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Abstract

During protein synthesis, aminoacyl-tRNA synthetases covalently link amino acids with their 

cognate tRNAs. Amino acid mutations in glycyl-tRNA synthetase can disrupt protein synthesis 

and lead to a neurological disorder known as Charcot-Marie-Tooth disease type 2D (CMT-2D). 

Several studies employing diverse techniques have identified potential disease mechanisms at the 

molecular level. The majority of CMT-2D mutations in glycyl-tRNA are found within its dimer 

interface. However, no atomic structures bearing these mutations have been solved. Consequently, 

the specific disease-causing structural changes that occur in glycyl-tRNA synthetase have not been 

definitively established. Here we use molecular dynamics simulations to probe conformational 

changes in glycyl-tRNA synthetase caused by one mutation within the dimer interface: G240R. 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Corresponding author at: Physiology and Biophysics, University of Washington, Seattle, WA, United States astsmith@uw.edu (A.S.T. 
Smith). 

Ethical Statement
I consciously assure that, for the manuscript “Conformational sampling of CMT-2D associated GlyRS mutations,” the following is 
fulfilled:

1. This material is the authors’ own original work, which has not been previously published elsewhere.

2. The paper is not currently being considered for publication elsewhere.

3. The paper reflects the authors’ own research and analysis in a truthful and complete manner.

4. The paper properly credits the meaningful contributions of coauthors and co-researchers.

5. The results are appropriately placed in the context of prior and existing research.

6. All sources used are properly disclosed (correct citation). Literally copying of text must be indicated as such by using 
quotation marks and giving proper reference.

7. All authors have been personally and actively involved in substantial work leading to the paper, and will take public 
responsibility for its content.

The violation of the Ethical Statement rules may result in severe consequences.
To verify originality, your article may be checked by the originality detection software iThenticate. See also http://www.elsevier.com/
editors/plagdetect.
I agree with the above statements and declare that this submission follows the policies of Brain Multiphysics as outlined in the Guide 
for Authors and in the Ethical Statement.

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

HHS Public Access
Author manuscript
Brain Multiphys. Author manuscript; available in PMC 2022 December 08.

Published in final edited form as:
Brain Multiphys. 2022 ; 3: . doi:10.1016/j.brain.2022.100054.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.elsevier.com/editors/plagdetect
http://www.elsevier.com/editors/plagdetect


Our results show that the mutation alters the number of native interactions at the dimer interface 

and also leads to altered dynamics of two regions of glycyl-tRNA synthetase associated with 

tRNA binding. Additionally, we use our simulations to make predictions about the effects of other 

clinically reported CMT-2D mutations. Our results identify a region of the glycyl-tRNA synthetase 

structure that may be disrupted in a large number of CMT-2D mutations. Structural changes in this 

region may be a common molecular mechanism in glycyl-tRNA synthetase CMT-2D pathologies. 

Statement of significance: In this study, we use molecular dynamics simulations to elucidate 

structural conformations accessible to glycyl-tRNA synthetase (GlyRS), an enzyme that ligates 

cytosolic glycine with tRNA-Gly. This protein contains multiple flexible regions with dynamics 

that elude in vitro structural characterization. Our computational approach provides unparalleled 

atomistic details of structural changes in GlyRS that contribute to its role in protein synthesis. 

A number of mutations in GlyRS are associated with a peripheral nerve disorder, Charcot-Marie-

Tooth disease type 2D (CMT-2D). Mutation-induced structural and dynamic changes in GlyRS 

have similarity that elude in vitro structural characterization. Our simulations provide insights into 

disease mechanisms for one such mutation: G240R. Additionally, we leverage our computational 

data to identify regions of GlyRS critical to its function and to predict the effects of other 

disease-associated mutations. These results open up new directions for research into the molecular 

characterization of GlyRS and into hypothesis-driven studies of CMT-2D disease mechanisms.
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1. Introduction

Aminoacyl-tRNA synthetases (ARSs) are an ancient and phylogenetically ubiquitous group 

of enzymes responsible for attaching amino acids to their corresponding tRNAs. Eukaryotic 

genomes contain about 30 ARS genes. Most of the 20 amino acids translationally 

incorporate into cytoplasmic proteins via interaction with a unique ARS gene. However, 

for some amino acids, additional ARS genes support mitochondrial protein synthesis. ARS 

genes are subdivided into 2 classes based on primary sequence similarity[1], [2]. Class I and 

Class II ARS genes evolved independently and no similarity in folded structure or active 

site configuration exists between proteins of the two classes, despite sharing the common 

function of loading amino acids onto cognate tRNAs to facilitate mRNA translation[1].

Mutations in genes encoding several different ARSs cause peripheral motor and sensory 

neuropathies that form part of the Charcot-Marie-Tooth (CMT) family of inheritable 

disorders[3]. Within this group, the GARS1 gene, encoding glycyl-tRNA synthetase 

(GlyRS), was the first member identified whose mutations were implicated in a human 

genetic disease and, specifically, in causing a genetically dominant axonal form of 

CMT, type 2D (CMT-2D)[4]. Genetic evidence excludes haploinsufficiency as a cause 

for dominant inheritance, leaving dominant-negative effects or neomorphic toxic effects 

as possible mechanisms for GlyRS mutant CMT. A current theory for a mechanism 

linking mutant GlyRS to CMT pathology is toxic neomorphic gain-of-function resulting 

from mutationally-induced conformational changes that trigger association with particular 
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neuronal proteins. Specifically, mutant GlyRS proteins are reported to bind and modulate 

activity of histone deacetylase 6 (HDAC6)[5], TrkA/B/C neurotrophin receptors[6], and 

neuropilin1 VEGF receptors[7]. However, while some disease-causing mutations in the 

GARS1 gene enhance GlyRS-HDAC6 interactions, other mutations do not[5]. Furthermore, 

differences in the capacity for specific mutations to affect the aminoacylation function of 

GlyRS have also been reported[8–10]. These inconsistencies raise questions about how 

mutations in the GlyRS gene cause disease and how specific sequence changes alter the 

structure and functions of the resulting GlyRS protein.

Understanding how mutations in the GlyRS gene cause neuropathic disease will help 

facilitate the development of novel therapies against these severely debilitating conditions. 

Furthermore, such information will increase our understanding of how protein synthesis 

occurs in axons and supports the stability and functionality of synaptic terminals that exist 

at great distances from their respective cell soma. As such, research on this subject has 

the potential to make important contributions to our understanding of neuron survival and 

will serve to increase our knowledge of the basic mechanisms that underpin central and 

peripheral nervous system function.

X-ray crystallographic studies have provided significant insight into the structure of the 

GlyRS protein (Figure 1a,b). GlyRS exists as a homodimer (in higher eukaryotes, Fig 

1b) and possesses a modular architecture, comprising a catalytic core consisting of seven 

antiparallel β-strands, a C-terminal anticodon-binding domain, an N-terminal WHEP-TRS 

domain, and several appended motifs (Figure 1a)[11]. Motif 1 is believed to be involved in 

active site formation and enzyme dimerization while Motifs 2 and 3 contain ATP-binding 

residues. An insertion domain (Insertion 1) separates Motifs 1 and 2 and is predicted 

to interact with tRNA[12]. Insertion 2 comprises two short helices and β-strands and is 

appended after Motif 2. Its function is difficult to determine since it lies away from the 

dimer interface and the tRNA-binding site. Insertion 3 is located after Motif 3 and is 

predicted to interact with tRNA. The anticodon-binding domain consists of three α-helices 

surrounding a five-stranded mixed parallel and anti-parallel β-sheet.

Several lines of structural and biochemical evidence have demonstrated that CMT-2D 

mutations cause conformational changes in GlyRS that perturb its ability to form 

homodimers, alter the overall dimeric structure, or perturb interactions with tRNA[13], [14]. 

The molecular details of these pathological structural changes have not been definitively 

established and may be ‘hidden’ to X-ray crystallography. Currently, there are 14 crystal 

structures of GlyRS from H. sapiens in the Protein Data Bank (PDB). These structures 

include both wild-type (WT) and mutant GlyRS (E71G, S581L, and G526R); free GlyRS 

and GlyRS complexed with tRNA and/or ATP. However, this set of structures does not 

sufficiently probe conformational states accessible to GlyRS, particularly those populated 

because of CMT-2D mutations. Primarily because none of the crystallized GlyRS bear 

mutations within the dimer interface. Further details of the structural consequences of 

these mutations are needed to refine and test potential hypotheses. Computational models 

of protein dynamics therefore offer attractive opportunities to understand how the normal 

dynamics and conformation(s) of GlyRS become disrupted in pathological conditions. Here 

we use molecular dynamics (MD) simulations of WT and mutant (G240R) GlyRS dimers to 
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explore mutation-induced structural changes. The G240R GlyRS mutation was first reported 

in 2003 by Antonellis et al.[4]. The mutation was discovered in a genetic study of five 

families with CMT-2D and/or distal spinal muscular atrophy type V[4]. This mutation is 

located within a β-hairpin of the catalytic domain that is close to the dimer interface (Figure 

1c). In the dimer structure, the two β-hairpins associate with one another at the dimer 

interface to form an extended 4-stranded β-sheet. We find that G240R alters the dimer 

interface of GlyRS and also changes the dynamics of insertion 1 and 3 that are likely related 

to tRNA binding. Using these results, we make predictions – at the protein structural level 

– about the molecular mechanisms connecting GlyRS mutations to CMT-2D pathologies. 

To our knowledge, these are the longest (3 μs net sampling) all-atom, explicit solvent, 

continuous MD simulations of GlyRS ever reported.

2. Methods

GlyRS+Gly + ATP − > GlyRS . Gly − AMP + PPi

Scheme 1, Adapted from Xie et al 2007

tRNAGly − > GlyRS + Gly − tRNAGly + AMP

Scheme 2, Adapted from Xie et al 2007

2.1. General Model Building

To survey conformations accessible to GlyRS in crystallographic states, 14 GlyRS 

coordinate sets were obtained from the PDB. All 14 structures were solved by X-ray 

crystallography in 6 separate studies and capture various states of GlyRS including both 

apo- and holo- forms, wild type and mutant forms, and conformations in various stages of 

a two-step enzymatic aminoacylation reaction (Scheme 1 & 2). Coordinates for insertion 3 

(residues 412-518) were missing in most structures, but present in the 4KQE structure that 

harbors the E71G mutation.

2.2. MD Model Building

Starting coordinates for the MD simulations were obtained from an X-ray structure of E71G 

GlyRS in the PDB (www.rcsb.org)[15]. This structure (PDB ID: 4KQE, 2.6 Å, residues 

64-674) was solved in the absence of its enzymatic cofactors, substates, and products[16]. 

This structure was chosen because it contains coordinates for most residues in insertion 3 

that are missing in most other structures and the E71G mutation did not otherwise alter 

the structure in comparison with WT GlyRS structures (e.g., 2PME[17]). Coordinates for 

the N-terminal WHEP domain were modeled using a tRNAGly-bound WT GlyRS structure 

as a template (PDB ID: 5E6M)[18]. G71 was replaced by E71 in the rotameric state 

matching the WT 2PME structure. Missing heavy atoms were built using Modeller[19]. 

Starting coordinates for the G240R simulations were obtained via in silico mutation of 

the WT structure using UCSF Chimera[20]. The Rotamers tool in UCSF Chimera was 

used to mutate the Gly side chain to Arg[21]’ [22]. Introduction of the larger Arg side 
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chain led to several atomic clashes between the mutation and residues L129, T230, and 

I232. Residues within 5 Å of the mutation site were minimized. During minimization, a 

~0.7 Å displacement of the T230 side chain accommodated the Arg side chain within a 

cavity (Figure 1d). Next, hydrogen atoms were modeled onto the initial structure using the 

tleap module of AMBER and each protein was solvated with explicit water molecules in a 

periodic, truncated octahedral box that extended at least 10 Å beyond any protein atom. Na+ 

and Cl− counterions were added to neutralize the solvated protein systems.

2.3. Force Field and Molecular Mechanics

Simulations were performed with the AMBER20 package[23] and the ff14SB force 

field[24]. Water molecules were treated with the TIP3P force field[25]. Metal ions were 

modeled using the Li and Merz parameter set[26–28]. The SHAKE algorithm was used to 

constrain the motion of hydrogen-containing bonds. Long-range electrostatic interactions 

were calculated using the particle mesh Ewald (PME) method.

2.4. Pre-production protocols

Each system was minimized in three stages. First, hydrogen atoms were minimized for 

1000 steps in the presence of 100 kcal mol−1 restraints on all heavy atoms. Second, all 

solvent atoms were minimized for 1000 steps in the presence of 25 kcal mol−1 restraints 

on all protein atoms. Third, all atoms were minimized for 8000 steps in the presence of 

25 kcal mol−1 restraints on all backbone heavy atoms (N, O, Cα, and C atoms) After 

minimization, systems were heated to 310 K during 3 successive stages. In each stage, the 

system temperature was increased by ~100 K over 100 ps (50,000 steps) using the canonical 

NVT (constant number of particles, volume, and temperature) ensemble. During all heating 

stages, 25 kcal mol−1 restraints were present on the backbone heavy atoms (N, O, Ca, and C 

atoms). After the system temperatures reached 310 K, the systems were equilibrated over 5 

successive stages using the isobaric-isothermal NPT (constant number of particles, pressure, 

and temperature) ensemble. During each stage, the systems were equilibrated for 5.4 ns in 

the presence of restraints on backbone atoms. The strength of the restraints was decreased 

from 25 kcal mol−1 during the first stage to 1 kcal mol−1 during the fourth stage. During the 

final equilibration stage, the systems were equilibrated in the absence of restraints.

2.5. MD protocol

Production dynamics for conventional molecular dynamics simulations were then performed 

using the canonical NVT ensemble using an 8 Å nonbonded cutoff and a 2 fs time step. WT 

and G240R GlyRS dimers were simulated for 500 ns in triplicate (1,500 ns net sampling 

per simulated system). Unless specified otherwise, frames were selected for analysis 

every 10 picoseconds and the results of replicate simulations were averaged together. The 

minimization, heating, and equilibration portions of simulation times are not counted in the 

reported timepoints. The 0.0 ns timepoint corresponds to the start of production dynamics.

2.6. MD analysis

The Cα root-mean-squared deviation (RMSD) and interatomic contacts were calculated with 

cpptraj[29]. The Cα RMSD was calculated after alignment of all Ca atoms to the minimized 
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structure. Two residues were considered in contact with one another if at least one pair of 

heavy atoms were within 5 Å of one another. All protein images were prepared using UCSF 
Chimera.

3. Results

3.1. Large-amplitude motions in GlyRS

We detected large scale structural fluctuations within GlyRS by measuring the Cα RMSD 

of MD-derived snapshots relative to the initial, equilibrated starting structure. The GlyRS 

dimer is a large, dynamic enzyme and conformational variability has been previously 

reported [16]’ [17] in three regions of the structure: the N-terminal WHEP domain 

(residues 1-67), insertion 1 (residues 117-247), and insertion 3 (residues 412-518). In MD 

simulations, the ensemble average Cα RMSD for all residues in the dimer was 11.6 ± 

1.6 Å for the WT system and 13.9 ± 2.5 Å for the G240R system. However, the RMSD 

values were much higher than is typical for compact and well-folded proteins. To quantify 

the relative conformational variability present in various regions of GlyRS, we calculated 

a set of Cα RMSD values after aligning to a set of ‘core’ residues that had low structural 

variability. The core residues included the ACBD domain and the catalytic domain (residues 

68-116, 248-411, and 519-674). The MD simulations were aligned to these core residues 

and then Cα RMSD values were calculated for the core residues, N-terminal WHEP domain, 

insertion 1, and insertion 3 (Table 1).

The RMSD data indicate that GlyRS is comprised of a stable and well-folded set of core 

residues joined with three dynamic regions. The magnitudes of structural changes were 

similar in the WT and G240R systems, through there was more variation in the WHEP 

domain, insertion 1, and insertion 3 in the presence of the mutation. Because the RMSD 

values report deviations from a single structure, it is difficult to assess relative differences 

in conformational heterogeneity between the WT and mutant or to proscribe any meaningful 

description of conformational changes induced by the mutation from these data alone.

3.2. Conformational heterogeneity in GlyRS sampled during MD

We used the program ttclust[30] to cluster the ensemble of GlyRS conformations sampled 

during MD. Residues in the WHEP domain were excluded from all clustering. In an initial 

calculation, we clustered on Cα atoms within non-WHEP residues in both chains of the 

dimer. The clustering segregated the ensembles on the substantial conformational changes 

in insertions 1 and 3. There were no appreciable correlated motions between insertions 

1 and 3 within a single monomer nor between insertions of both dimers. This led to 

a large number of lowly-populated clusters describing the various dimer conformations 

observed, but there were few clusters that were observed multiple times within a single 

simulation or across multiple simulations. Therefore, we re-clustered the simulations, 

but both monomer chains were clustered together. Again, the clustering segregated the 

simulations based on conformational changes within insertions 1 and 3, but due to the 

increased effective ensemble size and diminished variability (because we clustered on the 

monomers not dimers), we observed a smaller number of larger-sized clusters that were 

populated across multiple simulations. The clustering also indicated that G240R conferred 
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greater conformational variation within the GlyRS structure (Figure 2). The x-ray crystal-

like cluster (C1) was populated by 43% of the WT ensemble, but only 26% of the G240R 

ensemble. The remaining clusters were differentiated by the conformations of insertion 1 

and 3.

Insertion 3 experienced the greatest structural changes (Table 1). In the crystal-like structure, 

insertion 1 is compact and folded over like a hook and the region is stabilized by interactions 

with the ‘top’ of the catalytic domain of GlyRS. In most of the other clusters, insertion 3 

maintained a bent and compact conformation, but formed interactions with different regions 

of the catalytic domain (see for example WT clusters 2 and 4; G240R clusters 2, 4, 7, and 8). 

Insertion 3 also sampled alternate conformations in which the distal portion of the fishhook 

interacted with the ‘side’ of GlyRS or projected into solvent (Figure 2, WT clusters 3 and 7; 

G240R clusters 3, 4, 5, and 6).

Some of these alternate conformations were similar to the conformation observed in 

x-ray crystal structures of GlyRS:tRNA complexes (e.g. PDB 4QEI[16]). In the G240R 

simulations, insertion 3 spent a greater amount of time in the alternate conformations and 

also experienced greater deviation from the 4KQE x-ray structure (Figure 2 C5).

Insertion 1 also had distinct conformational sampling in the WT and G240R simulations. In 

the crystal-like conformation, insertion 1 rests against the catalytic domain evenly situated 

between the insertion 3s of the two monomers. Insertion 1 also sampled conformations in 

which it moved away from the catalytic core and towards insertion 3 of the other monomer. 

Such conformations were captured in WT clusters 4, 5, and 6; G240R clusters 2, 4, 7, 8 

(Figure 2). As with insertion 3, the ‘upward’ conformation of insertion 1 is associated with 

tRNA binding (see PDB: 4QEI[16]) and occurred in both the WT and mutant simulations.

3.3. The breathing motion of insertions 1 and 3 was disrupted by G240R

In all three WT simulations and all three G240R simulations, insertion 1 experienced 

conformational changes as described by the clustering to some degree. In the WT 

simulations, insertion 3 detached from the catalytic domain, projected into solvent, and then 

returned to a bent, x-ray-like conformation multiple times in replicate simulations (Figure 

3). In runs 1 and 3 of the G240R simulations, insertion 3 did not return to an x-ray-like 

conformation after detaching from the catalytic domain, though projection of insertion 3 

into solvent occurred later in those simulations. (Figure 3). In the G240R run 2 simulation, 

the insertion 3 domains did not detach. These results indicate that G240R disrupted the 

conformational distribution of insertion 3 relative to the WT simulations.

We analyzed residue-residue contacts to identify regions of GlyRS that had altered structure 

due to the G240R mutation. We calculated the percent simulation time for which each pair 

of residues was in contact (defined as having at least one heavy atom in each of two residues 

within 5 Å of one another). Next, we applied a Student’s t-test to identify contacts that were 

present for statistically distinct % simulation times in the WT and G240R simulations (p < 

0.05). Finally, we excluded those contacts that had % simulation time differences < 35%. 

Of ~13,000 observed residue-residue contacts, 138 remained after our selection criteria. We 

have high confidence that these remaining contacts reflect significant structural changes at 
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the residue level between the WT and G240R simulations. These contact differences are 

mapped onto the GlyRS structure in Figure 4. The contact differences were mostly restricted 

to the vicinity of the mutation site (which occurs in a β-hairpin at the ‘top’ of the catalytic 

domain. The changes in contacts included: altered interactions between catalytic domain 

residues across the dimer-dimer interface, between insertion 1 and the β-hairpin of the 

opposite monomer, internal insertion 1 interactions, internal insertion 3 interactions, and 

regions that structurally connect the mutation site and insertion 3 (residues 80-96, 129-144, 

and 413-422. These altered interactions were generally symmetric for both dimers. We also 

assessed interactions at the dimer:dimer interface by tracking the number of atom:atom 

contacts at the interface and divided them into ‘native’ (observed in the x-ray structure 

and/or MD) and ‘nonnative’ contacts (observed during MD only). The WT simulations 

preserved a greater number of native dimer:dimer contacts versus the G240R simulations 

(831 vs. 597, p = 0.02). There were not statistically significant differences in the number of 

nonnative contacts formed (718 vs 807) or the total number of contacts (1550 vs 1405).

The structural origin of altered interactions in the immediate vicinity of the mutation site 

was clear: G240R replaced the smallest, flexible residue with a large, charged one. To fit 

within the native conformation, Arg was buried in a hydrophobic region of the protein 

interior. As this was energetically unfavorable, in MD simulations we observed that the 

hairpins opened to allow the Arg side chains to become hydrated by solvent (Figure 5). 

This adjustment of the hairpins led to a series of structural changes. The conformations 

of residues 80-96 of the opposite dimer and 129-144 adjusted to accommodate the new 

structure of the mutation-containing hairpins. This led to a loss of stabilizing interactions 

between residues 129-144 and 413-422, the latter of which are included in insertion 3 

(Figure 6). We propose that these lost stabilizing interactions gave rise to the altered 

dynamics of insertion 3 observed in the G240R simulations.

4. Discussion

The introduction of the G240R mutation in silico is a limitation of our study as it assumes 

that the mutant protein can access the crystallographically observed conformation (which 

was the case for the E71G, S581L, and G526R GlyRS structures). However, this approach 

provides rapid access to predictions about the dynamics of wild type and mutant GlyRS that 

cannot be made by static structures alone. Our simulations generate and refine hypotheses 

that describe the pathological mechanisms by which G240R and other GlyRS mutations lead 

to CMT-2D. These predictions should inform future computational and experimental studies 

of CMT-2D mutations in ARS proteins.

4.1. Large-amplitude structural changes may be essential for enzymatic function

The largest structural changes were observed during MD related to motions of the WHEP 

domain, insertion 1, and insertion 3. Similar conformations were observed in the WT and 

G240R simulations, though the relative distribution of conformations was distinct. This 

suggests that tRNA binding occurs via a conformational-selection mechanism made possible 

when insertion 3 becomes detached from the catalytic domain. Recent in vitro studies 

have reported that certain GlyRS mutations – including G240R – prolong GlyRS:tRNA 
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interactions despite similar aminoacylation rates to WT GlyRS[31]. Our simulations suggest 

that G240R may disrupt the equilibrium between x-ray-like and detached conformations 

of insertion 3 as well as the rate of insertion 3 detachment. However, we did not obtain 

sufficient sampling to make statistically meaningful claims about the effect of G240R on 

insertion 3 detachment kinetics. Our simulations suggest that prolonged GlyRS: tRNA 

interactions may occur because mutations alter the dynamics of insertion 3. Altered insertion 

3 dynamics may either favor conformations of insertion 3 than can bind tRNA – or other 

proteins - more easily or disfavor insertion 3 conformations that are bent and attached 

to the catalytic domain. Additional structural studies that investigate CMT-2D mutations 

in GlyRS:tRNA complexes are required to test these hypotheses. It is noteworthy that 

the only x-ray structure able to resolve insertion1/3 coordinates in the absence of tRNA 

(PDB: 4KQE which is the base model in our study) included a mutation (E71G) that is 

close to the structural pathway by which we predict G240R led to increased insertion 3 

flexibility[16]. It is possible that the E71G mutation affects the conformation of residues 

80-96, 129-144, 413-422 in a way that stabilizes insertion 3. This anecdotal evidence 

supports a hypothesis that GlyRS mutations alter protein synthesis by stabilizing or 

generating GlyRS conformations that variously stabilize GlyRS:tRNA interactions or lead to 

neomorphic interactions with other proteins.

WHEP domains, and the remarkable conformational flexibility of the GlyRS WHEP domain 

in particular, is of interest because WHEP domains are present in 5 ARS proteins, and in 

no other protein, yet little is known about the functions of these domains. WHEP domains 

were appended to these ARSs in three separate events during metazoan evolution, implying 

a strong selective driving force that is specific to ARS function [32]. The only specific 

function ascribed to a WHEP domain is the WHEP domain of EPARS, which stabilizes 

its association with a large multienzyme complex of 8 ARS proteins[33]. If the WHEP 

domain of GlyRS mediates interaction with protein partners that remain to be identified, the 

increased mobility of this domain associated with the G240R mutation may influence the 

state of such protein-protein interactions.

4.2. Putative effects of the other CMT-2D GlyRS mutations

At least 21 mutations in GlyRS are clinically associated with CMT-2D phenotypes. A 

majority of these mutations localize nearby insertion 1 and the dimer:dimer interface 

(Figure 7a). The P234KY insertion is associated with a CMT-2D phenotype in mice. 

In prior studies, CMT-2D mutations have been variously associated with a disruption of 

GlyRS dimer stability[13], opening of a neomorphic surface[34], and altered GlyRS-tRNA 

interactions[35]. In the simulations reported here, we found that the G240R mutation 

decreased the number of native (i.e. crystallographic) contacts at the dimer;dimer interface 

and also caused conformational changes in a region that appears to regulate insertion 3 

dynamics (residues 80-96, 129-144, and 413-422). To inform future computational and 

experimental studies, we utilized our MD data to examine whether other mutations may 

similarly modulate insertion 3 dynamics. To do so, we compared the list of reported GlyRS 

mutations (Figure 7) with the contacts that were altered in MD simulations of WT and 

G240R GlyRS (Figure 4)[36]. Of the 21 mutations reported in Figure 7, 12 mutation sites 

had altered residue-residue interactions in the G240R simulations. These 12 mutation sites 
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(L129P, D146N, D146Y, C157R, D161H, P234KY, M238R, G240R, P244L, E279D, I280F, 

and H418R) participate in a network of contacts that connect the β-hairpins that contain 

G240, the dimer interface, and residues hypothesized to regulate insertion 3 dynamics 

(residues 80-96, 129-144, or 413-422). The 9 mutation sites that did not have altered 

residue-residue in the G240R simulations (A57V, E71G, H162R, S211F, L218Q, D500N, 

S581L, G526R, G598A) are distributed throughout the GlyRS structure. This categorization 

predicts one set of mutations that may impair insertion 3 dynamics. Altered insertion 3 

conformations may either disrupt native GlyRS-tRNA interactions or provide a surface 

through which GlyRS forms neomorphic interactions with other molecules. The remaining 

mutation sites are predicted to operate through other molecular mechanisms. However, this 

prediction is naïve as it is based on simulations of a single mutation. Some mutations, 

such as E71G and D500N, may alter insertion 3 dynamics in other ways. A unifying 

framework by which GlyRS mutations lead to CMT-2D remains elusive. However, the 

simulations reported here should guide the design of future studies and assist in identifying 

the pathological origins of GlyRS-associated CMT. Of particular interest are those mutations 

that did not modify contact networks involved in insertion 3 dynamics. Our data suggest 

that studies on these mutations may provide additional insights into the precise molecular 

mechanisms linking GlyRS mutations and CMT-2D. A57 is located in the N-terminal 

WHEP domain, and the structural significance of this residue is uncertain. H162, S211 and 

L218 are within insertion 1 and likely form interactions with tRNA. D500 is within insertion 

3 and forms salt bridges with neighboring residues that may stabilize certain insertion 3 

conformations. S581, G598, and G598 are in regions associated with tRNA binding. G526 is 

in a catalytic motif of the catalytic domain.

5. Conclusion

Our MD simulations revealed large-scale amplitude motions. The alternate conformations 

observed in MD are also captured in X-ray crystal structures of GlyRS in complex with 

its tRNA. Therefore, we conclude that these alternate conformations are natively sampled 

by GlyRS. We also saw that large-amplitude motions in insertion 1 and 3, which are likely 

related to tRNA binding, became disrupted in the presence of G240R. Much emphasis has 

been placed on the capacity of CMT-2D mutations to destabilize the dimer:dimer interface 

of GlyRS. However, our MD data along with in vitro reports of altered GlyRS:tRNA 

interactions indicate that altered insertion 1/3 dynamics may also be relevant to the 

structural origins of CMT-2D pathologies. Altered conformations of insertions 1 and 3 may 

affect tRNA binding or the formation of neomorphic interactions with other biomolecules. 

Other ARS proteins associated with CMT pathologies may have similar dynamics tied to 

interactions or other molecules that may be disrupted by mutations. The results described 

here provide insight into how mutations in GlyRS proteins lead to Charcot-Marie-Tooth 

pathology in human patients. Compounds capable of inhibiting these structural changes may 

have potential to ameliorate symptoms in these patients and are a promising direction for 

future study.
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Figure 1. GlyRS Structure and Domain Organization.
Each GlyRS monomer (a) contains a central catalytic domain (blue) connected to an 

N-terminal WHEP domain (cyan) and an anticodon binding domain (ACBD, grey). 3 

motifs (yellow) within the catalytic domain contribute to GlyRS enzymatic activity and 

three sequence insertions (#1-3, pink, red, crimson) coordinate GlyRS-tRNA interactions. 

In this image, the GlyRS dimer-dimer interface is facing toward the page (b) GlyRS 

exists functionally as a homodimer. (c) G240 is located in a β-hairpin at the GlyRS dimer 

interface. The ribbon structure of chain A is colored as in panel a and the ribbon of chain B 
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is colored grey. The ribbons of the two G240 residues are colored red. Atoms for side chains 

within 5 Å of the mutation side are shown.(d) The structure of G240R GlyRS is shown after 

the mutation was introduced as described in Methods.
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Figure 2. Conformations sampled by GlyRS during MD.
The individual chains of WT (top row) and G240R (bottom row) GlyRS sampled multiple 

conformations during MD. The clustering yielded 7 clusters for the WT ensemble and 8 

for G240R. The large images on the left contain all cluster representatives, which have 

been aligned on the ‘core’ residues. Since the individual chains of the GlyRS dimers 

were clustered together, the representative structures depict conformations of individual 

GlyRS chains that were sampled during MD simulations of GlyRS dimers. To highlight 

the variation associated with insertions 1 and 3, residues in the WHEP domain are hidden 

and the chains are oriented such that the dimer interface is directed away from the page. 

Coloring is as in Figure 1. Snapshots of the individual cluster representatives are shown in 

the smaller images, and the fraction of the ensemble allocated to each cluster is reported 

below its image.
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Figure 3. G240R led to increased extension of insertion 3.
Snapshots extracted from MD simulations of WT and G240R GlyRS are shown. The 

0 ns snapshots correspond to the beginning of production dynamics, differences in the 

WT and G240R conformations occurred during minimization, heating, and equilibration. 

The structures are colored as in Figure 1 and the WHEP domain is excluded for clarity. 

Snapshots from WT run 3 are shown in the top row and snapshots from G240R run 3 are 

shown in the bottom row. The timestamps for each snapshot are annotated below.
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Figure 4. Statistically significant contact differences in WT and G240R GlyRS.
We identified statistically significant (p < 0.05) contacts where the % contact simulation 

time between the G240R and WT simulations was > 35%. Pipes within this snapshot 

represent these residue-residue contacts. The pipe cylinder radii are proportional to the % 

difference in simulation time that the contacts differed in the WT and G240R simulations. 

Orange pipes were observed more frequently in the WT simulations and purple pipes were 

observed more frequently in the G240R simulations. The contact differences have been 
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mapped onto a reference WT structure. For clarity, the protein ribbon colors have been 

muted.
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Figure 5. Local effects of G240R.
Replacement of the small, flexible Gly with large and charged Arg led to disruption of local 

structure. The effects of these structural changes began during equilibration, as there were 

differences in the WT and G240R starting structures. The structural environment of residue 

position 240 required that the side chain be inserted into an interior, hydrophobic region 

of the protein (at least in the reference structure). This was unfavorable for the electrically 

charged Arg. Over the course of the simulations, the β-hairpins containing R240 (colored 

red) furled upward and allowed the R240 sidechain to become solvated by water.
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Figure 6. Molecular mechanism underlying increased insertion 3 flexibility with G240R.
Disruption of local structure around residue 240 propagated to nearby regions that effect the 

stability/structure of insertion 3 an N-terminal region of the opposite monomer (residues 

80-96, magenta), an α-helix connected to insertion 1 and a catalytic motif (residues 

129-144, green), and an a-helix at the N-terminal end of insertion 3 (residues 413-422, 

cyan). Unfurling of the b-hairpin that contains R240 unfurled and projection of the R240 

sidechain into solvent was associated with a reorganization of these three regions. This 

ultimately led to a change in contacts that affected interactions between insertion 3 and the 

rest of GlyRS. We propose that such altered interactions give rise to altered dynamics of 

insertion 3.
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Figure 7. Structural locations of CMT-2D GlyRS mutations.
GlyRS mutations that are associated with CMT-2D pathologies are distributed throughout 

the structure, but primarily localize to the dimer interface. Here, the atoms of mutation sites 

are represented as magenta spheres. For clarity only a GlyRS monomer is shown.
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Table 1

Cα RMSD values in MD simulations of WT and G240R GlyRS Dimers

Region RMSD WT (Å) G240R (Å)

All Residues 1 
11.6 ± 1.6

2 13.9 ± 2.5

Core Residues
3,4 1.7 ± 0.24 1.8 ± 0.25

WHEP Domain
3,5 32.2 ± 7.5 41.0 ± 8.9

Insertion 1
3,6 6.4 ± 2.1 6.1 ± 3.1

Insertion 3
3,7 13.4 ± 6.0 12.1 ± 9.2

1
Trajectories were aligned on all residues and the RMSD was reported for all Cα atoms.

2
The reported standard deviations were calculated from the ensemble averaging over replicate simulations and both chains.

3
Trajectories were aligned on the core residues (68-116, 248-411, and 519-674).

4
The RMSD was reported for (Cα atoms of the ‘core’ residues (68-116, 248-411, and 519-674)

5
The RMSD was reported for Cα atoms of WHEP domain residues (1-67)

6
The RMSD was reported for Cα atoms of insertion 1 residues (117-247)

7
The RMSD was reported for (Cα atoms of insertion 3 residues (412-518)
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