold change) of up-regulated or down-regulated genes in PolydAdT group vs. Mock group. (D) Volcano plot showing the relative expression of

genes in PolyIC group vs. Mock group. (E) Violin plot of the absolute log2 (fold change) of differentially expressed genes in PolyIC group vs. Mock group. Statistics in

(C,E): Mann–Whitney U-test, ***p < 0.001.
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and suppression of genes. The extent of gene induction is
significantly higher than that of gene down-regulation.

Different Sets of Gene Programs Are
Up-Regulated or Down-Regulated After
Viral Mimic Stimulation
In order to get biological insights about the up-regulated and
down-regulated genes, we performed Gene Ontology (GO)
enrichment analysis. We first isolated the genes commonly
up-regulated or down-regulated by poly(dA-dT) and poly(I:C)
because they are representatives of the genes potentially affected
by both dsDNA and dsRNA viral infection. There was a
highly significant overlap of up-regulated or down-regulated
genes between poly(dA-dT) and poly(I:C) treatment groups
(Figures 2A,B), indicating that the dsDNA and dsRNA viral
infection induce common transcriptome changes. We then
used the commonly up-regulated or down-regulated genes to
perform GO enrichment analysis separately. The GO terms or
the KEGG pathway terms with gene counts ≥20, p < 0.01 and
fold of enrichment ≥1.5 were considered to be significantly
over-represented in the gene list (Figures 2A,B). The full list
of significantly up-regulated or down-regulated GO terms and
KEGG pathway terms can be found in Table S2. When we
compared the enriched terms in each category (Biological
process, Cellular component, Molecular function, and KEGG
pathway), the majority of them were not shared by the up-
regulated and down-regulated genes (Figures 2C–F). These
data shows that after viral mimic stimulation, there are gene
programs associated with different biological processes, cellular
components, molecular functions, and signaling pathways that
can be up-regulated or down-regulated, respectively.

Activation of Antiviral Immunity Leads to a
Positive Feedback Regulation of Multiple
Signaling Pathways Involved in Sensing
Viral or Microbial Infection
We next examined the biological processes enriched in the
commonly up-regulated genes. As expected, anti-viral innate
immunity processes such as defense response to virus, cellular
response to interferon beta, negative regulation of viral genome
replication and innate immune response were highly over-
represented in the up-regulated genes (Figure 3A). For example,
genes involved in negative regulation of viral replication such
as Mx2, Isg15, Isg20, Rnasel, and Oas family genes were
highly up-regulated after viral mimic stimulation (Figure 3B)
(39–43), as well as antiviral cytokine genes Ifnb1 and Tnf
(44). Different classes of genes in defense response to viruses
were also highly induced (Figure S1). These data demonstrates
that the viral mimic stimulation of embryonic fibroblasts with
poly(dA-dT) and poly(I:C) faithfully activates the antiviral
immunity responses.

When we examined the KEGG pathway terms enriched in
the up-regulated genes, we found that multiple innate immunity
signaling pathways involved in sensing virus or microbe infection
were significantly over-represented. These includes Toll-like
receptor signaling pathway, cytosolic DNA sensing pathway,

RIG-I-Like receptor signaling pathway, NOD-like receptor
pathway (Figure 3C). When we mapped the up-regulated genes
to individual pathways, we found that not only the target
genes induced by these pathways were up-regulated, multiple
components functioning as receptors, signaling transducers or
transcription factors at different stages of those pathways were
also up-regulated (Figures 3D,E; Figures S2A,B). For example,
Toll-like receptors (Tlr2, Tlr3), RNA sensors (Ifih1, Ddx58,
Nod2), and DNA sensors (Mb21d1, Ddx60, Zbp1, and Aim2)
which are functioning in different pathways were up-regulated
to different levels (Figure 3F). The up-regulated signaling
transducers includes kinases such as Ripk1, Tbk1, kinases in
MAPK (Mitogen activated protein kinase) signaling pathways
and several TRAF (TNF receptor associated factor) members
(Figure 3G). Transcription factors such as several members
in IRF (Interferon-regulatory factor) family, AP-1 (Activating
protein 1) family, NF-κB (Nuclear factor-kappaB) family, and
STAT (signal transducer and activator of transcription) family
were also highly induced (Figure 3H). Collectively, these results
indicate that the activation of antiviral immunity response leads
to a widespread positive feedback regulation of multiple signaling
pathways involved in detecting viral or microbial infections. The
positive feedback enhances the expression of genes functioning at
different steps of multiple signaling pathways.

Antiviral Immunity Activation Up-Regulates
Genes in DNA Damage Response and DNA
Repair
Recent studies have shown that viral infection can lead to the
activation of signaling processes of DNA damage responses at
protein level in the host cells (45, 46). Our data also revealed
that biological processes such as cellular response to DNA
damage stimulus and DNA repair were significantly enriched in
the up-regulated genes (Figure 4). Those genes includes Atm,
Brca2, several members in PARP (Poly (ADP-ribose) polymerase)
family and DNA repair proteins Rad9b, Rad18, Rad 51, Rad52
(Figure 4). Interestingly, the two heavily induced genes Parp9
and Dtx3l are well characterized DNA damage response proteins
that form a heterodimer in DNA repair (47, 48). Parp9 and
Dtx3l have been recently implicated in enhancing interferon
signaling and controlling viral infection (49). This study and our
data altogether suggest that DNA damage repair genes being
up-regulated upon viral infection may regulate the antiviral
immunity signaling process. Consistently, here we report the
identification of a large group of DNA repair genes that can be
induced upon antiviral immunity activation, providing a valuable
resource for future investigation of their potential roles in viral
infection defense.

Molecular Function Analysis Reveals
Induction of Helicases, Nucleases,
Methyltransferases, and Protein
Ubiquitin-Ligases Upon Antiviral Immunity
Activation
To investigate whether the up-regulated genes are related to
certain molecular functions, among the enriched GO terms we
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FIGURE 2 | Gene Ontology (GO) and KEGG pathway analysis show that different cellular processes, components, and pathways are enriched among both

up-regulated and down-regulated genes. (A,B) Venn diagrams showing that a significant number of genes is commonly up-regulated or down-regulated by PolydAdT

and PolyIC: Fisher’s exact test. The commonly up-regulated or down-regulated genes were subject to gene ontology enrichment analysis and KEGG pathway analysis

using DAVID bioinformatics resources. The GO terms or KEGG terms with at least 20 gene counts, p < 0.01 and the fold of enrichment ≥1.5 were considered to be

over-represented in each gene list. (C–F) Venn diagrams shows that the majority of over-represented GO and KEGG terms in biological process (C), cellular

component (D), molecular function (E), and KEGG pathway (F) are differentially enriched in up-regulated and down-regulated genes.

examined molecular functions. We found that except for DNA
or RNA binding functions, genes which encode proteins with
different enzymatic activities were found to be enriched within
the up-regulated genes. These molecular functions include ligase
activity, helicase activity, nuclease activity, methyltransferase
activity as well as ubiquitin-protein ligase and transferase

activity (Figure 5A). For the helicase activity, among the most
heavily induced genes we found Ddx58 (RIG-I), Ifih1 (MDA5),
and Dhx58 (LGP2), which are well-characterized viral sensors
in innate immunity (50). The recently identified antiviral
effectors Mov10 (51) and Helz2 (52) were also highly up-
regulated (Figure 5B). Apart from that, multiple members in
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FIGURE 3 | Stimulation by viral mimics up-regulates genes involved in multiple innate immunity pathways. (A) Top biological processes related to antiviral immunity

over-represented in up-regulated genes. Number in bracket indicates the number of genes associated with the term. (B) Heat map showing the genes involved in the

negative regulation of viral genome replication are commonly up-regulated by PolydAdT and PolyIC stimulation. Scale bar: log2 (relative expression level). (C) Innate

immunity pathways over-represented in the up-regulated genes. (D,E) Up-regulated genes that are mapped to the dsDNA sensing pathway (D) and Toll-like receptor

pathway (E) using KEGG pathway database, which are marked by red stars. (F–H) The relative expressions of genes serving as receptors or sensors (F), signaling

transducers (G), and transcription factors (H) in innate immunity pathways. Scale bar: log2 (relative expression level). Pathway maps in (D,E) are modified from KEGG

pathway maps (with copyright permission for publication) using DAVID bioinformatics tool (36).
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FIGURE 4 | Histogram showing the –Log (p-value) of the enrichment of genes in biological processes of DNA repair and cellular response to DNA damage stimulus,

with the number of genes up-regulated in bracket. Heat map shows the genes in DNA repair process that are up-regulated by PolydAdT and PolyIC stimulation.

MCM (Minichromosome maintenance protein complex) family,
DDX (DEAD-box helicases) family, DHX (DEAH-box helicases)
family were significantly induced upon antiviral immunity

activation (Figure 5B). In addition, helicase components of
certain chromatin remodeling or modifying complexes such as
Ino80, Chd5, Ep400, Ascc3 were also induced (Figure 5B). These
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results show that a variety of helicases (including the ones with
unclear roles in viral defense such as MCM complex members)
are up-regulated, suggesting a diverse group of helicases may be
induced and function in antiviral defense upon viral infection.

Consistent with previous studies, the nucleases that are known
to be induced by viral infection or interferon such as Isg20
(40), Pnpt1 (53), Rnasel (54), and Zc3h12a (55) were found to
be heavily up-regulated in our data sets (Figure 5C). Our data
further identified numerous ribonuclease and deoxyribonuclease
genes with unknown roles in viral infection such as Dnase1l3,
Dclre1c, Rexo1, Dxo, and Mgme1 (Figure 5C). Interestingly, the
up-regulated nucleases seem to play diverse functional roles in
different cellular processes. For example, Mgme1 exonuclease is
required for mitochondrial genome synthesis (56), Dnase1l3 is
involved in degrading chromatin released by apoptotic cells (57),
and Dclre1c has a functional role in DNA damage repair (58).
Therefore, our data suggest that a variety of nuclease genes can
be induced by the activation of antiviral immunity and they may
be involved in restricting the viral genome replication.

Recent studies identified novel roles of certain histone
methyltransferases in antiviral immunity. For example, Setdb2
and Prmt6 were involved in defense against Influenza A virus
and HIV-1 infection (59, 60). Our data also showed that
the methyltransferase activity was significantly over-represented
in the up-regulated genes upon antiviral immunity activation
(Figure 5A). Among the up-regulated methyltransferase genes
we found histone methyltransferases such as Setdb1, Setdb2,
Setd4, Prmt6, Prdm4, and Prdm9 (Figure 5D). Surprisingly, a lot
of genes with RNA methyltransferase activity were also induced.
Multiple members of Mettl (Methyltransferase like) gene family
showed significant up-regulation, such as Mettl1, Mettl2, Mettl3,
Mettl6, Mettl13, and Mettl14 (Figure 5D). Other RNA-related
methyltransferases included those modifying rRNA (Rnmtl1,
Dimt1, Nop2), tRNA (Trmt1l, Trmt1, Trmt13, Trmt10c,
Trmt44), or methylating the mRNA 5′-Cap (Cmtr1, Cmtr2)
(Figure 5D). Altogether, these findings show that multiple genes
related to histone and RNA methyltransferase activity are up-
regulated upon antiviral immunity activation, suggesting novel
functions of those methyltransferases in controlling viral genome
or transcripts after viral infection.

The above results show that antiviral immunity activation
lead to the increased expression of helicases, nucleases and
methyltransferases which may potentially modify the viral DNA
or RNA during infection. At protein level, recent studies
have begun to reveal that the ubiquitin-proteasome system
plays an important and complex role during viral infection
(61–63). Our RNA-seq data analysis also identified ubiquitin-
protein transferase and ligase activity as molecular functions that
were significantly over-represented in the up-regulated genes
after viral mimic stimulation (Figure 5A). The up-regulated
genes with ubiquitin-protein transferase activity contain multiple
members of Trim (Tripartite motif containing) gene family and
Rnf (Ring finger proteins) gene family (Figure 5E). Some of those
ubiquitin ligase genes are reported to have antiviral functions. For
example, Trim6 and Herc6 were found to potentiate the antiviral
immunity signaling pathway (20, 21). However, the antiviral
activity of Trim56 seems not to be attributed to the augmentation

of interferon antiviral response (64).Whether the other Trim and
Rnf genes have similar functions in regulating antiviral immunity
remains unclear. We speculate that these up-regulated ubiquitin
transferase genes may function to modify the antiviral signaling
processes or directly target viral proteins.

Collectively, we discovered that numerous genes with helicase,
nuclease, methyltransferase, ubiquitin-transferase functions are
up-regulated upon viral mimic stimulations. We also verified
the up-regulation of selected genes from different molecular
functions by qPCR. The analysis shows that nearly all of these
genes display significant induction upon PolydAdT and PolyIC
stimulation (Figure 5F). Some of those genes have been reported
to have antiviral activity or play roles in antiviral signaling
processes. However, the potential roles of the majority of those
genes in antiviral immunity remains to be further investigated.

Viral Mimic Stimulation Down-Regulates
Genes Involved in a Wide Spectrum of
General Biological Processes, Cellular
Components, and Molecular Functions
Apart from those gene programs being up-regulated, we found
that following viral mimic stimulation there are many gene
programs that are specifically over-represented among the down-
regulated genes (Figure 2). Here, we only examined the gene
ontology terms uniquely over-represented in the down-regulated
gene list. The biological processes significantly enriched in
the down-regulated genes include cell cycle and division (in
red), protein translation, folding and transport (in blue), and
a variety of metabolic processes (in yellow) (Figure 6A). In
terms of cellular components, genes associated with almost
all cellular components showed down-regulations. The most
significantly affected cellular components were extracellular
exosome (with 786 genes down-regulated), mitochondrion (with
466 genes down-regulated), endoplasmic reticulum (with 378
gene down-regulated), Golgi apparatus (with 318 genes down-
regulated) (Figure 6B). Actin and microtubule cytoskeleton,
ribosome, lysosome, extracellular matrix, proteasome complex,
spindle were also identified among the down-regulated genes
(Figure 6B). For molecular functions, the most significantly
affected ones were cadherin binding involved in cell-cell
adhesion, oxidative reductase activity, structural constituent of
ribosome, microtubule binding (Figure 6C). We also analyzed
the down-regulated genes using KEGG pathway database.
Pathways related to cell cycle, protein processing in ER, multiple
metabolic pathways, oxidative phosphorylation in mitochondria
and ribosome were significantly over-represented in the down-
regulated genes (Figure S3A), which is highly consistent with the
biological processes and cellular components. When we mapped
the down-regulated genes to each pathway, we found that the
down-regulated genes were situated at different parts of each
pathway (Figures S3B, S4, down-regulated genes are labeled
with red asterisk). For example, in cell cycle, different cyclin-
dependent kinases (CDKs) are down-regulated (Figures S4A,
S5A). In Citrate cycle (TCA cycle), genes involved in almost every
step of this metabolic pathway were affected (Figures S4B, S5B).
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FIGURE 5 | Viral mimics stimulation up-regulates genes with enzymatic activity in DNA and RNA processing. (A) Top molecular functions over-represented in the

up-regulated genes. Number in bracket indicates the number of genes associated with the term. (B–E) Heat maps showing genes with helicase activity (B), nuclease

activity (C), methyltransferase activity (D), and ubiquitin-protein transferase (E) that are up-regulated by viral mimic stimulation. Scale bar: log2 (relative expression

level). (F) qPCR quantification of the relative expression of selected genes of different molecular functions. Nono housekeeping gene was used as the internal control

for normalization. Student’s t-test was applied to compare the value of PolydAdT or PolyIC to the Mock group respectively. *p < 0.05, **p < 0.01, ***p < 0.001. n ≥ 3

biological replicates.

In endoplasmic reticulum, multiple genes involved in protein
folding and degradations are affected (Figures S4C, S5C).

It is noticeable that multiple gene ontology or KEGG
pathway terms related to mitochondria and ribosome were
identified in the down-regulated genes (Figure 6B; Figure S3A).
We examined the genes related to oxidative phosphorylation

(OXPHOS) in mitochondria and structural components of
ribosome (Figure 7). Strikingly, the vast majority of genes
encoding for the complex I–V in the respiratory chain of
mitochondria showed consistent down-regulation (Figure 7A;
Figure S6A). Similar results were observed for genes encoding
ribosomal proteins localizing to both small and large ribosomal
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FIGURE 6 | Top biological processes (A), cellular components (B), and molecular functions (C) over-represented in the down-regulated genes. Number in bracket

indicates the number of genes associated with the term. Colors in (A): red, cell cycle-related terms. Blue: protein translation and processing-related terms. Yellow:

metabolic process-related terms.

subunits (Figure 7B; Figure S6B). qPCR analysis further
confirmed the down-regulation of multiple ribosome subunit
genes such as Rps25, Rpl9, Mrpl18,Rpl36a, and the OXPHOS
genes such as Sdhc and Sdhd (Figure 7C). These results suggest
that activation of antiviral immunity has a negative impact on
mitochondria and ribosomes.

Collectively, we show evidence that antiviral immunity

activation leads to the down-regulation of gene programs
in a wide spectrum of general biological processes, cellular

components, and pathways. It is important to point out that these
biological processes, cellular components, and pathways affected
were only significantly enriched in the down-regulated genes. In

contrast, among the up-regulated genes we identified multiple
pathways for antiviral or anti-microbial defense. Altogether, our
findings demonstrate that the activation of antiviral immunity
by viral mimics differentially affects the expression of sets of
gene programs.

DISCUSSION

Synthetic viral genome analogs can activate the antiviral
responses and induce the expression of type I interferon
in mammalian cells of different species, such as mouse
embryonic fibroblasts, human epithelial cells, rat hepatocyte, dog
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FIGURE 7 | Down-regulated genes associated with oxidative phosphorylation in mitochondria (A) and ribosome submits (B) are mapped using KEGG pathway and

labeled by red stars. (C) qPCR quantification of the relative gene expression of selected ribosome subunits or OXPHOS components. Nono housekeeping gene was

used as the internal control for normalization. Student’s t-test was applied to compare the value of PolydAdT or PolyIC to the Mock group, respectively. *p < 0.05,

**p < 0.01, ***p < 0.001. n ≥ 3 biological replicates. Pathway maps in (A,B) are modified from KEGG pathway maps (with copyright permission for publication) using

DAVID bioinformatics tool (36).
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keratinocyte (28–31). In this study, we profiled the transcriptome
changes of mouse embryonic fibroblast (MEFs) in response
to viral mimic stimulation. Since the activation of antiviral
responses by viral mimics seem to be highly conserved in
different mammalian cells, mouse fibroblast can be a useful
cell model to study the transcriptome changes by these viral
analogs. We identified genes commonly up-regulated or down-
regulated in response to dsDNA [poly (dA-dT)] and dsRNA
[Poly (I:C)] viral mimics. The expression of more than 8,000
genes are affected by poly (dA-dT) or Poly (I:C) stimulation
after 6 h. The vast majority of the affected genes shows similar
trend of up-regulation or down-regulation in response to poly
(dA-dT) and Poly (I:C) stimulation, indicating that dsDNA and
dsRNA mimics activate or suppress similar cellular processes
and signaling pathways. The overall extent of gene up-regulation
is significantly higher compared to gene down-regulation. This
basically reflects the fact that the antiviral immunity pathway
leads to major gene induction events, such as the induction of
type-I interferons due to the activation of IRF3 and IRF7 and the
subsequent up-regulation of interferon-stimulated genes (8, 65).

For the analysis, we focused on the genes up-regulated or
down-regulated by both poly (dA-dT) and Poly (I:C) stimulation,
because they are more likely to represent the set of genes
affected by both dsDNA and dsRNA viral infection. Biological
processes such as defense response to virus, negative regulation
of viral genome response and innate immune response are very
significantly over-represented in the up-regulated genes, which
demonstrates that that poly (dA-dT) and Poly (I:C) stimulation
faithfully activates the antiviral immunity pathway and antiviral
response genes in our data.

Recent studies have shown that there is a positive feedback up-
regulation of several antiviral mediators such as RIG-I, STING,
cGAS, and IRF1 after viral mimic or type-I interferon treatment
(66–69). Consistently, our data identified these genes being up-
regulated after viral mimic stimulation. More importantly, we
show evidence that the activation of antiviral immunity leads to
a widespread positive feedback regulation of multiple signaling
pathways which presumably function to defend against viral
or microbial infections. Among these pathways, we identified
Toll-like receptor signaling pathway, cytosolic DNA sensing
pathway, RIG-I-Like receptor signaling pathway, NOD-like
receptor pathway. Detailed analysis demonstrates that this
positive feedback enhances the expression of genes functioning
at different steps of these pathways, including sensors, signal
transducers and transcription factors. Collectively, our study
not only supports the previously identified positive feedback
induction of certain genes in the antiviral signaling pathway,
but also extends the positive feedback regulation to many
genes functioning at multiple steps of several antiviral or anti-
microbial pathways. It has been shown that the up-regulation
of cGAS and STING are dependent on type-I interferon
(66, 67), while the induction of RIG-I gene seems to be
interferon-independent and IRF3-dependent (68). It remains to
be further determined for which group of genes the positive
feedback up-regulation relies on the type-I interferon, and
for which group of genes the up-regulation only requires the
activation of IRFs.

Several recent studies revealed that viral infection can elicit
strong DNA damage response in the host cells (45, 70, 71).
These studies demonstrate that the DNA damage response
signaling cascade is activated at posttranslational level upon viral
infection, one of the primary targets being the phosphorylation
of ATM/ATR kinase and H2AX. Our data add novel insights
at the transcriptome level, showing that viral mimics can up-
regulate a group of genes involved in DNA damage response and
DNA repair. These genes can be induced by both dsDNA and
dsRNA viral mimics. The exact role of DNA damage response
pathway activation in viral infection may depend on the type
of virus and the host cells. In some cases the activation of
DNA damage response may confer antiviral effect (72, 73), while
for certain virus it seems to be essential for the efficient viral
genome replication in the host cells (74–76). These are interesting
scenarios but the exact functional roles of the genes up-regulated
by viral mimic stimulation need to be further clarified.

Another important finding is the identification of groups
of helicase genes, nuclease genes and methyltransferase genes
can be up-regulated upon the activation of antiviral immunity.
Some of the genes are previously identified interferon-stimulated
genes such as Isg20, Rnasel, Ifih1, Ddx58 (77). Genes which
have been recently shown to exhibit antiviral activity such
as Mov10 (51), Helz2 (52), Setdb2 (59), Prmt6 (60) are
also found in our list of up-regulated genes. For example,
Helz2 mediates the suppression of Dengue Virus, and Prmt6
methyltrasnferase seems to inhibit the genome replication
of HIV-1 (52, 60). Apart from those genes with known
antiviral function, we report novel classes of genes being
induced upon the activation of antiviral immunity, including
multiple members of MCM (Minichromosome maintenance
protein complex) family, DDX (DEAD-box helicases) family,
DHX (DEAH-box helicases), histone methyltransferases, and
RNA methyltransferases. Therefore, our data set provides a
valuable resource for further characterizing the functional
role of these seemingly novel players in the context of
antiviral immunity.

The ubiquitin system is an important regulator in diverse
cellular processes such as protein turnover, endocytosis, innate
immunity and other signaling pathways (78–80). Viruses have a
complex interplay with the ubiquitin-proteasome system of the
host cells. On one hand, viruses can highjack the host ubiquitin
system to facilitate entry into the host cell and replication (81, 82)
or evade the antiviral immunity (83, 84). On the other hand,
the ubiquitination of viral proteins by Trim22 and Trim32 for
proteasome degradation can restrict viral replication (14, 15).
Importantly, ubiquitination also regulates the antiviral immunity
pathway. For example, the activation of antiviral sensor RIG-I
depends on the ubiquitin (16), and Trim4, Trim25, and Rnf135
can, respectively ubiquitinate RIG-I to trigger its activation
(17–19). Trim6, Trim56, and Herc6 can also potentiate antiviral
immunity by targeting other antiviral effectors in the infection
of vesicular stomatitis virus (VSV), pestivirus, and influenza A
virus, respectively (20, 21, 64). In contrast, Trim29 can negatively
regulates innate immune response by targeting RIG-I and STING
(11, 22, 23). In line with these observations, our analysis
identified Herc6, Rnf135, Trim6, Trim25, Trim32 genes being
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significantly up-regulated upon the stimulation of viral mimics,
while Trim29 was not induced. We expect that the up-regulation
of these genes positively enhances the antiviral immunity, adding
another layer of positive feedback regulation. Moreover, there
are many other ubiquitin-transferase or ligase genes, including
multiple members of Trim and Rnf gene families. Although
further analysis is required to understand their specific roles,
the enhanced expression of ubiquitin-transferases or ligases upon
the activation of antiviral immunity suggests an augmented
ubiquitination activity upon viral infection and a possible direct
involvement in antiviral defense.

In addition to the identification of novel groups of genes
being induced, our study also shows that a broad spectrum of
gene programs related to general biological processes, cellular
components, and pathway is down-regulated upon activation of
antiviral immunity. We identified gene programs involved in
multiple metabolic pathways, biological processes such as cell
cycle, protein translation and processing, cellular components
such as cytoskeleton, mitochondria, and ribosome.

Previous studies found that viral infection can lead to
suppression of certain metabolic pathways, such as fatty acid
synthesis and sterol synthesis (85, 86). A recent study also showed
that viral analogs down-regulated genes involved in metabolic
process (87). There is also evidence that viral infection down-
regulates genes involved in ribosome biogenesis and cytoskeleton
regulation (88, 89). By identifying novel gene programs that are
down-regulated, our study provides a more complete picture of
the cellular processes and components negatively affected upon
viral infection.

Viral genome analogs such as poly(dA-dT) and poly(I:C)
serve as a simple and efficient way to activate the antiviral
immunity in a variety of cell types. However, we have to point
out that proteins encoded by different virus can also modulate
the activation of innate immunity (90). Therefore, the influence
of associated viral proteins is not captured in our data. Since the
proteins expressed by different classes of virus vary, the degrees
and duration of antiviral immunity elicited by different virus
are expected to be different. Nevertheless, the understanding
of transcriptome changes induced by viral genome analogs
reveals novel groups of genes being up-regulated, which can
be potential candidates for regulators or effectors in antiviral
immune response.

In summary, our study provides valuable information about
the transcriptome changes upon antiviral immunity activation.
Our data revealed that gene programs associated with a wide
range of general cellular processes and components are down-
regulated, indicative of the cellular activities that are potentially
negatively affected upon viral infection. We also identified novel
groups of genes being up-regulated, altogether providing a useful

resource for mining new antiviral effectors and characterizing
their functions.
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Table S1 | DNA sequence of primers used for qPCR analysis.

Table S2 | Summary of the Gene Ontology and KEGG pathway analysis. 1.

Biological processes; 2. Cellular components; 3. Molecular functions; and 4.

KEGG pathways that are over-represented in the commonly up-regulated or

down-regulated genes are shown respectively. The GO terms or KEGG pathway

term with at least 20 gene counts, fold enrichment ≥, P < 0.01 were considered

to be significantly over-represented in each gene list.

Figure S1 | Heat map showing the relative expression levels of up-regulated

genes by viral mimic stimulation involved in defense response to virus. Scale bar:

log2 (relative expression level).

Figure S2 | Genes up-regulated are mapped to the RIG-I like receptor pathway

(A) and TNF signaling pathway (B), which are labeled by red stars.

Figure S3 | Summary of KEGG pathways over-represented in the down-regulated

gene list is shown in (A). (B) Down-regulated genes involved in fatty acid

metabolism is mapped to the KEGG pathway. The down-regulated genes

responsible for each enzymatic steps are labeled with red star.

Figure S4 | Down-regulated genes involved in cell cycle (A), citrate cycle (B), and

protein processing in endoplasmic reticulum (C) is mapped to the KEGG pathway.

The down-regulated genes responsible for each enzymatic steps are labeled with

red star.

Figure S5 | Heat map showing the relative expression levels of down-regulated

genes by viral mimic stimulation related to cell cycle (A), citrate cycle (B), and

protein processing in endoplasmic reticulum (C). Scale bar: log2 (relative

expression level).

Figure S6 | Heat map showing the relative expression levels of down-regulated

genes by viral mimic stimulation related to oxidative phosphorylation (A) and

ribosome submits (B). Scale bar: log2 (relative expression level).
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