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Purpose: While multi-parametric magnetic resonance imaging (MRI) shows great promise in assist-
ing with prostate cancer diagnosis and localization, subtle differences in appearance between cancer
and normal tissue lead to many false positive and false negative interpretations by radiologists. We
sought to automatically detect aggressive cancer (Gleason pattern ≥ 4) and indolent cancer (Gleason
pattern 3) on a per-pixel basis on MRI to facilitate the targeting of aggressive cancer during biopsy.
Methods: We created the Stanford Prostate Cancer Network (SPCNet), a convolutional neural net-
work model, trained to distinguish between aggressive cancer, indolent cancer, and normal tissue on
MRI. Ground truth cancer labels were obtained by registering MRI with whole-mount digital
histopathology images from patients who underwent radical prostatectomy. Before registration, these
histopathology images were automatically annotated to show Gleason patterns on a per-pixel basis.
The model was trained on data from 78 patients who underwent radical prostatectomy and 24 patients
without prostate cancer. The model was evaluated on a pixel and lesion level in 322 patients, includ-
ing six patients with normal MRI and no cancer, 23 patients who underwent radical prostatectomy,
and 293 patients who underwent biopsy. Moreover, we assessed the ability of our model to detect
clinically significant cancer (lesions with an aggressive component) and compared it to the perfor-
mance of radiologists.
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Results: Our model detected clinically significant lesions with an area under the receiver operator
characteristics curve of 0.75 for radical prostatectomy patients and 0.80 for biopsy patients. More-
over, the model detected up to 18% of lesions missed by radiologists, and overall had a sensitivity
and specificity that approached that of radiologists in detecting clinically significant cancer.
Conclusions: Our SPCNet model accurately detected aggressive prostate cancer. Its performance
approached that of radiologists, and it helped identify lesions otherwise missed by radiologists. Our
model has the potential to assist physicians in specifically targeting the aggressive component of
prostate cancers during biopsy or focal treatment. © 2021 The Authors. Medical Physics published
by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine. [https://
doi.org/10.1002/mp.14855]
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1. INTRODUCTION

Prostate cancer is the most frequently diagnosed cancer in
American men, with an estimated 191 930 new cases
expected in 2020.1 Accurate diagnosis and localization of
cancer in the prostate is critical for targeted biopsy, monitor-
ing disease for patients on active surveillance, and guiding
local treatments.2 While multi-parametric magnetic reso-
nance imaging (MRI) is increasingly used as a noninvasive
aide in prostate cancer diagnosis and tumor localization, both
false positive and false negative findings remain common,
even when using the Prostate Imaging-Reporting and Data
System (PIRADS)3,4 reporting scheme.5 Ideally, a biopsy
would only be performed when cancer is identified on MRI,
and only those areas of high suspicion for aggressive cancer
would be targeted. This would reduce the morbidity of biopsy
and make the results more reliable. However, false positive
findings on MRI often lead to unnecessary biopsies in men
without cancer, while false negatives lead to extensive biopsy
procedures due to fear of missing significant cancers. To real-
ize the full potential of MRI to improve prostate cancer diag-
nosis while reducing morbidity from biopsy, improvements
are needed in the performance and interpretation of MRI by
radiologists.5

The need for improvement in prostate MRI interpretation
has led to interest in using machine learning methods. Both
semi-automated6–10 and fully automated11–15 computational
approaches have been applied to facilitate prostate cancer iden-
tification on MRI. These studies typically derive labels from
radiologist-outlined lesions confirmed by biopsy8,10,15–17 or
from cognitive registration of preoperative MRI and
histopathology images of the resected tissue for patients under-
going radical prostatectomy.9,12,13 All these approaches are
dependent on human interpretation of MRI to find all cancer
lesions and accurately delineate their extent. Yet, radiologist
labels have shortcomings resulting in models (Table I) that fail
to capture (a) cancers not visible on MRI (those cancers that
cannot be outlined even in the presence of histopathology
images from surgery) or (b) cancers that are hardly visible on
MRI (those that are missed at initial read, but are observed in
retrospect upon review alongside histopathology images from
either surgery or biopsy). Such lesions contribute to the 12%
of aggressive cancers missed during screening,18 and the 34%

of aggressive and 81% of indolent cancers missed in men
undergoing prostatectomy.19 Further complicating these studies
is that MRI underestimates lesion size,20,21 leading to inaccu-
rate annotations (Fig. 1).

An alternative approach to labeling cancer location on
MRI is to perform automatic registration of preoperative
MRI and digital histopathology images from patients under-
going radical prostatectomy.22–27 Labels obtained from auto-
matic registration are more accurate than radiologist labels
since they do not depend on human interpretation of MRI
and allow for the full extent of lesions found on histopathol-
ogy to be mapped on MRI, including cancers that are invisi-
ble or hardly visible. Figure 1 illustrates how cancer labels
mapped from histopathology images onto MRI typically
extend beyond the radiologist annotation and often include
cancers that were not detected by the radiologist. Unlike prior
registration studies that included fewer than 50 subjects,25–27

we have registered histopathology and MR images for over
150 patients at our institution using our RAPSODI plat-
form.22 RAPSODI relies on traditional registration methods
to identify the optimal affine and deformable transforms
between corresponding MR and histopathology images.
Moreover, we have recently shown that deep learning meth-
ods can accelerate this registration,23 while slice-to-slice cor-
respondences are not required when using super-resolution
generative adversarial networks to reconstruct 3D
histopathology and MRI volumes.24 We previously used a
subset of the unique dataset generated by RAPSODI22 to
train a deep learning model to automatically detect prostate
cancer on MRI.11 Here, we seek to expand upon this work by
focusing on distinguishing aggressive from indolent cancers
on MRI using labels derived from automated registration of
histopathology and MR images. Unlike prior methods that
either use radiologist labels or pathology labels mapped from
cognitive alignment (radiologists and pathologists jointly
reviewing the MR and histopathology images, without com-
putational alignment), our proposed approach is the first to
use automatically detected aggressive and indolent cancers
on histopathology images28 mapped onto MRI to generate
labels for aggressive and indolent cancers on MRI.

Previous computational methods to detect aggressive pros-
tate cancer on MRI either (a) relied on hand-crafted features
combined with traditional classification methods2,6,29,30 or
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(b) leveraged deep learning architectures such as the
UNet,14,15,17 the holistically nested edge detector (HED),31 or
derived from DeepLab.12 The deep learning-based
approaches are summarized in Table I. Some of these
approaches are fully automatic, while others require the radi-
ologist to provide regions of interest to be classified by the
model. Due to the inaccurate labels used during training or
when providing regions of interest (i.e., unable to capture
invisible/hardly visible MRI lesions, underestimating cancer
extent, and lacking per-pixel assessments of aggressive and

indolent cancers), these methods12,14,15,17 are unable to prop-
erly detect the true extent of lesions and identify aggressive
and indolent cancers when they coexist within the same
lesion (Table I). Only the work by McGarry et al.32 used
pixel-level labels of cancer obtained in 48 patients from regis-
tering histopathology to MR images and were used to create
a simple model based on thresholding. Yet, their approach
fail to characterize the ability of their model to distinguish
different types of cancer coexisting within a lesion. Since our
proposed approach uses pixel-level labels of aggressive and

TABLE I. Summary of prior deep learning approaches. Terminology and Abbreviations: Visible MRI Lesions are readily identified by radiologists; Hardly Visible
MRI Lesions are found after review of the whole-mount histopathology images available for surgery patients, MRI Invisible Lesions are lesions that cannot be
reliably outlined even in the presence of histopathology images from surgery; Aggressive Cancer (Agg) has Gleason score 3 + 4 and above; Indolent Cancer
(Ind) is Gleason Score 3 + 3, Normal is noncancer; CS-clinically significant cancer; Feats-Features; Se-sensitivity; Sp-specificity; FP-False Positive; AUC- Area
Under the Receiver Operating Characteristic Curve.

First
author

Label
granularity

Evaluation
granularity Task Architecture

Visibility MRI
labels

Without
radiologist

input

Patient
number,
split Performance on Agg and/vs Ind

Cao12 Per lesion Per pixel;
per lesion

Gleason
score

Modified
DeepLabv3

Visible, hardly
visible

True 417(fivefold
cross val)

AUC (Ind vs Agg): 0.81, FP@80% Se
(CS): 0.65, FP@80% Se (All): 2.30

Sanyal14 Per lesion Per pixel Agg,
Ind,
normal

UNet Visible True 57/20 AUC (Agg): 0.86, AUC (Ind): 0.88

Schelb17 Per lesion Per sextant,
per patient

Agg UNet Visible, hardly
visible

True 250/62 Se (Sextant): 0.59, Sp (Sextant): 0.66,
Se (Patient): 0.96, Sp(Patient): 0.50

McGarry32 Per pixel Per lesion Agg,
Ind,
normal

Otsu
threshold- ing

Visible, hardly
visible, invisible

True 48 (threefold
cross val)/5

AUC (Agg): 0.77, AUC (All Cancer):
0.77

Vente15 Per lesion Per pixel;
per lesion

Gleason
score

Modified
UNet

Visible True 162 (fivefold
cross val)

Dice: 0.37

Yuan8 Per lesion Per patch;
per lesion

Agg, Ind AlexNet
transfer
learning

Visible False 111/66/44 AUC (Ind vs Agg): 0.90, Se: 0.87, Sp:
0.88

Zhong9 Per lesion Per lesion Agg, Ind ResNet
transfer
learning

Visible, hardly
visible

False 110/30 AUC (Ind vs Agg): 0.76, Se: 0.64, Sp:
0.80

Chaddad10 Per lesion Per lesion;
per ROI

Gleason
score

Random forest
w. CNN feats

Visible False 99 (fivefold
cross val)

AUC (Ind vs Agg): 0.89

(a) (b) (c)

FIG. 1. Lesions outlined on MRI often underestimate cancer size while missing some other cancers entirely. One slice of a radical prostatectomy case with (a)
T2-weighted MRI and (b) ADC overlaid with labels obtained from histopathology images (black) compared to (c) T2-weighted MRI overlaid with radiologist
labels (green). Note the hardly visible MRI lesions (patient left) that are missed by the radiologist. [Color figure can be viewed at wileyonlinelibrary.com]
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indolent cancer derived from histopathology images mapped
onto MRI, we can test whether such a model is able to distin-
guish aggressive from indolent cancers even when they coex-
ist within the same lesion (known as clinically significant
lesions).

Here, we introduce the Stanford Prostate Cancer Network
(SPCNet) to distinguish (a) normal tissue, (b) indolent pros-
tate cancer (Gleason pattern 3) and aggressive prostate cancer
(Gleason pattern ≥ 4) on multi-parametric MRI. SPCNet
modifies the architecture of the HED Network, a multi-reso-
lution deep learning architecture, making it a 2.5D network
that uses three adjacent slices to capture the volumetric nature
of the tumors. Moreover, SPCNet relies on a branched archi-
tecture in which separate features are identified for each input
MRI sequence, T2-weighted MRI and apparent diffusion
coefficient (ADC). We hypothesize that our deep learning
network which learns features specific to each MRI sequence
using volumetric context and pixel-level labels of indolent
and aggressive cancers mapped from histopathology images
onto MRI is better at predicting prostate cancer compared to
alternative approaches, for example, using UNet or DeepLab
architectures.

2. MATERIALS AND METHODS

2.A. Dataset

2.A.1. Population characteristics

This retrospective study was approved by the Institu-
tional Review Board (IRB) of Stanford University. As a

chart review of previously collected data, we proceeded
with a waiver of consent. Our study included patients
from two independent cohorts at our institution (Table II).
Cohort C1 included 101 patients who had a preoperative
MRI examination before undergoing radical prostatectomy,
and 30 patients considered to have a normal prostate
after having both a negative MRI and a negative biopsy.
Cohort C2 included 293 patients who had an MRI exam-
ination before undergoing MRI-Ultrasound fusion targeted
prostate biopsy.

Patients from cohort C1 were split between training/vali-
dation (n = 102) and testing (n = 29) sets (Table III). The 29
patients in the test set of cohort C1 (C1-Test) and all the
patients in cohort C2 were used only for evaluating SPCNet.
These subjects had their MRI read by board-certified radiolo-
gists (Cohort C1-Test, 11 radiologists, experience ranging
between 1 and 40 yr of post-residency, median 8 yr) as part
of routine clinical care. For each case, one of the 11 radiolo-
gists outlined the extent of cancer. A detailed description of
the 29 subjects in the test set of cohort C1 is provided in
Table S1.

2.A.2. Image acquisition and alignment

All multi-parametric MRIs were acquired using surface
coils and GE scanners at 3.0 Tesla. Each MRI acquisition
included T2-weighted (T2w) images, diffusion-weighted
images (DWI) used to compute the ADC maps, and dynamic
contrast-enhanced images. SPCNet only used the T2w and
ADC images, viewed as a stack of images of size K�L, with
M slices (characteristics summarized in Table II). For radical

TABLE II. Description of our cohorts and data characteristics.

Procedure

Cohort C1 Cohort C2

Radical prostatectomy Normal Biopsy

Number of patients 101 30 293

T2w

Repetition time (TR, range) (s) 3.9, 6.3 1.7, 7.6 2.0, 7.4

Echo time (TE, range) (ms) 122, 130 81, 149 92, 150

Pixel size (Range) (mm) 0.27, 0.94 0.35, 0.43 0.39, 0.47

Distance between slices (mm) 3.00, 4.20 3.00, 4.20 3.00, 4.20

Matrix size K, L ∈ [256, 512] K, L ∈ [512] K, L ∈ [512]

Number of slices M ∈ [24, 43] M ∈ [24, 48] M ∈ [20, 43]

ADC

b-values (s/mm2) [0, 50, 800, 1000, 1200] [0, 25, 50, 800, 1200, 1400] [0, 25, 50, 800, 1200, 1400]

Pixel size (range) (mm) 0.78, 1.50 0.78, 1.25 0.78, 1.01

Distance between slices (mm) 3.00, 4.50 3.00, 6.00 3.00, 4.60

Matrix size K, L ∈ [50, 100, 256] K, L ∈ [256] K, L ∈ [256]

Number of slices M ∈ [15, 40] M ∈ [24, 48] M ∈ [14, 42]

Labeled regions (patient number)

Prostate Yes (101) Yes (30) Yes (293)

Radiologist outlined lesions Yes (29) Yes (6) Yes (293)

Pathologist outlined cancer Yes (101) No No

Per-pixel Gleason Grade28 Yes (101) No No
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prostatectomy patients in cohort C1, the excised prostates
were serially sectioned using customized 3D-printed molds
with slice thickness matching that of T2w images.33 All
hematoxylin and eosin-stained (H&E) histopathology images
were scanned to generate digital whole-mount histopathology
images. Each digital histopathology image was aligned with
the corresponding MR image using the automated affine and
deformable registration method, RAPSODI, described by
Rusu et al.,22 to enable accurate mapping of cancer labels
from histopathology images onto MRI.

2.A.3. Labels

The prostate was segmented on T2w images by expert
technologists (mean experience = 9 years) and adjusted as
necessary by our expert team (GS — urologic oncologist
with 9 yr of experience, MR with >10 yr of experience
reviewing prostate MRI, and histopathology images). An
expert pathologist (CAK) annotated prostate cancer on all
digital histopathology images on a per-pixel basis. Addition-
ally, we used the deep learning method developed by Ryu
et al.28 to predict pixel-level Gleason pattern on our
histopathology dataset, which was then registered to MRI to
create labels for Gleason patterns 3, 4, and 5 for the radical
prostatectomy patients in cohort C1. The annotated
histopathology images were then registered to MRI, and the
pixel-level labels of aggressive and indolent cancers from
histopathology images were mapped onto MRI.

We also obtained radiologist annotations of suspicious
lesions and corresponding PIRADS scores. For patients in

cohort C2, these radiologist-annotated lesions had been used
to conduct targeted biopsies. Each lesion was labeled with
the pathology from biopsy cores directed at that lesion. When
multiple cores from the same lesion showed cancer, the high-
est Gleason score was assigned to the entire lesion. In the rad-
ical prostatectomy cohort, we defined clinically significant
lesions based on the amount of aggressive cancer found in
the 3D stack of histopathology images that were recon-
structed and registered to the MRI. We evaluated our algo-
rithm by defining clinically significant lesions using two
criteria: (a) having at least 1% of their pixels labeled as
aggressive cancer or (b) having at least 5% of their pixels
labeled as aggressive cancer. For cohort C2, lesions with
biopsy pathology Gleason Score ≥ 3 + 4 were considered
clinically significant cancer.

2.B. MRI preprocessing

Multiple preprocessing steps were applied to the MRI
scans.

1. ADC maps and T2w images were manually registered
using affine transformations for the patients in cohort
C1. No registration was performed for the studies in
cohort C2.

2. MRIs were resampled to the same spacing (0.29 mm ×
0.29 mm) and cropped to 224 × 224 pixels centered
around the prostate.

3. An intensity standardization method34 was applied to
align the histogram of the MRI sequences as they can
vary across patients and scanners. The process involved
(a) independently learning a set of intensity histogram
landmarks for each MRI sequence from the entire train-
ing dataset, and (b) transforming the image histograms
to align with the mean histogram of the MRI sequence
learned in step (a). The intensity standardization
method was applied to the prostate pixels for both T2w
and ADC images independently. Since model training
involved splitting the data into training and test sets, we
learned the histogram average in the training set of
cohort C1 and used it to align the cases in the test sets
from both cohorts C1 and C2.

4. Input samples were normalized such that pixels within
the prostate had a mean of 0 and a standard deviation
of 1.

2.C. SPCNet

We propose a new convolutional neural network model
named Stanford Prostate Cancer Network (SPCNet). This net-
work is based on the holistically nested edge detector (HED)
architecture35 used in previous prostate cancer detection
work.11,13 Similar to the HED, SPCNet has multiple outputs
at various image scales, which are then upsampled and fused
to form the final output (Fig. 2). The network is designed to

TABLE III. Test sets include a subset of patients in cohort C1 and all subjects
in cohort C2. Age and PSA reported as median (range), Gleason scores as
count (cohort proportion), and as percentage of the entire cohort size within
brackets.

Cohort C1-Test C2

Patient number 29 293

Age (years) 63.8 (49-76) 65 (38-82)

PSA (ng/mL) 6.8 (3.3-28.6) 7.1 (0.9-63.0)

Gleason score (Percentage)

Normal 6 (21) 133 (45)

3 + 3 - 42 (14)

3 + 4 12 (41) 58 (20)

4 + 3 6 (21) 32 (11)

Others 5 (17) 28 (10)

Number of lesions 26 232

Lesion type

Aggressive 22 155

Indolent 4 77

Lesion location

Peripheral zone 15 154

Transitional zone 7 76

Peripheral & transitional zones 4 0

Anterior stroma 0 2

Lesion volume (mm3) 1,857 � 2,216 1,842 � 2,647
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distinguish between three classes: (a) normal tissue, (b) indo-
lent cancer and (c) aggressive cancer, and takes as input bi-
parametric MRI, that is, T2w images and ADC maps, to pro-
duce pixel-level probabilities of the three classes.

Unlike the HED, SPCNet uses three adjacent slices of mul-
ti-parametric MRI to predict cancer on the middle slice and has
separate convolutional layers for each MRI sequence before
concatenating their outputs and predicting cancer (Fig. 2). By
including three adjacent slices, SPCNet incorporates volumet-
ric information from the adjacent slices when predicting the
presence of cancer. The use of separate parameters and outputs
for each imaging component at larger scales before concatenat-
ing them for the smaller scale features seeks to have the model
learn features unique to each component at larger scales.

2.D. Training

We trained SPCNet using fivefold cross-validation with
the patients in cohort C1 (n = 102), and tested our model on
a held-out set from cohort C1 (C1-Test, n = 29) and the
entire set of patients in cohort C2 (n = 293, Table III). For
radical prostatectomy patients, only the slices with cancer
were coupled with their adjacent slices and used during train-
ing. SPCNet was trained for 25 epochs with a batch size of
32 using the Adam optimizer with a learning rate of 10�3.
Training data were augmented with random rotation ranging
between −15 and 15 degrees and left to right flipping.

Labels from both the expert pathologist and grade infor-
mation from Ryu et al.28 were used to train SPCNet. Pixels
labeled either Gleason pattern 4 or 528 were considered
aggressive and pixels labeled Gleason pattern 328 were

considered indolent regardless of the pathologist label. Pixels
labeled by the expert pathologist without any grade informa-
tion were considered either aggressive or indolent with an
equal likelihood of 0.5. These disagreements between the
expert pathologist and the grade information labels were rare
and typically consisted of a small number of pixels for each
patient. Finally, pixels with no cancer label from either source
were labeled as normal tissue.

The loss function used to train SPCNet was a weighted
version of the categorical cross-entropy that weighs pixels
from the three classes by the inverse proportion of pixels of
each class computed across the entire training set. This loss
function is mathematically represented by Equation 1 and
Equation 2 where a pixel’s ground truth label is given by
y1,y2,y3½ � and its prediction is given by ŷ1, ŷ2, ŷ3½ �. There are
M pixels in the training set and N pixels in a batch with ym as
the label of the mth pixel in the training set and yn as the label
of the nth pixel in a batch.

� 1
N
∑
N

n¼1
∑
3

i¼1
wiy

ðnÞ
i ln ŷðnÞi (1)

where

wi ¼ M

∑M
m¼1y

ðmÞ
i

(2)

2.E. Prior networks

In addition to training SPCNet, we also trained alternative
models using the UNet14,36 and DeepLabv3+37 architectures

Conv (1x1xN)  
+ So�max (N=3) 

Max pooling (2x2) Conv (3x3) + ReLU 
+ Conv (3x3) + 
ReLU + Conv (3x3) 
+ BN + ReLU 

Fused output 

Side  
output 
(224x224x3) 

Side  
output 
(112x112x3) 

Side 
output 
(56x56x3) 

Side  
output 
(224x224x3) 

Side  
output 
(112x112x3) 

Side 
output 
(56x56x3) 

Side 
output 
(26x26x3) 

Side 
output  
(13x13x3) 

Concatenate 

T2W images 
(224x224x3) 

ADC images 
(224x224x3) 

Upsample to 
Input Image 
Size and 
Concatenate 

Conv (3x3) + ReLU 
+ Conv (3x3) + BN 
+ ReLU 

64 128 256 

64 128 256 

256 256 3 

- Indolent 

- Aggressive 

Predic�on Legend 

FIG. 2. The SPCNet architecture. [Color figure can be viewed at wileyonlinelibrary.com]
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as baselines for prior approaches. Since the source code was
not available for either of the architectures for their respec-
tive prostate cancer studies, we implemented the versions
made available by Ronneberger et al.36 and Chen et al.,37

respectively. The only modifications included increasing
the number of output layers to three to accommodate the
multiclass problem. Similar to SPCNet, we trained these
models using the previously described augmentation and
loss function for 25 epochs using a batch size of 32 with
the Adam optimizer. Both UNet and DeepLabv3+ used a
single slice input for each MRI sequence and a learning rate
of 10�6.

2.F. Evaluation

We evaluated our model using several approaches. First,
we performed our evaluation on a per-pixel basis, as is
commonly done for segmentation problems. Then, we per-
formed per-lesion and per-patient evaluations, which are
more relevant to clinical settings. However, there is no
universally agreed-upon method for evaluating a model on
a per-lesion or per-patient level. Moreover, the cancer
labels projected from histopathology images had to be pro-
cessed in order to create lesion outlines from small and
separate regions.

We quantitatively evaluated our models in two cohorts:
(a) the test set from cohort C1 (C1-Test), and (b) all
patients in cohort C2. To evaluate SPCNet in the cohorts
C1-Test and C2, we averaged the outputs of the five mod-
els resulting from the cross-validation to create one proba-
bility map and then computed metrics on the average
prediction results.

2.F.1. Per-pixel evaluation

To be consistent with data in the training set, we only eval-
uated slices that had been annotated as having cancer in radi-
cal prostatectomy and biopsy patients. We concatenated the
predicted probability of cancer for all pixels within the pros-
tate for all cases and computed the area under the receiver
operating characteristic curve (AUC ROC). We then thresh-
olded the predicted probability to compute sensitivity and
specificity, which are common classification metrics defined
as

Sensitivity¼ TruePositives
TruePositivesþFalseNegatives

(3)

and

Specif icity¼ TrueNegatives
True NegativesþFalsePositives

(4)

These thresholds were chosen through empirical testing
and were found to be reliable for detecting lesions on MRI.

The three classes for SPCNet were evaluated individually
on a one vs all manner. Pixels that were annotated by the
pathologist but lacked grade information were excluded in the
evaluation of aggressive and indolent pixels.

2.F.2. Lesion outlines

For the radical prostatectomy patients in cohort C1, we
processed the cancer labels projected from histopathology
images by applying a three-dimensional morphological clos-
ing operation. This allowed us to connect separate label
regions that are small and close together into distinct, con-
nected lesions throughout the 3D volume. Finally, we com-
puted the effective volume of these lesions and discarded
lesions with volumes below 250 mm3 for the lesion- and
patient-level evaluations (see below). We selected this thresh-
old because such small volume lesions (≈6�6�6mm3, seen
at most on two consecutive MRI slices) have previously been
regarded as clinically insignificant.38 We also verified that
this threshold was less than the threshold used by the PIR-
ADS reporting scheme to define clinically significant cancer
(≥ 500 mm3).3,4 Our thresholding makes the lesion volume
threshold lower than that of most other studies which used
radiologist lesions as ground truth. Supplementary S1
demonstrates that our threshold only removed two lesions
with relatively small volumes. This process allowed us to
generate lesion borders from our pathology annotations to be
used to perform lesion-level analysis on MRI for our models.
This thresholding was not applied to the training data, and
does not affect the trained model.

2.F.3. Per-lesion evaluation

We used connected component analysis on the morpho-
logically processed pathology labels to extract the individual
lesions to serve as our ground truth. For true positives and
false negatives, a lesion was considered detected if the 90th
percentile of probabilities from the model within the lesion
outline exceeded a threshold. For true negatives and false
positives, we split the entire prostate into sextants by dividing
the prostate into left and right regions and then splitting these
halves into three regions along the longitudinal axis (Fig. 3).
This division of the prostate follows the standard approach of
systematic prostate biopsy. We considered the sextants in
which ≥ 95% of pixels were benign as the ground truth for
negatives. As with the lesion outline, the 90th percentile of
model probabilities in the sextant was used to determine
whether the model classified it as a true negative or false pos-
itive. With the paradigm for true positives and true negatives
established, we computed ROC AUC, sensitivity, and speci-
ficity using the same thresholds from the per-pixel analysis.
This per-lesion analysis was used to evaluate the detection of
all cancer lesions as well as clinically significant lesions. For
all cancer lesions, we used the predicted probability of any
cancer, and for clinically significant lesions we used the pre-
dicted probability for aggressive cancer.

2.F.4. Per-patient evaluation

We performed a patient-level evaluation in the cohort C1-
Test, using cases with clinically significant lesions to deter-
mine the true positives and false negatives. Moreover, we
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used normal cases to determine true negatives and false posi-
tives. For patients with clinically significant lesions, a patient
was classified a true positive if the model was able to detect
at least one of the clinically significant lesions or a false neg-
ative if the model could not detect any of the clinically signif-
icant lesions. To determine if a lesion is detected, the same
procedure from per-lesion evaluation is used. For normal
patients, SPCNet’s prediction was thresholded and morpho-
logically processed to define predicted lesions. The thresh-
olds used were derived from per-pixel analysis and the
morphological processing following the same procedure used
to define lesion outlines from the ground truth labels. If there
was a predicted lesion on a normal case then it was classified
as a false positive, otherwise it was classified as a true nega-
tive. Since this procedure involved hard thresholding and not
probability values, only sensitivity and specificity were com-
puted.

2.F.5. Radiologist comparison

Finally, we compared SPCNet with the radiologists at a
lesion and a patient level in the cohort C1-Test. However,
such analysis was not performed in cohort C2 as our labels
are derived from radiologists. For these comparisons, we
evaluated the radiologist outlines and model predictions the
same way. Because PIRADS v2.1 is designed to specifically
detect clinically significant cancer, radiologist outlines were
treated as a prediction where every pixel within their outline
was predicted to be aggressive cancer with a probability of
1.00. We only computed sensitivity and specificity since the
ROC AUC would not be comparable. Additionally, we eval-
uated a combination of the model predictions and radiolo-
gist outlines by adding them to gain insight into the
potential performance of a radiologist assisted by our
model.

3. RESULTS

SPCNet accurately detected the extent of indolent and
aggressive cancer within the lesion (Fig. 4) and accurately
detected normal tissue within patients without cancer
(Fig. 5). The quantitative evaluation in the two cohorts, C1-
Test and C2, showed that SCPNet achieves an AUC of
0.80–0.81 to detect normal tissue, 0.64–0.75 to detect indo-
lent cancer, and 0.86–0.89 to detect aggressive cancers at

pixel-level (Table IV) and an AUC of 0.75–0.80 to detect
clinically significant lesions (Table V).

In addition to SPCNet, we also trained alternative net-
works based on UNet and DeepLabv3+ to distinguish normal
tissue, indolent cancer, and aggressive cancer on prostate
MRI (Tables IV–V). SPCNet overall achieves higher AUCs
than UNet or DeepLabv3+. While the sensitivity of UNet or
DeepLabv3+ can be higher than that obtained by SPCNet,
the specificity was so low that those models would not be
helpful in a clinical setting (<0.01 in Table V). UNet and
DeepLabv3+ appear less effective at accurately differentiat-
ing cancer types on a per-pixel basis. These results illustrate
that SPCNet is better at detecting and distinguishing aggres-
sive and indolent cancer on MRI (based on both the per-pixel
and per-lesion evaluations).

SPCNet achieved a similarly large per-pixel AUC for nor-
mal tissue and aggressive cancer across cases in both C1-Test
and C2. However, this trend did not extend to indolent cancer
which had a noticeably lower ROC AUC when comparing
C1-Test and C2. This is likely due to the inaccurate labels
used for cohort C2 where every pixel in a lesion was consid-
ered indolent if the biopsy core associated with it was indo-
lent. Another interesting per-pixel result is that the sensitivity
and specificity for normal tissue were very different since
normal tissue has the opposite class imbalance compared to
cancer. On a per-lesion basis, SPCNet performed comparably
across both cohorts for detecting all cancer lesions but per-
formed worse on C1-Test when detecting clinically signifi-
cant lesions.

Finally, we compared SPCNet with radiologists by assess-
ing their sensitivity and specificity in detecting clinically sig-
nificant lesions and at a patient level for the subjects in
cohort C1-Test. In addition, we created a combined model
that summed the SPCNet and radiologist predictions to evalu-
ate the potential impact of SPCNet on the radiologist inter-
pretation. Table VI shows that SPCNet approaches the
performance of radiologists, while finding 13–18% of clini-
cally significant lesions otherwise missed by radiologists.
Moreover, the combined model had the best sensitivity, sug-
gesting the utility of using deep learning-based models to
improve the interpretation of prostate MRI. Visual inspection
indicated that the lesions detected by SPCNet but not by radi-
ologists had a more subtle appearance on T2w images and
were more distinctive on ADC images. The ability of SPCNet
to detect lesions with more subtle appearance on T2w images

(a) (b)

FIG. 3. Axial (a) and Coronal (b) views of the sextants (one color per sextant). [Color figure can be viewed at wileyonlinelibrary.com]
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(a) (b) (c) (d)

FIG. 4. SPCNet predictions on a sample patient in cohort C1-Test shown from apex (top row) to base (bottom row). The per-pixel AUCs were 0.92 for normal tis-
sue, 0.90 for indolent cancer, and 0.93 for aggressive cancer. (Column a) T2w input; (Column b) ADC; (Column c) T2w image overlaid with grade annotations
Indolent (Gleason pattern 3, Green) and Aggressive (Gleason patterns 4 or 5, Yellow); (Column d) T2w image overlaid with thresholded prediction from the
SPCNet multiclass model cancer predictions (indolent — blue; aggressive — red). Cancer labels by the expert pathologist mapped from histopathology images
onto MRI are outlined in black and white (Columns a–b). [Color figure can be viewed at wileyonlinelibrary.com]
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does come at a cost in the form of a lower specificity com-
pared to that of the radiologist.

4. DISCUSSION

We developed a new convolutional neural network
(SPCNet) and trained it using aggressive and indolent cancer
labels mapped from histopathology images onto MRI for
patients who underwent radical prostatectomy. Our study had
four key findings. First, we found that SPCNet successfully
localized and distinguished indolent and aggressive cancer.
Second, we found that SPCNet performed comparably across
cohorts ranging from patients without cancer to those with
early or advanced cancer (Cohort C1: 23 patients who under-
went radical prostatectomy, six patients with normal

prostates; Cohort C2: 293 patients who underwent MRI-tar-
geted biopsy). Third, we found that SPCNet approaches the
performance of radiologists. Fourth, we found that SPCNet
outperforms previously used networks, that is, UNet and
DeepLabv3+.

SPCNet achieved a considerably higher sensitivity in
detecting clinically significant lesions on cohort C2 compared
to cohort C1-Test. This higher performance may be the result
of the difference in definition of clinically significant lesions
between the two cohorts. The clinically significant lesions in
cohort C2 were lesions initially detected by radiologists on
MRI, that is, MRI visible lesions, while some of the lesions in
the cohort C1-Test are invisible or hardly visible on MRI.
Hence, a fair evaluation involves comparing the performance
of SPCNet and radiologists on the patients in cohort C1-Test.

(a) (b) (c)

FIG. 5. Indolent and aggressive cancer predictions on a sample patient without cancer in cohort C1-test shown from apex (top row) to base (bottom row). The
evaluation showed a per-pixel accuracy of 0.96 for normal tissue. (Column a) T2w input; (Column b) ADC; (Column c) T2w image overlaid with thresholded
prediction from the SPCNet multiclass model cancer predictions (indolent— blue; aggressive — red). [Color figure can be viewed at wileyonlinelibrary.com]
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SPCNet approached, but did not surpass, the sensitivity or
specificity of the radiologists. SPCNet detected fewer lesions
than radiologists, while finding up to 18% of clinically signifi-
cant lesions otherwise missed by the radiologists. These
lesions tended to have a subtle T2w appearance, were often
localized in the peripheral zone, and would have been missed
without either the ground truth from the resected prostate or
the prediction of SPCNet. However, this phenomenon led to a

lower specificity compared to that of the radiologist due to the
higher sensitivity to lesions with subtle T2 appearance. These
results along with the performance of the combined model
(where radiologist and SPCNet predictions are added) suggest
the value of using deep learning models to improve the inter-
pretation of MRI. However, to fully appreciate the impact of
SPCNet in clinical settings, further investigation must be con-
ducted. SPCNet was effective in detecting cancer lesions and
clinically significant lesions on patients who underwent either
radical prostatectomy or biopsy, suggesting the generalizability
of our approach within data from our institution.

Our approach has several novel contributions. First, we
labeled the MR images using automatically registered
histopathology images combined with automated Gleason
grading. This enabled us to label each pixel from an MRI
with its corresponding histopathology information. Second,
we trained a deep learning network to distinguish aggressive
and indolent cancer on a per-pixel basis on MRI, while previ-
ous studies have evaluated their approach on a per-lesion
basis.12,15,22 This is particularly important from a clinical per-
spective because preferential detection of aggressive cancer is
the widely accepted goal of prostate cancer diagnosis. Third,
we considered data from both patients who underwent radical
prostatectomy and patients who underwent biopsy. This sug-
gests that SPCNet generalizes outside of the patient cohort
used for training to other patients from our institution who
were imaged on similar MRI scanners. Fourth, we evaluated
our SPCNet model for detecting aggressive and indolent
prostate cancer on MRI at pixel, lesion, and patient levels,
respectively. While the per-pixel analysis is straightforward to
calculate, the per-lesion and per-patient evaluations have
higher clinically relevance. Our contributions pave the way
for more accurate models that can distinguish different types
of cancer on a per-pixel basis.

A consequence of the novelty of our work is that it makes
comparisons to previously published work difficult. As shown
in Table I, all previous deep learning methods used labels that
lack the granularity of our labels while failing to capture either
MRI invisible or hardly visible lesions, or both. Prior auto-
mated methods using deep learning models12,14,15,17 were
trained and evaluated with data similar to cohort C2 and can-
not be directly compared to SPCNet. Training with labels from
radiologists creates a model that can only detect lesions
already detected by radiologists while training with labels from
histopathology images allow for models to detect lesions
missed by radiologists which is a more challenging task. The
fact that SPCNet is better at detecting clinically significant
lesions on cohort C2 compared to cohort C1-Test (despite
being trained with cases from cohort C1) suggests that indeed,
detecting clinically significant lesions in cohort C2 is an easier
task. SPCNet is the first model to be trained and evaluated for
the more difficult task of detecting all lesions irrespective of
whether they are MRI visible or invisible.

Lack of public access to the networks or code from prior
deep learning models12,14,15,17 prevented us from directly
evaluating prior deep learning models in our test sets. How-
ever, we did our best to represent these methods using the

TABLE IV. Per-pixel evaluation.

Model Class

C1-test C2

AUC Se Sp AUC Se Sp

SPCNet Normal 0.80 0.93 0.47 0.81 0.92 0.56

Indolent 0.75 0.52 0.83 0.64 0.41 0.82

Aggressive 0.89 0.59 0.96 0.86 0.60 0.93

UNet Normal 0.66 0.71 0.54 0.71 0.64 0.69

Indolent 0.64 0.54 0.69 0.63 0.58 0.62

Aggressive 0.68 0.57 0.72 0.74 0.72 0.65

DeepLabv3+ Normal 0.60 0.55 0.61 0.58 0.54 0.57

Indolent 0.60 0.59 0.57 0.54 0.43 0.62

Aggressive 0.53 0.50 0.55 0.57 0.62 0.48

Note: Bold indicates the best performance for each metric.
Abbreviations: AUC–ROC — area under the receiver operator characteristic
curve; Se — sensitivity, Sp — specificity.

TABLE V. Per-lesion evaluation.

Model Class

C1-test C2

AUC Se Sp AUC Se Sp

SPCNet All 0.76 0.62 0.83 0.75 0.67 0.75

CS 0.75 0.50 0.81 0.80 0.70 0.77

UNet All 0.52 0.81 0.04 0.66 0.95 0.06

CS 0.56 0.82 0.09 0.66 0.94 0.07

DeepLabv3+ All 0.55 0.92 0.01 0.50 0.96 0.00

CS 0.45 1.00 0.01 0.65 0.99 0.01

Note: Bold indicates the best performance for each metric.
Abbreviations: AUC–ROC — area under the receiver operator curve; Se ——
sensitivity, Sp — specificity.

TABLE VI. Comparing SPCNet and Radiologists for detecting clinically sig-
nificant lesions on MRI in cohort C1-Test. Abbreviations: Se — sensitivity,
Sp— specificity.

Model
Aggressive
threshold

Per lesion Per patient

Se Sp Se Sp

SPCNet 1% 0.50 (11/22) 0.81 0.56 (10/18) 0.83 (5/6)

5% 0.53 (8/15) 0.81 0.57 (8/14) 0.83 (5/6)

Radiologist 1% 0.59 (13/22) 0.98 0.72 (13/18) 1.00 (6/6)

5% 0.67 (10/15) 0.94 0.71 (10/14) 1.00 (6/6)

Combined 1% 0.81 (17/22) 0.79 0.89 (16/18) 0.83 (5/6)

5% 0.80 (12/15) 0.78 0.86 (12/14) 0.83 (5/6)
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DeepLabv3+12 and UNet14,15,17 architectures. SPCNet out-
performed both UNet- and DeepLabv3+-based architectures.

Our approach has a few limitations. First, our training
cohort was relatively small (n = 102). This is a consequence
of our dataset being the first of its kind with unique pixel-
level labels of aggressive and indolent cancer. However, the
consistent performance of SPCNet across 322 patients
demonstrates that the size of the training set did not signifi-
cantly impact how well SPCNet can generalize. Future work
will focus on increasing the size of our training cohort even
further. Second, despite our rigorous process of labeling the
data, the labels for cohort C1 used during training and eval-
uation are imperfect. For example, the registration of
histopathology and MR images has been shown to have a
misalignment error of 2 mm on the prostate border and
3 mm inside the prostate.22 Due to these known registration
errors, we discard very small lesions, which are more
affected by these errors but also less clinically relevant.
Despite these registration errors, labels obtained from regis-
tering histopathology are preferable to labels used by previ-
ous work due to their independence from human
interpretation of MRI. Accurate per-pixel predictions of
aggressive and indolent cancers on MRI would be tremen-
dously valuable for guiding biopsy and treatment. However,
this is unavailable using currently available MRI interpreta-
tion techniques. We assessed our ability to provide this
information using per-pixel experiments which are
adversely affected by our label registration errors. We also
assessed the ability to detect clinically significant lesions.
This clinically important task is less affected by registration
errors. Third, our Gleason pattern labels came from a deep
learning model instead of expert genitourinary pathologists.
While it is impractical to have pathologists identify and
grade all cancer pixels on large number of cases, the deep
learning model has shown excellent results in cancer grad-
ing28 and its results were combined with the cancer outlines
provided by the genitourinary pathologist. Fourth, unlike
radiologists in clinical practice, we do not incorporate clin-
ical features such as PSA, gland size, and prior biopsy sta-
tus that have been shown to improve the predictive
accuracy of MRI. We expect that incorporation of these
data in future work may further improve model accuracy.
Fifth, our study used retrospective data and has not
attempted to evaluate the effect of using SPCNet in clinical
settings to assist radiologists in their MRI interpretation.
Our preliminary results suggest that SPCNet is able to
detect clinically significant lesions that radiologists
missed, prompting us to consider future prospective stud-
ies to fully understand the potential of SPCNet when
assisting radiologists. Finally, all studies were obtained
from a single institution and one MRI manufacturer. It is
likely that testing on scans obtained from outside institu-
tions and on scanners from other vendors will demonstrate
suboptimal performance. Future work will incorporate
training and testing data from other sites.

Despite these limitations, our model shows great promise.
Selective identification of aggressive prostate cancer on MRI

would have tremendous clinical value given that the primary
goal of prostate cancer early detection is to identify and treat
aggressive cancer while reducing overdetection and overtreat-
ment of indolent cancer. Prior deep learning publications
have not attempted to specifically find aggressive prostate
cancer on a per-pixel basis, in large part due to the lack of
gold standard training data identifying the location and extent
of aggressive cancer. The fact that our model can both detect
clinically significant cancer as well as localize the aggressive
component suggests that it may help urologists to target biop-
sies at the highest yield locations and spare some men with
indolent cancer from invasive biopsy. Furthermore, its similar
performance to subspecialty radiologists suggests that it may
provide clinical value in future for identifying aggressive can-
cer, even those missed by radiologists, while improving inter-
reader variability. With further improvements, including
increasing the quantity and diversity of training data and
prospective validation in a clinical setting, this model could
have a major impact in patient care.

5. CONCLUSIONS

Our study showed that the Stanford Prostate Cancer Net-
work (SPCNet) was able to accurately detect aggressive and
indolent cancer on prostate MRI. SPCNet generalized well in
patients who either underwent radical prostatectomy or biopsy
and approached the sensitivity and specificity of radiologists
when detecting clinically significant cancers, including up to
18% of lesions otherwise missed by radiologists. With further
improvements in the future, this model could be implemented
to help assist radiologists to interpret prostate MRI.
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Table S1. Details of test set cases from cohort C1. Gleason
Patterns 4 and 5 (%) indicate percentage of cancer lesion vol-
ume that has Gleason pattern 4 or above. Involved prostate
(%) indicates percentage of prostate volume that has cancer.
Lesion volumes indicated by ∗ (Serial Numbers 19, 20, and
23) were not considered in our lesion- and patient-level evalu-
ations as they are <250 mm3.
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	 1.INTRODUCTIONProstate cancer is the most fre�quently diag�nosed cancer in Amer�i�can men, with an esti�mated 191&thinsp;930 new cases expected in 2020. Accu�rate diag�no�sis and local�iza�tion of cancer in the prostate is crit�i�cal for tar�geted bio...

