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A B S T R A C T   

White matter hyperintensities (WMH) are regions of high signal intensity typically identified on fluid attenuated 
inversion recovery (FLAIR). Although commonly observed in elderly individuals, they are more prevalent in 
Alzheimer’s disease (AD) patients. Given that WMH appear relatively homogeneous on FLAIR, they are 
commonly partitioned into location- or distance-based classes when investigating their relevance to disease. 
Since pathology indicates that such lesions are often heterogeneous, probing their microstructure in vivo may 
provide greater insight than relying on such arbitrary classification schemes. In this study, we investigated WMH 
in vivo using an advanced diffusion MRI method known as single-shell 3-tissue constrained spherical deconvo
lution (SS3T-CSD), which models white matter microstructure while accounting for grey matter and CSF com
partments. Diffusion MRI data and FLAIR images were obtained from AD (n = 48) and healthy elderly control (n 
= 94) subjects. WMH were automatically segmented, and classified: (1) as either periventricular or deep; or (2) 
into three distance-based contours from the ventricles. The 3-tissue profile of WMH enabled their characteri
sation in terms of white matter-, grey matter-, and fluid-like characteristics of the diffusion signal. Our SS3T-CSD 
findings revealed substantial heterogeneity in the 3-tissue profile of WMH, both within lesions and across the 
various classes. Moreover, this heterogeneity information indicated that the use of different commonly used 
WMH classification schemes can result in different disease-based conclusions. We conclude that future studies of 
WMH in AD would benefit from inclusion of microstructural information when characterising lesions, which we 
demonstrate can be performed in vivo using SS3T-CSD.   
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Diffusion tensor imaging; DWI, Diffusion-weighted imaging; FLAIR, Fluid-attenuated inversion recovery; FOD, Fibre orientation distribution; GM, Grey matter; HIST, 
HyperIntensity Segmentation Tool; NAWM, Normal-appearing white matter; SS3T-CSD, Single-shell 3-tissue constrained spherical deconvolution; TC, Cerebrospinal 
fluid-like signal fraction; TG, Grey matter-like signal fraction; TW, White matter-like signal fraction; WM, White matter; WMH, White matter hyperintensities. 
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1. Introduction 

Magnetic resonance imaging (MRI) enables us to probe the in vivo 
structure of the brain with high anatomical resolution, facilitating 
identification of brain abnormalities and diagnosis of neurological dis
eases. As MRI methods have vastly improved over the past few decades, 
resulting in a corresponding improvement in their clinical utility, we 
have grown somewhat accustomed to identifying specific MRI abnor
malities, and often, to making assumptions about their underlying 
pathological changes. Indeed, it has become commonplace to identify 
MRI abnormalities, and to use them as biomarkers or imaging markers of 
known pathological or clinical correlates. However, not all MRI abnor
malities are straightforward to interpret. One such MRI abnormality in 
which ambiguity remains, is the presence of white matter hyper
intensities observed on T2-weighted MRI. 

White matter hyperintensities (WMH) are commonly observed in 
elderly individuals, and can be identified on fluid-attenuated inversion 
recovery (FLAIR) images, where they appear as hyperintense regions 
within white matter. While FLAIR is useful for radiological identification 
of these lesions, it is non-specific in distinguishing between underlying 
pathological changes. Histopathological-imaging correlational studies 
in post-mortem brains have shown that WMH are characterised by a 
heterogeneous histological profile, including myelin pallor, myelin loss, 
axonal loss, gliosis and white matter infarction (Braffman et al., 1988; 
Fazekas et al., 1993; Gouw et al., 2008; Young et al., 2008; Schmidt 
et al., 2011a). Most of these histological changes are thought to be 
ischaemic in origin (Pantoni et al., 1996; Pantoni and Garcia, 1997; 
Topakian et al., 2010), and consequently, WMH have been proposed as a 
proxy measure for small vessel disease, and a surrogate endpoint for 
cerebrovascular clinical trials (Schmidt et al., 2004). While it may be a 
useful clinical surrogate, using global measures of WMH as a marker for 
small vessel disease disregards information about known pathological 
heterogeneity. Moreover, not all WMH observed on MRI have micro
angiopathic origin (Fazekas et al., 1993; McAleese et al., 2017), and 
different lesions may have distinct clinical and pathological correlates. 

WMH have been shown for some time to be greater in volume and 
severity in Alzheimer’s disease patients than in healthy elderly in
dividuals (Rezek et al., 1987; Scheltens et al., 1992; Barber et al., 1999), 
and more recently, have been considered by some to be a core feature of 
Alzheimer’s disease (Lee et al., 2016); however, the role of these lesions 
in contributing to Alzheimer’s disease either through additive or inter
active effects is not entirely understood. In the context of Alzheimer’s 
disease, distinguishing between different types of WMH is particularly 
relevant, given that some lesions are believed to be more closely asso
ciated with the disease, whereas others are thought to be less delete
rious, age-associated injuries (Brickman et al., 2015; McAleese et al., 
2017). 

In an attempt to distinguish between certain types of WMH, classi
fication schemes are commonly adopted, differentiating these lesions 
based on their location, shape or size. Commonly, these classification 
schemes distinguish periventricular WMH from deep WMH, or distin
guish confluent lesions from punctate lesions. However, classification 
schemes differ, and the same terms are often used to define WMH in a 
disparate manner (Kim et al., 2008). For instance, while many visual 
rating scales define periventricular WMH as those lesions that have 
continuity with the lateral ventricles (Fazekas et al., 1987; Coffey et al., 
1990; de Leeuw et al., 2000), others classify periventricular lesions 
based on their distance from the ventricular surface (Wen and Sachdev, 
2004; DeCarli et al., 2005), or their shape or size (Schmidt et al., 1992; 
Scheltens et al., 1993). Unsurprisingly, the clinical and pathological 
correlates of different classes of WMH appear variable, given the 
inconsistency among classification schemes (Van Straaten et al., 2006; 
Kim et al., 2008). Moreover, the use of categorical distinction to 
differentiate WMH has itself been criticised as somewhat arbitrary, as 
such classifications may not necessarily correspond to meaningful 
pathological differences (DeCarli et al., 2005). 

In vivo methods that are able to identify and measure microstructural 
heterogeneity of these lesions could thus be highly valuable, given that 
they would likely reflect pathological differences among lesion types, 
above and beyond the binary identification of WMH that is possible with 
FLAIR. Imaging modalities that have been used to date to probe het
erogeneity within lesions include magnetization transfer ratio (Spilt 
et al., 2006) and T1 relaxation time (Brex et al., 2000). One MRI 
approach that is particularly suited to probe tissue microstructure is 
diffusion MRI, or diffusion-weighted imaging (DWI). Signal intensity on 
diffusion MRI is sensitive to the microscopic diffusion of water, and can 
be used to study white matter fibre architecture in vivo. As such, it is 
potentially sensitive to microstructure within WMH. The ability to 
appropriately model white matter structures, however, depends upon 
the type of diffusion data acquired, and the methods used to model these 
diffusion data. Diffusion tensor imaging (DTI) (Basser et al., 1994) is 
commonly used to model white matter microstructure, and has been 
widely applied to investigate microstructural properties of WMH. While 
it is sensitive in detecting differences in WMH (Bastin et al., 2009; 
Maniega et al., 2015), there are well-known limitations to the DTI model 
that render it problematic when interpreting results, particularly when 
multiple fibre orientations are present (Le Bihan et al., 2006; Jones, 
2010; Jones et al., 2013). 

Constrained spherical deconvolution (CSD) is a method that enables 
modelling of white matter in the presence of multiple fibre orientations 
(Tournier et al., 2004, 2007), even when there are crossing fibre pop
ulations within a voxel, and thus offers a means to model complex white 
matter structures better than the DTI model. However, the ability of CSD 
to model white matter may be confounded in areas where there is partial 
voluming with other tissues, such as grey matter (GM) or cerebrospinal 
fluid (CSF). This issue can be overcome by modelling GM and CSF signal 
fractions, for example by using multi-shell multi-tissue CSD (Jeurissen 
et al., 2014). However, this requires multi-shell data, typically implying 
the additional use of low b-values, which introduces some amount of 
extra-axonal signal (Genc et al., 2020). Alternatively, a recently intro
duced variant of the CSD method, called single-shell 3-tissue CSD (SS3T- 
CSD) (Dhollander and Connelly, 2016a; Dhollander et al., 2016), is able 
to additionally estimate the GM and CSF compartments using single- 
shell diffusion data alone. In doing so, the effects of partial volume of 
non-white matter signal, which can otherwise result in overestimation of 
the white matter compartment, are minimised. More recently, SS3T-CSD 
has additionally been proposed as a means to provide insight into 
microstructural properties of pathological tissue (Dhollander et al, 
2017). By characterising the diffusion signal obtained from tissue in 
terms of its relative composition of diffusion signal characteristics 
similar to those of the three distinct tissue types (i.e., those obtained 
from white matter, GM and CSF), this method can provide insight into 
the microstructural properties of different types of tissue. This could 
then be applied to probe the underlying diffusional characteristics of 
WMH, as pathological changes within these lesions could result in signal 
characteristics that deviate from normal white matter, enabling micro
structural heterogeneity within these lesions to be potentially detected 
and characterised in vivo. 

In this study, we sought to investigate WMH using SS3T-CSD in a 
cohort of Alzheimer’s disease patients (n = 48) and healthy elderly 
control subjects (n = 94). Our aims were to investigate heterogeneity in 
the microstructural properties of these WMH in vivo, and to determine 
whether WMH exhibit distinct diffusional characteristics that would 
provide additional information to that obtained using conventional bi
nary lesion classification schemes. Moreover, we were interested in 
determining whether multi-tissue diffusional characteristics of lesions 
could offer disease-relevant information in the context of Alzheimer’s 
disease. 
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2. Materials and methods 

2.1. Participants 

Participants included in this study were recruited as part of the 
Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging, and 
consisted of patients with clinical Alzheimer’s disease, and healthy 
elderly control subjects. Participants were classified into clinical groups 
according to AIBL criteria, and satisfied inclusion and exclusion criteria, 
as has been previously described (Ellis et al., 2009). Participants were 
included in this study if their MRI protocol included high b-value 
diffusion MRI, acquired at the Florey Institute of Neuroscience and 
Mental Health in Melbourne (n = 149). All participants also underwent 
an amyloid-β PET scan with 11C-PIB (carbon-11-labelled Pittsburgh 
compound B), and were classified as amyloid-positive or -negative based 
on a mean standardised uptake value ratio (SUVR) cut-off value of 1.4, 

as previously described (Rowe et al., 2013). Participants who had a 
clinical diagnosis of Alzheimer’s disease, but were amyloid-negative 
were excluded (n = 3). Participants were also excluded if they had 
incomplete demographic information (n = 2). FLAIR images were 
screened automatically for the presence of WMH. Subjects with sub
stantial motion or intensity inhomogeneity artefacts on their FLAIR 
image were excluded from analysis, as automated segmentation of WMH 
on these subjects failed (n = 2). The final cohort included 142 subjects: 
48 Alzheimer’s disease and 94 healthy control subjects. All subjects 
provided informed written consent, and the study was approved by the 
ethics committee at Austin Health. 

2.2. Image acquisition 

MRI data were acquired for all subjects using a 3 T Siemens Tim Trio 
System (Erlangen, Germany), with a 12-channel head coil receiver. DWI 

Fig. 1. Schematic figure showing the major steps involved in diffusional analysis of white matter hyperintensities. (1) FLAIR and (2) DWI data were ob
tained for each subject, and were motion corrected and preprocessed. Single-shell 3-tissue constrained spherical deconvolution (SS3T-CSD) was performed on the 
DWI data to obtain (3) fibre orientation distribution (FOD) functions for white matter, as well as for the grey matter and CSF compartments, enabling (4) tissue maps 
to be created. Each subject’s images were warped to a common template space. Within each of the WMH classes obtained from classification schemes applied on (5) 
the FLAIR WMH segmentations, we then computed (6) the signal fractions obtained from the diffusion data (TW, TG, TC). The 3-tissue profile for each of the WMH 
classes could then be analysed with (7) compositional data analysis (CoDA). 
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data were collected using echo planar imaging (EPI) with the following 
parameters: TR/TE = 9200/112 ms, 2.3 mm isotropic voxels, 128 × 128 
acquisition matrix, acceleration factor = 2, diffusion-weighted images 
for 60 different gradient directions (b = 3000 s/mm2) and 5 volumes 
without diffusion-weighting (b = 0 s/mm2). FLAIR images were 
collected with the following parameters: 176 axial slices, voxel size 0.9 
× 0.98 × 0.98 mm3, repetition time/echo time = 6000/420 ms, inver
sion time = 2100 ms, flip angle = 120◦). A 3D MPRAGE (magnetization 
prepared rapid acquisition gradient echo) image (voxel size 1.2 × 1 × 1 
mm3, repetition time/echo time = 2300/2.98, flip angle = 9◦) was also 
obtained for each subject, and used to compute intracranial volume 
using SPM8 software. Scan times were approximately 9 min for DWI, 7 
min for FLAIR, and 10 min for 3D MPRAGE. FLAIR and DWI data were 
then preprocessed and analysed using MRtrix3 (Tournier et al., 2019) as 
described in the following sections, and as summarised in Fig. 1. 

2.3. Image preprocessing 

Preprocessing of diffusion-weighted images included denoising of 
data (Veraart et al., 2016), eddy-current distortion correction and mo
tion correction (Andersson and Sotiropoulos, 2016), bias field correction 
(Tustison et al., 2010), and up-sampling resulting in 1.15 × 1.15 × 1.15 
mm3 isotropic voxels (Raffelt et al., 2012a). Gibbs deringing was not 
performed on this dataset. Intensity normalization across subjects was 
performed by deriving scale factors from the median intensity in select 
voxels of white matter, grey matter, and CSF in b = 0 s/mm2 images, 
then applying these across each subject image. 

Following these initial preprocessing steps, group averaged response 
functions for WM, GM, and CSF were obtained from select voxels within 
the data themselves using an unsupervised method (Dhollander et al., 
2019), which excludes voxels located in lesions (Dhollander et al., 
2018). WM fibre orientation distribution (FOD) functions, as well as GM 
and CSF compartments were computed using Single-Shell 3-Tissue CSD 
(SS3T-CSD) (Dhollander and Connelly, 2016a) in MRtrix3Tissue 
(https://3Tissue.github.io). While the mechanism of the SS3T-CSD 
method is described elsewhere (Dhollander and Connelly, 2016a) and 
the implementation is open source, we provide a brief description of the 
assumptions, as compared to multi-shell multi-tissue CSD (MSMT-CSD; 
Jeurissen et al., 2014). The SS3T-CSD method estimates in each voxel an 
anisotropic WM FOD from the DWI data that is less influenced by 
isotropic GM and CSF signal contributions by separating the latter sig
nals into their own compartments. Similar to MSMT-CSD, this signal 
representation assumes a unique anisotropic single-fibre WM response 
function and unique isotropic GM and CSF response functions across the 
brain. Whereas MSMT-CSD requires multi-shell data to be able to esti
mate 3 tissue compartments (Jeurissen et al., 2014), SS3T-CSD only 
requires single-shell + b = 0 s/mm2 data due to its bespoke iterative 
estimation strategy (Dhollander and Connelly, 2016a). Interestingly, 
this allows it to not have to rely on the same aforementioned assump
tions for lower b-values (between b = 0 s/mm2 and the largest b-value 
available in the data), both in isolation as well as across the contrast of 
signal decay. Finally, using SS3T-CSD, the resulting WM FOD is then also 
not weighted by the signal from lower b-value(s), and consequently the 
resulting apparent fibre density is less biased by extra-axonal signal and 
more specifically sensitised to intra-axonal volume. The latter is 
consistent with recent findings by Genc et al., (2020), where use of 
higher b-values was found to result in more accurate estimates of WM 
fibre density using simulated data, and corroborated by their in vivo 
studies. 

FLAIR images and MPRAGE images were also bias field-corrected 
(Tustison et al., 2010). EPI susceptibility distortion correction of 
diffusion-weighted images was performed in conjunction with MPRAGE 
motion correction, using a registration-based method guided by a 
pseudo T1-contrast, which was estimated from the SS3T-CSD result (ie. 
the 3-tissue compartments) (Dhollander and Connelly, 2016b). 

Spatial correspondence across subjects was achieved by first 

computing a group-specific population template via an iterative regis
tration and averaging approach (Raffelt et al., 2011) using the white 
matter FOD images from 30 subjects from the study cohort. Each sub
ject’s FOD image was then registered to the template via a FOD-guided 
non-linear registration (Raffelt et al., 2011, 2012b). FLAIR images were 
also corrected for motion (via registration to each subject’s MPRAGE 
image using ANTS (Avants et al., 2014)) and warped to the population 
template space, along with the WMH segmentations that were obtained 
from these FLAIR images (see next section). 

2.4. Lesion segmentation and classification 

WMH segmentations were performed automatically using the 
HyperIntensity Segmentation Tool (HIST), which has previously been 
trained on the AIBL cohort (Manjón et al., 2018). This automated tool 
segments WMH from 3D FLAIR images based on an ensemble of neural 
network classifiers. WMH segmentations were visually inspected for 
quality assurance. Given the variability of definitions used for classifi
cation of WMHs in the literature, segmented WMH were then classified 
according to 2 different sets of criteria. 

Firstly, WMH were classified either as “periventricular” or “deep” 
lesions, based on their distance and confluence with the lateral ventri
cles, using confluence-based periventricular WMH criteria. WMH lesion 
volumes were classified as periventricular if the minimum distance of a 
continuously connected lesion volume from the lateral ventricles was 
less than 5.0 mm, or if the average distance of a continuous lesion vol
ume was less than 20.0 mm from the lateral ventricles. WMH were 
otherwise classified as deep. Here, lesions were categorised on each 
individual’s FLAIR image, and then transformed to template space. 

Secondly, a classification of each WMH voxel was performed sepa
rately based on its distance from the ventricles, regardless of continuity 
of a lesion (see Fig. 2), extending the distance-based classification 
scheme described by DeCarli et al. (2005). A ventricular mask was ob
tained by intensity thresholding the average FLAIR image across all 
subjects in template space, and manually removing any CSF voxels that 
were not within the lateral ventricles. Three regions-of-interest were 
then defined by dilating the ventricular mask to an area that included 
anything 10 mm or less from the lateral ventricles in all directions. WMH 
voxels falling within this region were classified as Region 1, regardless of 
whether they had contiguous WMH voxels that extended beyond this 
region. A second region (Region 2) was defined by further dilating the 
first region to obtain an area between 10 mm and 20 mm from the lateral 
ventricles. The third region (Region 3) consisted of all remaining white 
matter beyond 20 mm from the lateral ventricles. 

A normal-appearing white matter (NAWM) mask was defined for 
each subject in template space. A WM segmentation was obtained from 
each subject’s T1 image in template space, using FSL FAST (Zhang et al., 
2001). The WMH for each subject were subtracted from that subject’s 
WM segmentation, and the remaining NAWM mask was subsequently 
eroded by one voxel in three dimensions to ensure that voxels within this 
mask represented normal-appearing WM only. 

2.5. Representing the composition of WMH and NAWM as 3-tissue 
diffusion signal fractions 

The WM, GM and CSF compartments were obtained from SS3T-CSD 
as described above. As CSD techniques typically operate directly on the 
absolute diffusion-weighted signal, these compartments are also directly 
proportional to the absolute amount of diffusion-weighted signal 
attributable to each of these tissue types in each voxel. In previous work, 
it was found that certain microstructural aspects of WM pathology result 
in diffusion-weighted signals akin to those represented by the response 
functions measured from GM and CSF (Dhollander et al, 2017). In this 
context, these were referred to as “GM-like” and “CSF-like” (diffusion- 
weighted) signals. In the present work, we intended to study the relative 
makeup of the diffusion-weighted signal in terms of WM-, GM- and CSF- 
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like tissue signal fractions. To distinguish these from the absolute signals, 
we refer to the 3-tissue signal fractions as TW, TG and TC respectively. 

While the WM, GM and CSF response functions are estimated from 
voxels containing conservative samples of these three tissue types, it 
should be noted that the signal fractions (TW, TG, and TC) should not be 
interpreted as literally reflecting these three tissue types, for example, in 
a biological, chemical or functional way. Rather, TW, TG, and TC are then 
used to describe the diffusion signal characteristics of WMHs. In other 
words, the SS3T-CSD result is in this context employed as a diffusion 
signal representation rather than a biophysical model of microstructure. 
For example, an increase in the CSF-like signal fraction is compatible 
with an increased free water content, but this does not have to be 
accompanied by the same chemical makeup as CSF. Likewise, an in
crease in the GM-like signal fraction does not necessarily imply a bio
logical resemblance to cortical or other genuine GM, but might be 
compatible with an increased presence of glial or other cells. From a 
diffusion signal representation point of view, a shift from WM-like to
wards more GM-like diffusion signal rather indicates increased diffusion 
isotropy and increased diffusivity. A shift towards more CSF-like signal, 
on the other hand, indicated a far greater increase in diffusivity, rela
tively speaking. 

To obtain TW, TG and TC for each WMH category and NAWM per 
subject, the absolute WM-like, GM-like and CSF-like signal were 
computed over each WMH category, and the resulting triplet of absolute 
signals normalised to sum to one. The resulting 3-tissue composition of 
each WMH category and NAWM for each subject included in the analysis 
was plotted on a ternary plot. Ternary plots were created using the ggtern 
package in R (Hamilton, 2018), enabling easy visualisation of the 3-tis
sue profile of the WMH categories and NAWM regions. A schematic 
showing how the ternary space broadly relates to the diffusion signal 
properties is provided in the Supplementary Material (Fig. S1). 

2.6. Investigating WMH and NAWM with FA 

The most commonly used method to date to probe white matter 
changes using diffusion MRI is using tensor-derived metrics, such as 

fractional anisotropy (FA) and mean diffusivity (MD). As such, in 
addition to the 3-tissue profiles that constitute the main result of this 
study, FA and MD analyses are provided for reference. The detailed 
methodology, along with the results, can be found in the Supplementary 
Material. 

2.7. Statistical analysis 

Demographic variables and WMH volumes were compared between 
the two clinical groups. We used t-tests and χ2 tests to compare age, sex, 
and intracranial volume. WMH volumes were compared between groups 
by performing ANCOVAs, including age and intracranial volume as 
covariates. Given that the distribution of WMH volumes across subjects 
is right-skewed, we performed a cubic root transformation to all WMH 
volumes to normalise the distribution. Bonferroni-corrected P-values 
were used to determine statistical significance. 

In this study, we were most interested in determining whether there 
was heterogeneity across different WMH classes or types, and as such, 
for subsequent analyses, we compared the 3-tissue profiles between 
different classes of WMH and NAWM, across all subjects, combining the 
Alzheimer’s disease and healthy control groups. However, statistical 
analysis on such 3-tissue compositions is not trivial: boundedness (0 <
TW < 1 ; 0 < TG < 1 ; 0 < TC < 1) and non-independence (TW + TG + TC 
= 1) render traditional statistical analysis of the 3-tissue compositions 
inappropriate. Therefore, we adopted the Compositional Data Analysis 
(CoDA) framework (Aitchison, 1982; Pawlowsky-Glahn and Buccianti, 
2011). To this end, we designed an isometric log-ratio transform 
(Egozcue et al., 2003) tailored to our 3-tissue compositions at hand: 

ilr1 =
1̅
̅̅
6

√ × log
TW

2

(TC × TG)

ilr2 =
1̅
̅̅
2

√ × log
TC

TG 

Unlike the original 3-tissue compositions themselves, which are 
bounded and non-independent, the isometric log-ratio transformed data 

Fig. 2. White matter hyperintensity segmen
tation and classification schemes. White mat
ter hyperintensities were automatically 
segmented from FLAIR MRI. A single axial slice 
of the FLAIR image is shown on the left for a 
given subject in template space. (A) The WMH 
segmentation for this subject is shown in yellow. 
(B) An example of the periventricular/deep 
classification scheme is shown for the WMH in a 
given subject. WMH were classified as “periven
tricular” if the minimum distance of a lesion 
volume from the lateral ventricles was<5.0 mm 
in subject space or if the average distance of a 
continuous lesion was<20.0 mm from the lateral 
ventricles. WMH were otherwise classified as 
“deep”. (C) Regions of interest were defined by 
repeatedly dilating a ventricular mask obtained 
from the population template brain. The first 
region (Region 1) is shown in red, and included 
an area 10 mm or less from the lateral ventricles 
in all directions. Region 2 is shown in yellow, and 
was defined by further dilating Region 1 to 
obtain an area between 10 mm and 20 mm from 
the lateral ventricles. Region 3, shown in green, 
consisted of all remaining white matter beyond 
20 mm from the lateral ventricles. (D) Lesions 
were classified into these distance-based classes 
according the Region with which they over
lapped. (For interpretation of the references to 
colour in this figure legend, the reader is referred 
to the web version of this article.)   
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are free to range across all real numbers and are independent, resulting 
in only 2 degrees of freedom in the 3-tissue compositional space. Clas
sical multivariate methods can then be applied to the log-ratio trans
formed data to perform statistical analysis (Martín-Fernández et al., 
2015). 

To determine if the 3-tissue profiles of different classes of WMH 
exhibited statistically significant differences, MANCOVAs were per
formed on the isometric log-ratio transformed data. Royston’s tests of 
multivariate normality were used to assess the isometric log-ratio 
transformed data, and Mahalanobis distances used to detect any po
tential multivariate outliers. MANCOVAs were then performed between 
NAWM and each WMH class separately, as well as between each WMH 
class, both for periventricular and deep lesion types, and for distance- 
based lesion classes. Age, sex, intracranial volume and diagnostic 
group were included as covariates in the analyses. In addition, MAN
COVAs were performed comparing WMH classes in Alzheimer’s disease 
patients to healthy control participants, with age, sex and intracranial 
volume as covariates. Bonferroni corrections were applied within each 
analysis to correct for the multiple comparisons performed. Pillai’s trace 
was used as the multivariate test in all analyses. All statistical analyses 
were carried out in the R (version 3.4.1). 

2.8. Data availability statement 

The data on which the findings of this study are based are available 
upon reasonable request from: (i) AIBL, for demographic and FLAIR data 
(from https://aibl.csiro.au/research/support); and (ii) corresponding 
author, for diffusion MRI data. The data are not publicly available due to 
ethical restrictions. 

3. Results 

3.1. Clinical and demographic characteristics 

Clinical and demographic characteristics for the Alzheimer’s disease 
and healthy control groups are summarised in Table 1. No significant 
differences were observed between groups for age, sex, or intracranial 
volume. 

3.2. White matter hyperintensity volume 

Total WMH volume was higher in Alzheimer’s disease patients 
compared to control subjects, after controlling for age and intracranial 
volume (F(1,138) = 13.75, P < 0.001). Considering our two WMH 
classification schemes in turn: (a) No significant differences were 
observed between Alzheimer’s disease and control groups for deep 
WMH volume (F(1,138) = 1.38, P = 0.24), while there was a signifi
cantly greater periventricular WMH volume in Alzheimer’s disease pa
tients compared to controls (F(1,138) = 14.69, P < 0.001). (b) 
Alzheimer’s disease patients had a comparable load of WMH within 
Region 1 when compared to healthy elderly control subjects (F(1,138) =
0.48, P = 0.49). However, the WMH load in Region 2 and Region 3 was 
significantly higher in patients compared to controls (Region 2F(1,138) 
= 24.06, P < 0.001; Region 3: F(1,138) = 14.81, P < 0.001). Each of the 
above was compared between amyloid-positive and amyloid-negative 
healthy control subjects, but no significant differences were found in 
WMH volumes for any of these classes (see Table S1, Supplementary 
Material). 

3.3. Comparing 3-tissue profiles of WMH classes 

Fig. 3 shows the 3-tissue compartment maps of WMH in one partic
ipant. Further examples of the 3-tissue maps for other subjects are 
provided in the Supplementary Material (Fig. S2). 

3.3.1. Periventricular vs deep WMH 
As shown in the boxplots in Fig. 4, and ternary plot in Fig. 5, the 3- 

tissue profiles derived from SS3T-CSD showed different compositions of 
TW, TG, and TC in periventricular and deep WMH, with higher TC in 
periventricular WMH than in deep WMH. Periventricular and deep 
WMH formed distinct clusters based on their 3-tissue profiles alone, as 
did NAWM. The log-ratio transformed data is shown in Fig. 6, which 
exhibits the mean and 95% confidence ellipses of each group (WMH 
class or NAWM) in the 2-dimensional coordinate system, revealing the 
distinct clusters formed by each group. Statistical analysis using a 
MANCOVA showed significant differences between NAWM and peri
ventricular WMH in terms of 3-tissue composition (F(2, 277) = 5647.29, 
P < 0.001, Pillai’s trace = 0.976), between NAWM and deep WMH (F(2, 
274) = 1170.92, P < 0.001, Pillai’s trace = 0.895), and between peri
ventricular and deep WMH (F(2, 274) = 278.52, P < 0.001, Pillai’s trace 
= 0.670), after adjusting for age, sex, intracranial volume and diagnostic 
group. Differences in 3-tissue compositions were statistically significant 
at a Bonferroni corrected P-value of 0.017. 

3.3.2. Distance-based region analysis 
Fig. 7A shows a ternary plot exhibiting the 3-tissue profiles of WMH 

within three distance-based regions, defined by concentric distances 
from the lateral ventricles. As shown in the ternary plot, the different 
region classes of WMH again exhibited distinct 3-tissue profiles, and 
differed from NAWM. The log-ratio transformed data is shown in 
Fig. 7B. Multivariate tests using a MANCOVA, adjusting for age, sex, 
ICV, and diagnostic group showed a significant difference between 
NAWM and all three region classes (Region 1: F(2, 277) = 8290.27, P <
0.001, Pillai’s trace = 0.984; Region 2: F(2, 277) = 2551.93, P < 0.001, 
Pillai’s trace = 0.949; Region 3: F(2, 277) = 1369.31, P < 0.001, Pillai’s 
trace = 0.908), as well as significant pairwise differences between each 
of the region classes themselves (Region 1 vs Region 2: F(2, 277) =
556.72, P < 0.001, Pillai’s trace = 0.801; Region 1 vs Region 3: F(2, 
277) = 790.98, P < 0.001, Pillai’s trace = 0.851; Region 2 vs Region 3: F 
(2, 277) = 56.94, P < 0.001, Pillai’s trace = 0.291), with a Bonferroni- 
corrected significant P-value of 0.008. 

Table 1 
Descriptive statistics.   

Alzheimer’s 
disease (n ¼
48) 

Healthy 
elderly 
controls (n ¼
94) 

Statistics p- 
value 

Age, mean (SD) 
[range] 

77.42 (8.3) 
[56.6–91.4] 

78.12 (7.4) 
[57.7–93.2] 

t(140) =
0.75  

0.46 

Males (%) 21 (43.8) 44 (46.8) χ2(1) =
0.03  

0.87 

11C-PIB positivity 
(%) 

48 (100) 31 (33) χ2(1) =
57.83  

<0.001 

Intracranial 
volume (cm3), 
mean (SD) 

1402.95 
(128.1) 

1433.61 
(134.8) 

t(140) =
1.30  

0.20 

Total WMH 
volume (cm3), 
mean (SD) 

13.90 (13.3) 8.43 (9.4) t(71.4) =
2.54  

0.01 

Regional WMH volumes (cm3), mean (SD) 
Periventricular 12.81 (12.7) 7.54 (8.8) F(1,138) 

= 13.75a  
<0.001 

Deep 1.09 (1.25) 0.89 (1.2) F(1, 138) 
= 14.69a  

<0.001 

Region 1 2.61 (2.1) 2.32 (2.0) F(1, 138) 
= 1.38a  

0.24 

Region 2 4.49 (3.4) 2.50 (2.6) F(1, 138) 
= 0.48a  

0.49 

Region 3 6.72 (8.7) 3.57 (5.6) F(1, 138) 
= 24.06a  

<0.001  

a Statistical analysis performed on cubic root transforms of WMH volume. 
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Fig. 3. Investigating in vivo microstructural heterogeneity of white matter hyperintensities using SS3T-CSD. WMH appear largely homogeneous on FLAIR 
MRI (top left), from which they can be segmented (segmentation shown on the FLAIR image on top right in pink). We computed the white matter-like (WM-like), grey 
matter-like (GM-like) and CSF-like signal compartments using single-shell, 3-tissue constrained spherical deconvolution (SS3T-CSD) (shown as heat maps in middle 
left, right, and bottom left, respectively). The three tissue compartments are shown in a single tissue-encoded colour map on the bottom right (WM-like = blue, GM- 
like = green, CSF-like = red). As can be seen in inset on the right, the region corresponding to WMH shows a heterogeneous mix of the three tissue compartments 
(segmentation outline shown in pink). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Boxplots showing relative signal fractions within lesions and NAWM. The relative TW, TG, TC signal fractions are displayed across all (A) Alzheimer’s 
disease subjects (n = 48) and (B) healthy elderly control subjects (n = 94) as the median (line), first, and third quartiles (box) of the median (whiskers represent 1.5 
interquartile range). Normal-appearing white matter (NAWM) exhibits high TW fraction as expected, reflecting the high white matter-like diffusion profile with 
relatively low TG and TC fractions, both in healthy elderly and Alzheimer’s disease subjects. In contrast, the WMH classes exhibit higher TG and TC fractions. Per
iventricular and deep WMH can be distinguished from one another by their relative signal fractions, and the two lesion types exhibit a similar profile in Alzheimer’s 
disease patients as they do in control subjects. 
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3.4. Comparing 3-tissue profiles in Alzheimer’s disease and healthy 
controls 

MANCOVAs were additionally performed to compare the 3-tissue 
profiles of WMH in Alzheimer’s disease patients when compared to 
controls. Significant differences (at a Bonferroni-corrected p-value of 
0.025) between the Alzheimer’s disease and control groups were 
observed in the 3-tissue composition of periventricular lesions (F(2, 
136) = 10.68, P < 0.001, Pillai’s trace = 0.136) and to a lesser extent in 
deep lesions (F(2, 133) = 4.82, P = 0.010), Pillai’s trace = 0.068), after 
accounting for age, sex, and intracranial volume. Comparing the three 
distance-based regions, significant differences were again observed be
tween Alzheimer’s disease patients and controls in the three lesion 
classes: Region 1 (F(2, 136) = 15.61, P < 0.001, Pillai’s trace = 0.187); 
Region 2 (F(2, 136) = 23.57, P < 0.001, Pillai’s trace = 0.257); and to a 
lesser extent in Region 3 (F(2, 136) = 5.70, P = 0.004, Pillai’s trace =
0.077), at a Bonferroni-corrected p-value of 0.017). Ternary plots 
showing 3-tissue profiles of WMH lesion types in Alzheimer’s disease 
and healthy controls are provided in the Supplementary Material 
(Fig. S3). 

4. Discussion 

In this study, we applied a novel diffusion MRI method to investigate 
in vivo microstructural characteristics of white matter hyperintensities in 
a cohort of healthy elderly and Alzheimer’s disease subjects. We firstly 
demonstrate the ability of SS3T-CSD to probe microstructural hetero
geneity within WMH, as previously exhibited (Dhollander et al, 2017). 
Investigation of different lesion classes demonstrated that different 
lesion types exhibit distinct 3-tissue profiles across our cohort. More
over, in the context of Alzheimer’s disease, we find that lesion classes in 
Alzheimer’s disease patients exhibit subtly different 3-tissue profiles 
when compared to healthy controls. These findings suggest that the 3- 
tissue profiles utilised in this study could be used to probe WMH in 
vivo as heterogeneous entities, which could enable further investigation 
and understanding of their clinical and pathological association with 
Alzheimer’s disease. 

Fig. 5. Ternary plot exhibiting relative signal 
fractions within periventricular and deep lesions 
and NAWM. For each subject, the periventricular 
WMH, deep WMH, and NAWM are displayed on a 
ternary plot, with the location of the data point 
corresponding to the relative TW, TG and TC fractions 
of the lesions (or NAWM) for that subject. Given the 
similarity in the profile of lesions in Alzheimer’s 
disease subjects and controls, all subjects are 
included here. The relative tissue fraction is shown as 
a percentage along the left (TW), right (TG), and 
bottom (TC) axes. Remarkably, the periventricular 
WMH, deep WMH, and NAWM appear in distinct 
clusters, exhibiting their different profiles with re
gard to relative tissue fractions obtained from the 
SS3T-CSD diffusion data. An example of the classifi
cation of lesions into periventricular and deep is 
shown in the inset. The 95% population confidence 
regions are plotted for each WMH class and NAWM.   

Fig. 6. Isometric log-ratio transformed diffusional data comparing peri
ventricular WMH, deep WMH and NAWM. An isometric log-ratio (ilr) 
transform was applied to the relative signal fractions (TW, TG, TC), to transform 
the compositional data into a two-coordinate system. The transformed data for 
the periventricular and deep WMH, and NAWM are shown here, and reflect the 
same data shown in Fig. 4. The centroid for each WMH class or NAWM is shown 
as a solid circle, while the solid line reflects the 95% population confidence 
ellipse for each class. Statistical analyses comparing the diffusional profile of 
lesion classes and NAWM was performed on this isometric log-ratio transformed 
data. Pairwise MANOVAs exhibited that there were statistically significant 
differences in the transformed data between the two lesion types, and between 
the lesions and NAWM. This could then be meaningfully back-transformed to 
interpret a significant difference in the mean diffusion profile between the two 
lesion types, and between the lesions and NAWM. 
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4.1. 3-tissue profiles differentiate different WMH classes 

WMH identified on FLAIR are commonly subdivided into different 
lesion classes; however, these lesion types are variable, and no gold 
standard classification scheme exists. Commonly, WMH are dichotom
ised into confluent periventricular and deep lesion subtypes, whereby 
lesions that are continuous with the lateral ventricles are distinguished 
from those that appear deeper within white matter with respect to the 
ventricles. Alternatively, distance-based classification schemes are used 
to distinguish lesion areas that are in the immediate periventricular (or 
juxtaventricular) zone, compared to those at further distances from the 
ventricles. Here, we probed two different classifications of WMH to 
determine whether different lesion types would exhibit different 3-tissue 
profiles. 

Although the categorical distinction between periventricular and 
deep WMH is argued to be somewhat arbitrary (DeCarli et al., 2005), 
these two lesion classes have been suggested to have differing neuro
pathological substrates (Fazekas et al., 1991, 1993). As such, we 
hypothesised that confluent periventricular and deep lesions would 
exhibit different microstructural properties, and that these differences 
could be detected with diffusion MRI, despite appearing visually indis
tinguishable on FLAIR intensity. Indeed, our data indicate that these two 
lesion classes exhibit distinct 3-tissue profiles in our cohort of healthy 
elderly and Alzheimer’s disease subjects. As shown in Fig. 4, the relative 
TW-TG-TC compositions of periventricular and deep WMH across sub
jects could be clearly distinguished from one another. 

Histologically, confluent periventricular lesions are characterised by 
substantial axonal and myelin loss and reactive gliosis, whereas punc
tate deep WMH have been reported to exhibit more mild changes with 
myelin loss (Fazekas et al., 1991, 1993; Schmidt et al., 2011a). In our 
work, the periventricular WMH exhibited distinctively higher TC than 
NAWM and deep WMH. This suggests an increase in free water, given 
that the response function for TC is derived from the diffusion signal in 
pure CSF voxels, and hence an increase in TC reflects a shift towards 

properties resembling free diffusion. Such a finding is in line with prior 
histological work, as the substantial myelin and axonal loss that pre
sumably arises within the periventricular lesions is likely accompanied 
by increased extracellular fluid (Weller, 1998). On the other hand, the 3- 
tissue profile of deep WMH across subjects suggests less severe damage: 
while it was clearly distinguishable from that of normal-appearing white 
matter, it was characterised by decreased TW and relative increases both 
in TG and TC, rather than a marked increase in TC specifically, as was 
observed in periventricular WMH. This suggests that disruption to white 
matter within these deep WMH may reflect less severe changes, in line 
with the mild myelin loss and gliosis that is histologically observed. 

It should be noted, however, that heterogeneity in the 3-tissue profile 
of lesions could be observed within confluent periventricular lesions 
(Fig. 7) and as such, averaging the tissue profile over the whole lesion 
class could potentially fail to reflect variability in the microstructural 
changes within these continuous lesions. For instance, lesions within the 
immediate periventricular zone likely have distinguishable character
istics from large confluent hyperintensities (Sze et al., 1986; Fazekas 
et al., 1993; Schmidt et al., 2011a), despite potentially becoming 
continuous with them over time. The increased TC observed in the 
periventricular lesions could have been driven by the increased inter
stitial fluid resulting from ependymal discontinuation in the immediate 
periventricular zone, and subsequent CSF leakage into the white matter, 
rather than being a characteristic of the whole confluent lesion. We were 
thus interested in extending the above analysis that was based on a 
periventricular/deep classification with a complementary investigation 
that probed the 3-tissue profile of lesion areas based on their distance 
from the lateral ventricles. 

Here, we defined three regions-of-interest at set distances from the 
ventricles. While others have similarly used arbitrary distances to clas
sify periventricular and deep WMH (Wen and Sachdev, 2004; DeCarli 
et al., 2005), we should highlight that our objective here was not to 
investigate different “classes” of lesions, but rather to determine if there 
were consistent, distance-related characteristics to WMH sub-regions 

Fig. 7. Compositional data analysis of lesions in each distance-based region and NAWM. (A) As with Fig. 5, the relative TW, TG and TC fraction for WMH or 
NAWM is displayed on a ternary plot. Each data point reflects the mean TW, TG and TC fraction across all voxels falling within the NAWM mask (blue), or within one 
of three regions-of-interest (Regions 1, 2, and 3), located at concentric distances from the lateral ventricles, from a single subject. When looking across all subjects, the 
WMH falling within each region-of-interest exhibit a distinct diffusional profile, and the diffusional profile of each lesion area can be distinguished. The lines reflect 
the 95% confidence region or predictive region for each lesion region or NAWM. (B) An isometric log-ratio transform was applied to the relative signal fractions (TW, 
TG, TC) to transform the compositional data into a two-coordinate system. Each data point reflects the transformed diffusion profile from a single subject, while the 
solid circle reflects the centroid and concentric solid line reflects the 95% population confidence ellipse for each lesion region or NAWM. Statistical analysis was 
performed on the isometric log-ratio transformed data, which showed significant pairwise differences in the diffusional profile between all regions, and between 
NAWM and each region. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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that would potentially reflect heterogeneity within confluent lesions. 
Our findings suggest that lesion areas within each distance band from 
the lateral ventricles indeed exhibited distinct microstructural charac
teristics. The high TC observed in lesion regions falling within 10 mm of 
the lateral ventricles (within Region 1) suggests that WMH areas within 
this immediate periventricular zone have increased free fluid content 
when compared to NAWM. This could arise due to increased interstitial 
fluid as a consequence of partial loss of the ependymal lining, which is 
characteristic of periventricular lesions in elderly individuals (Fazekas 
et al., 1993). 

Importantly, all WMH types were distinctively different in 3-tissue 
composition when compared to normal-appearing white matter across 
both healthy elderly subjects and Alzheimer’s disease patients. NAWM 
across subjects had high TW content as expected, reflecting a 3-tissue 
profile that was similar to healthy white matter. The observed distri
bution of NAWM profiles across subjects (Fig. 4) suggests that in some 
individuals, even non-lesional white matter was exhibiting signs of some 
pathological insult (though more subtle and likely widespread), which is 
as expected given our previous findings of substantial fibre tract 
degeneration in the Alzheimer’s disease patients from the same cohort 
(Mito et al., 2018). Indeed, NAWM surrounding WMH has been shown in 
other studies to exhibit diffusional abnormalities (Maillard et al., 2014; 
Maniega et al., 2015; Maniega, 2018), contributing to a so-called WMH 
“penumbra” (Maillard et al., 2011). 

4.2. 3-tissue profiles of WMH in Alzheimer’s disease 

In addition to comparing WMH across the whole cohort, we addi
tionally investigated whether Alzheimer’s disease patients exhibited 
distinct 3-tissue profiles in the same classes of WMH when compared to 
healthy control participants. Indeed, we found that 3-tissue profiles 
differed in Alzheimer’s disease patients compared to controls, across all 
WMH classes, both when using periventricular and deep classifications, 
as well as using distance-based classifications. Differences in the 3-tissue 
profiles were more prominent in lesions confluent with (periven
tricular), or nearby (Regions 1 and 2) the ventricles, while lesions 
further from the ventricles (deep and Region 3) exhibited more subtle 
differences in Alzheimer’s disease patients when compared to control 
participants. This may relate to differences in lesion volumes within 
different WMH classes, but could also potentially reflect subtle differ
ences in underlying histopathology, for which histological validation 
would be required. 

When considering WMH volumes, Alzheimer’s disease patients in 
our cohort exhibited a significantly higher periventricular WMH volume 
when compared to healthy elderly subjects (Table 1). This is consistent 
with the increased severity of extensive periventricular hyperintensities 
that has been previously reported in Alzheimer’s disease (Barber et al., 
1999). Moreover, periventricular WMH, rather than deep WMH, have 
been preferentially associated with cognitive impairment and dementia 
(O’Brien et al., 1996; de Groot et al., 2002; Prins et al., 2004). As such, 
these lesions could be more deleterious than deep WMH, and more 
closely associated with Alzheimer’s disease symptomatology (Fazekas 
et al., 1987). The 3-tissue profile of these lesions could thus itself be a 
useful reflection of more adverse underlying pathology, and could 
potentially provide an in vivo probe to distinguish more harmful, 
potentially disease-related changes, from benign age-related processes, 
regardless of the size, shape or location of a lesion. 

On the other hand, when comparing distance-based classes the 
overall lesion volume within this most proximal distance band was 
comparable between healthy elderly individuals and Alzheimer’s dis
ease patients in our cohort, which suggests that lesions in this immediate 
periventricular area reflect more benign, age associated changes that 
likely arise due to their location in a potential watershed region. This 
appears to contradict the suggestion that in periventricular lesions 
(using the periventricular/deep WMH classification), a 3-tissue profile 
characterised by high TC is indicative of deleterious underlying 

pathology due to there being a greater volume of periventricular lesions 
in Alzheimer’s disease subjects than in controls. In fact, when lesion 
regions were classified according to distance from the ventricles irre
spective of whether they were contiguous with other lesion regions, it 
was those regions falling within Regions 2 and 3 (which had distinc
tively lower TC than those lesion region falling within 10 mm of the 
ventricles) that were greater in volume in Alzheimer’s disease subjects 
than in controls. 

These findings, though seemingly contradictory with the aforemen
tioned findings using a periventricular/deep classification, suggest an 
important consequence: the use of conventional classification schemes 
(particularly distinguishing between periventricular and deep lesion 
types) could be misleading, as they do not take account of the substantial 
heterogeneity within white matter lesions. While the arbitrary nature of 
conventional classification schemes, and the importance of distinctions 
among different types of periventricular and deep WMH have previously 
been highlighted (DeCarli et al., 2005; Kim et al., 2008; Schmidt et al., 
2011b), most research studies have adopted conventional classifications 
to probe disease-relevant associations. 

Inferences are commonly made regarding the clinical relevance and 
pathological correlates of WMH based on these conventional classes, 
and could similarly be made from our own analysis above; however, 
careful consideration is required of the resultant findings given the ag
gregation of complex information into a single, oversimplified class. The 
use of three distance-based classes reveals that different conclusions can 
be drawn from the same data by investigating the lesions while 
considering the heterogeneity that may be present at different distance 
bands. Importantly, this highlights the pitfalls of using conventional 
classification schemes, particularly when investigating their relevance 
to disease. Indeed, we suggest that one should not consider how lesion 
types are associated to disease without considering their existing het
erogeneity, which we propose can be investigated in vivo using this 
methodology. 

4.3. Probing microstructure with diffusion MRI 

In addition to identifying microstructural differences between WMH 
in different locations and classes, an important result of the present 
study was in establishing the feasibility of diffusion MRI, and particu
larly SS3T-CSD, in assessing and characterising within-lesion micro
structural heterogeneity in vivo. As suggested above, the somewhat 
limited understanding of the contribution of WMH to Alzheimer’s dis
ease could stem from the simplistic way in which these lesions are 
commonly investigated in vivo, despite post-mortem evidence that they 
are pathologically complex. To this end, we suggest that the diffusion 
MRI characteristics of lesions could function as an in vivo probe, 
potentially in conjunction with FLAIR MRI, to investigate how WMH 
may contribute both clinically and pathologically to Alzheimer’s 
disease. 

Previous diffusion MRI research has attempted to investigate 
microstructural changes within WMH, by investigating these lesions 
using diffusion tensor imaging (DTI). These studies have investigated 
white matter mostly in terms of tensor metrics such as fractional 
anisotropy and/or mean diffusivity, and assessed how they may be 
altered in, or associated with WMH (de Groot et al., 2000; Firbank et al., 
2003; Taylor et al., 2007; Vernooij et al., 2008; Lee et al., 2009; Topa
kian et al., 2010; Altamura et al., 2016; Seiler et al., 2018). Studies 
commonly report white matter microstructure, as measured using these 
DTI-derived metrics, to be altered not only within WMH (Bastin et al., 
2009; Maniega et al., 2015), but additionally altered within NAWM in 
patients with such lesions (Firbank et al., 2003; Vernooij et al., 2008; 
Maniega et al., 2015). As such, DTI has been suggested to be a more 
sensitive model to assess subtle white matter damage than WMH 
detected on FLAIR (Charlton et al., 2010; Maillard et al., 2013). How
ever, the diffusion tensor is a limited model that cannot adequately 
describe white matter microstructure in voxels containing more than 
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one fibre population (i.e., most white matter voxels) (Jeurissen et al., 
2013; Jones et al., 2013), and changes to DTI metrics may be difficult to 
interpret in brain injury (Budde et al., 2011). Indeed, WMHs predomi
nantly arise in crossing fibre regions around the lateral ventricles, the 
same regions in which tensor-based metrics are most difficult to inter
pret (see Supplementary Figure S4). DTI is unable to provide clear 
indication of the specific nature of microstructural damage within 
WMH, and differences quantified by tensor-based metrics can be inac
curate or misleading, even within normal appearing white matter. For 
example, FA is found to be very low in many voxels within the centrum 
semiovale region, despite the fibre tracts within this region being 
coherently oriented as evidenced both by brain dissection and by higher 
order modelling (Farquharson et al., 2013). Such effects of multiple 
crossing fibres can result in failure to detect damage to fibre tracts due to 
the already artifactually low anisotropy estimates based on FA values, or 
seemingly paradoxical increases in FA in abnormal regions resulting 
from selective reduction of one fibre population in a multi-fibre voxel 
(Groeschel et al., 2014). Such interpretational difficulties are likely to be 
exacerbated within more severely affected regions such as WMH. 
Although tensor-based metrics could be sensitised to differences in 
WMH classes, this does not resolve issues with the interpretability of DTI 
metrics (see Supplementary Figures S5–S7). 

More recently, application of advanced, or multi-tissue diffusion MRI 
methods have enabled greater insight into microstructural changes, both 
in Alzheimer’s disease, and in other neurological diseases. Techniques 
such as free water elimination, or neurite orientation dispersion and 
density imaging (NODDI) have been applied to investigate microstruc
tural alterations in Alzheimer’s disease (Colgan et al., 2016; Hoy et al., 
2017; Ji et al., 2017), and to investigate white matter abnormalities in 
other neurological conditions (Billiet et al., 2014). Other methods of 
compartment modelling are also being developed that enable probing of 
white matter microstructure (Lampinen et al., 2020). Application of 
these biophysical models to investigate the microstructure of WMH 
could be insightful. Indeed, investigation of brain microstructure using 
advanced diffusion MRI methods has become an area of recent interest 
from which important advances are likely to be achieved (Alexander 
et al., 2019; Novikov et al., 2019). 

In the present work, we utilised single-shell 3-tissue constrained 
spherical deconvolution (SS3T-CSD) to represent the diffusion MRI 
signal as a proxy to assess white matter microstructure (Dhollander and 
Connelly, 2016a; Dhollander et al., 2016). There are a number of ad
vantages to this method that enable us to identify particular changes to 
white matter structures. SS3T-CSD is able to more appropriately model 
white matter in voxels that also contain other tissue types, by also 
modelling different tissue compartments in addition to white matter, as 
has been done for multi-shell data (Jeurissen et al., 2014). The added 
advantage of SS3T-CSD is that it can model 3 tissue compartments using 
single-shell data alone, enabling investigation of existing single-shell 
data without increasing acquisition requirements (Aerts et al., 2019). 
While we had high b-value single shell data available in this cohort, 
SS3T-CSD could also be valuable at lower b-values (Dimond et al., 2020; 
Newman et al., 2020). 

In this study, we took into account joint changes to the complete 3- 
tissue composition: TW, TG, and TC. This enabled us to characterise 
microstructural properties of tissue when it deviated from that of normal 
white matter. By characterising WMH in terms of these three signal 
fractions, we could interpret the resulting 3-tissue profile based on how 
alike the diffusion signal properties were to those derived from normal 
white matter, grey matter and CSF. This promising approach has simi
larly been adopted to investigate tissue heterogeneity in tumor regions 
using multi-shell CSD (Chamberland et al., 2019). However, careful 
consideration is required when interpreting the results, based on the 
context within which we observe changes to the 3-tissue composition. 
That is, we should not simply interpret increases or decreases in each 
signal fraction a reflection of alterations in the amount of healthy tissue 
type from which the response function was derived. For example, an 

increase in TG, as was evident across WMH in comparison to NAWM, 
should not be interpreted as an increase in actual grey matter, but a shift 
toward something that has similar diffusion characteristics. This in
crease in TG could be compatible with astrogliosis, as proliferation of 
glial cells is known to be a characteristic of WMH, and such a change 
would likely have a similar effect as grey matter on the diffusion signal: 
diffusion would still be relatively hindered, but much more isotropic 
than the healthy white matter represented by TW. An increase in the TC 
fraction could be interpreted as an increase in free fluid, which would 
likely reflect increases in interstitial fluid that may accompany nearby 
ependymal breakdown or local myelin or axonal loss (Dhollander et al, 
2017). Moreover, we should highlight that the 3-tissue composition is 
tailored in this respect to investigate WMH, and further considerations 
should be taken in the context of other brain abnormalities and lesions 
(for example, within deep grey matter). 

Importantly, a major advantage of characterising microstructure 
using this 3-tissue model, is that we could identify heterogeneity within 
WMH that cannot easily be identified in vivo using FLAIR. This enabled 
identification of clear variability across different classes of lesions, and 
even within confluent lesions that otherwise appeared largely homo
geneous on FLAIR. Such a finding has major implications when inves
tigating these lesions in vivo: on the evidence of a technique that enables 
identification of in vivo variability within lesions, it would appear 
inappropriate to amalgamate all WMH together as a singular patho
logical entity. 

4.4. Limitations and future directions 

This work represents a preliminary investigation into the in vivo 
heterogeneity of WMH that can be explored with diffusion MRI, and as 
such there are a number of limitations to this work that should be 
highlighted. Firstly, given that we do not have histological data to 
compare our in vivo metrics to, we cannot directly interpret the results in 
terms of their pathological basis. Direct interpretation of the tissue 
fractions described here – for instance, increases in a given fraction such 
as TC – would require comparison with histopathology. However, it 
should be noted that, due to the large signal decay of the CSF response 
function, TC is unlikely to reflect anything other than free water. As such, 
future work that correlates these diffusion metrics with post-mortem 
histopathology could provide more direct evidence for the specific his
tological underpinnings of these metrics, and enable broader in vivo 
investigation of disease-relevant pathology within WMH in large cohort 
studies. 

Secondly, the aims of this study were to determine if we could probe 
in vivo variability within WMH using diffusion MRI, and to characterise 
different lesion areas based on their diffusional properties, but did not 
include the generation of a classification scheme. Our findings suggest 
that future work that characterises lesions based on their specific 
microstructural properties, rather than on arbitrary visually-guided or 
purely distance-based schemes, could enable the development of novel 
classification schemes with more meaningful microstructural basis. Such 
diffusion-based classification schemes could prove particularly valuable 
when investigating the association of WMH with disease-specific 
changes, given that certain microstructural changes are likely to be 
more detrimental than others. 

Finally, while we explored the microstructural properties of WMH in 
healthy elderly individuals and Alzheimer’s disease subjects, in this 
work, we did not focus on aspects specific to the microstructural char
acteristics of WMH in Alzheimer’s disease. To this end, the development 
of the aforementioned, diffusion-based classification scheme in future 
work could be highly insightful, as it may enable us to identify the 
microstructural properties of more pathologically harmful WMH and 
determine and how these might be related to Alzheimer’s disease. 
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4.5. Conclusion 

In this study, we were able to detect microstructural heterogeneity 
within lesions in vivo, and identify variability within lesion classes based 
on their microstructural features through the application of a 3-tissue 
signal representation of diffusion MRI data. Diffusion MRI is more sen
sitive to underlying pathological features than FLAIR MRI, and would 
thus be a highly valuable probe to investigate WMH, potentially in 
conjunction with FLAIR. Given that Alzheimer’s disease subjects have 
higher lesion load of certain classes and locations of WMH as well as 
subtly different diffusion profiles of WMH, it would be useful to inves
tigate the particular in vivo features that are closely related with disease 
progression. Future work investigating the microstructural properties of 
WMH and their clinical and pathological correlates is likely to be highly 
insightful. 
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Billiet, T., Mädler, B., D’Arco, F., Peeters, R., Deprez, S., Plasschaert, E., et al., 2014. 
Characterizing the microstructural basis of “unidentified bright objects” in 
neurofibromatosis type 1: A combined in vivo multicomponent T2 relaxation and 
multi-shell diffusion MRI analysis. NeuroImage Clin. 4, 649–658. 

Braffman, B.H., Zimmerman, R.A., Trojanowski, J.Q., Gonatas, N.K., Hickey, W.F., 
Schlaepfer, W.W., 1988. in MR: pathologic correlation with gross and 
histopathology. 2. Hyperintense white-matter foci in the elderl. Am. J. Roentgenol. 
151, 559–566. 

Brex, P.A., Parker, G.J.M., Leary, S.M., Molyneux, P.D., Barker, G.J., Davie, C.A., et al., 
2000. Lesion heterogeneity in multiple sclerosis: a study of the relations between 
appearances on T1 weighted images, T1 relaxation times, and metabolite 
concentrations. J. Neurol. Neurosurg. Psychiatry 68, 627–632. 

Brickman, A.M., Zahodne, L.B., Guzman, V.A., Narkhede, A., Meier, I.B., Griffith, E.Y., 
et al., 2015. Reconsidering harbingers of dementia: progression of parietal lobe 
white matter hyperintensities predicts Alzheimer’s disease incidence. Neurobiol. 
Aging 36, 27–32. 

Budde, M.D., Janes, L., Gold, E., Turtzo, L.C., Frank, J.A., 2011. The contribution of 
gliosis to diffusion tensor anisotropy and tractography following traumatic brain 
injury: validation in the rat using Fourier analysis of stained tissue sections. Brain 
134, 2248–2260. 

Chamberland, M., Iqbal, N.S., Rudrapatna, S.U., Parker, G., Tax, C.M.W., Staffurth, J., 
et al., 2019. Characterising tissue heterogeneity in cerebral metastases using multi- 
shell multi-tissue constrained spherical deconvolution. In: International Society for 
Magnetic Resonance in Medicine (ISMRM). Montreal. 

Charlton, R.A., Schiavone, F., Barrick, T.R., Morris, R.G., Markus, H.S., 2010. Diffusion 
tensor imaging detects age related white matter change over a 2 year follow-up 
which is associated with working memory decline. J. Neurol. Neurosurg. Psychiatry 
81, 13–19. 

Coffey, C.E., Figiel, G.S., Djang, W.T., Weiner, R.D., 1990. Subcortical hyperintensity on 
magnetic resonance imaging: a comparison of normal and depressed elderly subjects. 
Am. J. Psychiatry 147, 187. 

Colgan, N., Siow, B., O’Callaghan, J.M., Harrison, I.F., Wells, J.A., Holmes, H.E., et al., 
2016. Application of neurite orientation dispersion and density imaging (NODDI) to 
a tau pathology model of Alzheimer’s disease. Neuroimage 125, 739–744. 

DeCarli, C., Fletcher, E., Ramey, V., Harvey, D., Jagust, W.J., 2005. Anatomical mapping 
of white matter hyperintensities (WMH): exploring the relationships between 
periventricular WMH, deep WMH, and total WMH burden. Stroke 36, 50–55. 

Dhollander, T., Connelly, A., 2016a. A novel iterative approach to reap the benefits of 
multi-tissue CSD from just single-shell (+ b= 0) diffusion MRI data. 24th Int. Soc. 
Magn. Reson. Med. 24: 3010. 

Dhollander, T., Connelly, A., 2016. Generating a T1-like contrast using 3-tissue 
constrained spherical deconvolution results from single-shell (or multi-shell) 
diffusion MR data. In: ISMRM Workshop on Breaking the Barriers of Diffusion MRI. 
Lisbon, Portugal. p. 6. 

Dhollander, T., Mito, R., Raffelt, D., Connelly, A., 2019. Improved white matter response 
function estimation for 3-tissue constrained spherical deconvolution. Proc. Intl. Soc. 
Mag. Reson. Med. 555. 

Dhollander, T., Raffelt, D., Connelly, A., 2016. Unsupervised 3-tissue response function 
estimation from single-shell or multi-shell diffusion MR data without a co-registered 
T1 image. Proc. Int. Soc. Magn. Reson. Med. Work. Break. Barriers Diffus. MRI 5. 

Dhollander, T., Raffelt, D., Connelly, A., 2017. Towards interpretation of 3-tissue 
constrained spherical deconvolution results in pathology. 25th Int. Soc. Magn. 
Reson. Med. 25:1815. 

Dhollander, T., Raffelt, D., Connelly, A., 2018. Accuracy of response function estimation 
algorithms for 3-tissue spherical deconvolution of diverse quality diffusion MRI data. 
In: International Society for Magnetic Resonance in Medicine (ISMRM). France, 
Paris, p. 1569. 

R. Mito et al.                                                                                                                                                                                                                                     

https://doi.org/10.1016/j.nicl.2020.102479
https://doi.org/10.1016/j.nicl.2020.102479
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0010
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0010
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0015
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0015
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0020
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0020
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0020
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0025
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0025
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0025
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0030
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0030
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0035
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0035
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0035
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0035
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0040
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0040
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0045
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0045
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0045
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0050
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0050
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0050
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0055
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0055
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0055
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0055
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0060
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0060
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0060
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0060
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0065
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0065
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0065
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0065
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0070
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0070
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0070
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0070
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0075
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0075
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0075
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0075
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0085
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0085
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0085
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0085
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0090
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0090
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0090
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0095
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0095
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0095
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0100
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0100
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0100
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0115
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0115
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0115
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0120
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0120
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0120
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0130
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0130
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0130
http://refhub.elsevier.com/S2213-1582(20)30316-8/h0130


NeuroImage: Clinical 28 (2020) 102479

13

Dimond, D., Rohr, C.S., Smith, R.E., Dhollander, T., Cho, I., Lebel, C., et al., 2020. Early 
childhood development of white matter fiber density and morphology. Neuroimage 
210. 

Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barcelo-Vidal, C., 2003. 
Isometric logratio transformations for compositional data analysis. Math. Geol. 35, 
279–300. 

Ellis, K.A., Bush, A.I., Darby, D., De Fazio, D., Foster, J., Hudson, P., et al., 2009. The 
Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology 
and baseline characteristics of 1112 individuals recruited for a longitudinal study of 
Alzheimer’s disease. Int. Psychogeriatrics 21, 672–687. 

Farquharson, S., Tournier, J.-D., Calamante, F., Fabinyi, G., Schneider-Kolsky, M., 
Jackson, G.D., et al., 2013. White matter fiber tractography: why we need to move 
beyond DTI. J. Neurosurg. 118, 1367–1377. 

Fazekas, F., Chawluk, J.B., Alavi, A., Hurtig, H.I., Zimmerman, R.A., 1987. MR signal 
abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Am. J. 
Roentgenol. 149, 351–356. 

Fazekas, F., Kleinert, R., Offenbacher, H., Payer, F., Schmidt, R., Kleinert, G., et al., 1991. 
The morphologic correlate of incidental punctate white matter hyperintensities on 
MR images. Am. J. Neuroradiol. 12, 915–921. 

Fazekas, F., Kleinert, R., Offenbacher, H., Schmidt, R., Kleinert, G., Payer, F., et al., 1993. 
Pathologic correlates of incidental MRI white matter signal hyperintensities. 
Neurology 43, 1683. 

Firbank, M.J., Minett, T., O’Brien, J.T., 2003. Changes in DWI and MRS associated with 
white matter hyperintensities in elderly subjects. Neurology 61, 950–954. 

Genc, S., Tax, C.M.W., Raven, E.P., Chamberland, M., Parker, G.D., Jones, D.K., 2020. 
Impact of b-value on estimates of apparent fibre density. bioRxiv. 

Gouw, A.A., Seewann, A., Vrenken, H., Van Der Flier, W.M., Rozemuller, J.M., 
Barkhof, F., et al., 2008. Heterogeneity of white matter hyperintensities in 
Alzheimer’s disease: post-mortem quantitative MRI and neuropathology. Brain 131, 
3286–3298. 

Groeschel, S., Tournier, J.-D., Northam, G.B., Baldeweg, T., Wyatt, J., Vollmer, B., et al., 
2014. Identification and interpretation of microstructural abnormalities in motor 
pathways in adolescents born preterm. Neuroimage 87, 209–219. 

de Groot, J.C., de Leeuw, F.-E., Oudkerk, M., Hofman, A., Jolles, J., Breteler, M.M.B., 
2000. Cerebral white matter lesions and depressive symptoms in elderly adults. 
Arch. Gen. Psychiatry 57, 1071–1076. 

de Groot, J.C., De Leeuw, F., Oudkerk, M., Van Gijn, J., Hofman, A., Jolles, J., et al., 
2002. Periventricular cerebral white matter lesions predict rate of cognitive decline. 
Ann. Neurol. 52, 335–341. 

Hamilton, N., 2018. ggtern: An Extension to ‘ggplot2’, for the Creation of Ternary 
Diagrams [Internet]. Available from: http://cran.r-project.org/package=ggtern. 

Hoy, A.R., Ly, M., Carlsson, C.M., Okonkwo, O.C., Zetterberg, H., Blennow, K., et al., 
2017. Microstructural white matter alterations in preclinical Alzheimer’s disease 
detected using free water elimination diffusion tensor imaging. PLoS ONE 12. 

Jeurissen, B., Leemans, A., Tournier, J., Jones, D.K., Sijbers, J., 2013. Investigating the 
prevalence of complex fiber configurations in white matter tissue with diffusion 
magnetic resonance imaging. Hum. Brain Mapp. 34, 2747–2766. 

Jeurissen, B., Tournier, J.-D., Dhollander, T., Connelly, A., Sijbers, J., 2014. Multi-tissue 
constrained spherical deconvolution for improved analysis of multi-shell diffusion 
MRI data. Neuroimage 103, 411–426. 

Ji, F., Pasternak, O., Liu, S., Loke, Y.M., Choo, B.L., Hilal, S., et al., 2017. Distinct white 
matter microstructural abnormalities and extracellular water increases relate to 
cognitive impairment in Alzheimer’s disease with and without cerebrovascular 
disease. Alzheimers. Res. Ther. 9, 63. 

Jones, D.K., 2010. Challenges and limitations of quantifying brain connectivity in vivo 
with diffusion MRI. Imaging Med. 2, 341–355. 
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