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Background: Radiomics models based on computed tomography (CT) can be used to differentiate 
invasive ground-glass nodules (GGNs) in lung adenocarcinoma to help determine the optimal timing of 
GGN resection, improve the accuracy of prognostic prediction, and reduce unnecessary surgeries. However, 
general radiomics does not fully utilize follow-up data and often lacks model interpretation. Therefore, this 
study aimed to build an interpretable model based on delta radiomics to predict GGN invasiveness.
Methods: A retrospective analysis was conducted on a set of 303 GGNs that were surgically resected and 
confirmed as lung adenocarcinoma in Shanghai Chest Hospital between September 2017 and August 2022. 
Delta radiomics and general radiomics features were extracted from preoperative follow-up CT scans and 
combined with clinical features for modeling. The performance of the delta radiomics-clinical model was 
compared to that of the radiomics-clinical model. Additionally, Shapley additive explanations (SHAP) was 
employed to interpret and visualize the model.
Results: Two models were constructed using a combination of 34 radiomic features and 10 delta radiomic 
features, along with 14 clinical features. The radiomics-clinical model and the delta radiomics-clinical 
model exhibited area under the curve (AUC) of 0.986 [95% confidence interval (CI): 0.977–0.995] and 
0.974 (95% CI: 0.959–0.987) in the training set, respectively, and 0.949 (95% CI: 0.908–0.978) and 0.927 
(95% CI: 0.879–0.966) in the test set, respectively. The DeLong test of the two models showed no statistical 
significance (P=0.10) in the test set. SHAP was used to output a summary plot for global interpretation, 
which showed that preoperative mass, three-dimensional (3D) length, mean diameter, volume, mean CT 
value, and delta radiomics feature original_firstorder_RootMeanSquared were the relatively more important 
features in the model. Waterfall plots for local interpretation showed how each feature contributed to the 
prediction output of a given GGN.
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Introduction

With the development of low-dose computed tomography 
(CT) screening, the widespread application of high-
resolution chest CT, and expansion of artificial intelligence 
in the field of medical imaging in recent years, the detection 
rate and diagnostic accuracy for small nodules and ground-
glass nodules (GGNs) have improved significantly, 
providing conditions for the early diagnosis and treatment 
of lung adenocarcinoma. 

Patients with GGN-type lung adenocarcinoma have 
a good prognosis after surgical resection, with many 
studies reporting a postoperative 5-year survival rate of 
adenocarcinoma in situ (AIS) and minimally invasive 
adenocarcinoma (MIA) of up to 100% (1,2), which is 
significantly higher than that of invasive adenocarcinoma 
(IAC) (3). Therefore, accurately determining the evolution 
pattern of GGN invasiveness is critical in clinical decision-
making. However, in clinical practice, radiologists 
typically determine the pathological subtypes of GGNs 
based solely on characteristics such as diameter, volume, 
density (heterogeneity), and overall morphology. Although 
many recent studies have used radiomics to evaluate the 
invasiveness of GGNs and achieved a degree of success, 
this method has not yet fully utilized the information on 
image changes over time during follow-up. This may prove 
critical, as, for example, patients with GGNs >6 mm in 
diameter are recommended to undergo routine follow-
up according to the Fleischner Society pulmonary nodule 
recommendations (4). Thus, the value of combining 
radiomics with follow-up changes for GGN invasiveness 
prediction warrants further examination. 

Delta radiomics (also known as delta texture analysis), 
in contrast to traditional radiomics methods, involves 
studying changes in texture features of patients after specific 
steps (i.e., specific treatments, time intervals, or biological  

events) (5). Previous studies (6,7) have shown that delta 
radiomics can improve lung cancer detection rate in 
screening and pulmonary nodule malignancy prediction. 
There are also researches suggesting that delta radiomics 
is valuable in predicting the invasiveness of GGNs, but the 
results supporting this may be unstable due to the relatively 
limited number of studies (8-10). 

The unclear internal mechanism and interpretability of 
radiomics or delta radiomics models also hinder their general 
application. Interpretability typically serves as a means to 
engender trust, yet post hoc interpretability is sometimes 
used to obtain more useful information from a model (11). 
Shapley additive explanations (SHAP) is an approach based 
on game theory that can be used to explain the output of 
any machine learning model (12) and has been applied in 
various areas in radiomics research (13-16). By helping 
clinical doctors understand machine learning models, it may 
promote the use of this decision-making tool. 

In this study, we incorporated information on clinical 
features and follow-up images to develop and validate 
a delta radiomics model that offers a more efficient, 
precise, and noninvasive method for GGN invasiveness 
prediction. Additionally, SHAP was used to improve model 
interpretability and visualization. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-1711/rc).

Methods

Patients

This retrospective study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013) and was 
approved by the institutional review board of Shanghai Chest 
Hospital, School of Medicine, Shanghai Jiao Tong University 

Conclusions: The delta radiomics-based model proved to be a helpful tool for predicting the invasiveness 
of GGNs in lung adenocarcinoma. This approach offers a precise, noninvasive alternative in informing 
clinical decision-making. Additionally, SHAP provided insightful and user-friendly interpretations and 
visualizations of the model, enhancing its clinical applicability.
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(No. KS1956). Informed consent requirements were waived 
because all patient data were used anonymously. CT images 
of 1,422 resected GGN-type lung adenocarcinomas were 
screened according to following inclusion criteria: (I) 
histologically confirmed as atypical adenomatous hyperplasia 
(AAH), AIS, MIA, or IAC; (II) a GGN size ≥5 mm and 
≤30 mm; (III) completion of thin-section CT (section 
thickness ≤1.5 mm); and (IV) availability of at least one 
follow-up scan. Meanwhile, the exclusion criteria were as 
follows: (I) a severe artifact interfering with observation, 
(II) follow-up interval <1 month, (III) interval between 
the last CT scan and the surgical resection >1 month,  
and (IV) GGNs beyond scan range. If multiple GGNs 
were resected from one patient during this single surgery, 
the predominant GGN was included to this study. The 
predominant GGN was defined as follows: (I) the GGN 
with higher degree of invasiveness (IAC > MIA > AIS > 
AAH), (II) the GGN with bigger size when their pathology 
grade were the same, and (III) the GGN with higher mean 
CT value when they were about the same size. The process 
of patient selection is shown in Figure 1.

Finally, among the 303 predominant GGNs included 

from 303 patients that underwent surgical resection in 
Shanghai Chest Hospital between September 2017 and 
August 2022, 213 non-IAC GGNs (5 AAH, 98 AIS, and 
110 MIA) and 90 IAC GGNs were divided into the training 
and test set randomly in a ratio of 7:3.

CT image acquisition

Thin-section CT scans performed at baseline and at 
the last follow-up before surgery were obtained with 
one the five following scanners: Revolution CT (GE 
HealthCare, Chicago, IL, USA), Discovery CT750 HD 
(GE HealthCare), Ingenuity CT (Philips, Amsterdam, the 
Netherlands), Brilliance iCT 256 (Philips), uCT 510 (United 
Imaging, Shanghai, China). All CT scans were performed 
with patients in the supine position at full inspiration under 
the following parameters: collimation, 0.625–1.25 mm; pitch, 
0.64; section thickness, 0.625–1.25 mm without overlap; 
matrix, 512×512 or 1,024×1,024; field of view (FOV), 
350–400 mm, tube voltage, 120 kVp; and tube current, 220– 
300 mA. Imaging data were reconstructed based on the 
standard algorithm.

Figure 1 The flowchart of patient selection. GGN, ground-glass nodule; AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in 
situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; CT, computed tomography.

1,422 patients of resected lung 
adenocarcinoma presenting as 

GGNs (2017.9–2022.8)

326 patients with at least one 
follow-up CT scan

303 predominant GGNs of 303 patients

Non-IAC group  
(n=213)

IAC group  
(n=90)

Training group  
(n=212)

Testing group  
(n=91)

• Histologically confirmed as AAH/AIS/MIA/IAC;
• 5 mm ≤ GGN size ≤30 mm;
• Patient underwent thin-section CT (section 

thickness ≤1.5 mm)

Exclusion:
• 1,096 patients only have preoperative CT scan

Exclusion:
• 2 GGNs had severe artifact that interferes with 

observation;
• 20 GGNs with follow-up intervals <1 month;
• 0 GGN with the interval between the last CT 

scan and the surgical resection >1 month;
• 1 GGN beyond scan range
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GGN segmentation

CT Digital Imaging and Communications in Medicine 
(DICOM) images were exported from the picture 
archiving and communication system (PACS). A radiologist 
(T.X., with three years of experience in chest diagnosis) 
determined the region of interest (ROI) on every section 
of each GGN manually on the open-source software 
three-dimensional (3D) Slicer (RRID: SCR_005619) 
(version 5.2.2, Brigham and Women’s Hospital, Boston, 
MA, USA). One month later, 20 GGNs were randomly 
selected for segmentation by the same radiologist and 
another radiologist (X.Y., with 20 years of experience in 
chest diagnosis), and Bland-Altman plots were used to 
assess intraobserver and interobserver reproducibility. 
The two radiologists were blinded to the clinical data and  
outcomes.

Image preprocessing

The following measures were used to preprocess images 
before feature extraction: resampling images to isotropy 
with 1mm at X/Y/Z-spacing, discretizing voxel intensity 
using a bin width of 25, normalizing signal intensity to 
1–500 Hounsfield units (HU); Z-score normalization, and 
denoising via Gaussian smoothing.

Radiomics feature extraction and selection

P y R a d i o m i c s ,  a n  o p e n - s o u r c e  p a c k a g e  ( R R I D : 
SCR_008394) in Python (Python Software Foundation, 
Wilmington, DE, USA), was used to extract the radiomics 
features of each patient’s baseline and follow-up CT 
images. Features were extracted from preprocessed images, 
exponential images, gradient images, local binary images, 
logarithmic images, and wavelet images and could be 
categorized into shape features, histogram features, and 
texture features including gray-level co-occurrence matrix 
(GLCM), gray-level run length matrix (GLRLM), gray-
level size zone matrix (GLSZM), gray-level difference 
matrix (GLDM), and neighboring gray-tone difference 
matrix (NGTDM). Shape features were only extracted 
from ROI images and reflected the shape, size, volume, and 
other characteristics of the lesion area, while the remaining 
features were extracted from original images and derived 
images and reflected the overall intensity distribution and 
spatial distribution of pixels in the lesion area.

After Z-score normalization, the delta radiomics features 

were calculated as follows: 
delta radiomics feature = (follow-up radiomics-baseline 
radiomics feature)/[time interval (days)/30]

norm
FF µ
σ
−

=  [1]

(where normF  is the feature after normalization, F is the 
original image, μ is the feature mean value, and σ is the 
feature standard deviation value).

Features of delta radiomics and general radiomics 
were both subjected to the following selection process. 
In the training set, t-test or the Mann-Whitney test was 
used to detect the correlation between each feature and 
the invasiveness of the lesion, with the radiomics feature 
being considered eligible for the following selection step 
if P<0.05. Subsequently, features screened via the t-test 
were input into a least absolute shrinkage and selection 
operator (LASSO) regression model and underwent 
penalty parameter adjustment via fivefold cross-validation 
to identify the optimal features of the nonzero coefficients. 
The selected optimal features from the training set were 
directly applied to the test set for evaluation.

Modeling and validation

We applied 10 different machine learning classification 
algorithms (support vector classifier, random forest 
classifier, K-nearest neighbor classifier, logistic regression 
classifier, decision tree classifier, Bernoulli Naïve Baye 
classifier, extreme gradient boosting classifier, linear 
discriminant analysis classifier, gradient boosting decision 
tree classifier, and AdaBoost classifier) and identified the 
optimal parameters of these models through fivefold cross-
validation and grid search techniques. For each selected 
model, a receiver operating characteristic (ROC) curve was 
generated. The average area under the curve (AUC) was 
then calculated to evaluate predictive performance, while 
the learning curve was used to ascertain model overfitting. 
According to the classifier chosen, different measures were 
applied to prevent overfitting. In the training set, the best-
performing classifier was selected among the established 
models based on the combination of the radiomics and 
delta radiomics features with the clinical and CT features of 
significance, which were then validated in the test set.

Model interpretation

SHAP is an open-source package (RRID: SCR_021362) 
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in Python used to interpret models. It can quantify the 
contribution of each feature to the final prediction and 
determine whether the correlation is positive or negative. 
Summary plots and waterfall plots were generated in this 
study to provide global and local interpretations, respectively.

Statistical analysis

Statistical analysis was performed using SPSS v. 26.0) 
(RRID: SCR_016479) software (IBM Corp., Armonk, NY, 
USA). The Shapiro-Wilk test was applied for the normality 
test. Continuous variables with a normal distribution 
are expressed as the mean ± standard deviation, those 
abnormally distributed are expressed as the median and 
range, and categorical variables are expressed as counts 
and percentages. Differences in clinical and radiological 
features between two groups were analyzed with the 
independent samples t-test or the Mann-Whitney test for 
continuous variables and with the Pearson Chi-square test 
for categorical variables. P<0.05 was considered to indicate 
statistical significance. Those features demonstrating 
statistical significance were included in the model.

Results

Clinical characteristics and GGN CT features

The clinical characteristics and GGN CT features are 
shown in Table 1. Among 303 cases of GGN, 213 cases 
(70.3%) were non-IAC GGN (5 AAH, 98 AIS, 110 MIA), 
and 90 (29.7%) were IAC GGN. The average age of 
patients was 53.52±13.1 years old, and the median follow-
up interval was 352 (range, 30–2,717) days. A comparison 
of the clinical characteristics and CT features of nodules 
between the non-IAC and IAC groups revealed significant 
differences in age (P<0.001), gender (P=0.008), mean 
preoperative diameter (P<0.001), mean CT value (P<0.001), 
volume (P<0.001), mass (P<0.001), 3D length (P<0.001), 
change in mean diameter (P=0.006), change in 3D length 
(P<0.001), change in volume (P<0.001), change in mass 
(P<0.001), morphological features such as lobulation 
(P=0.007), spiculation (P<0.001), air bronchogram 
(P<0.001), and pleural traction/indentation (P<0.001). 
However, no significant differences were found for location 
of GGN (P=0.22), vacuole/cavity (P>0.99), well-defined 
margin (P=0.53), and change in mean CT value (P=0.96). 
The clinical characteristics and GGN CT features after 
GGNs were divided randomly into a training set and test set 
are also provided in Table 1. The volume measurement was 

tested for intra- and interobserver consistency (Figure S1  
and Table S1).

Radiomics feature extraction and selection

A total of 1,409 radiomic features were extracted from the 
CT images of 303 GGNs, from which 34 general radiomics 
features and 10 delta radiomics features were selected via the 
t-test and LASSO regression (Figures 2,3), with clinical and 
radiological features being combined to construct a model. 
We selected the tuning parameter (λ) in LASSO regression 
using fivefold cross-validation via minimum criteria. The 
optimal λ value of 0.028 and 0.036 was selected, respectively, 
as shown in Figures S2,S3. The complete list of features 
after selection is shown in Table S2.

Modeling and validation

The 14 clinical and CT features of statistical significance, 
including age, gender, preoperative mean diameter, mean 
CT value, volume, mass, 3D length, change in mean 
diameter, change in 3D length, change in volume, change in 
mass, lobulation, spiculation, air bronchogram, and pleural 
traction/ indentation, were combined with the selected 
general and delta radiomics features, respectively, to 
predict the invasiveness of GGNs. Out of the 10 different 
machine learning classification algorithms tested, random 
forest classifier had the best performance, as shown in 
Figures S4,S5. Regularization was implemented to prevent 
overfitting by setting the following hyperparameters of the 
random forest model in the code: n_estimators, 100; max_
depth, 5; min_sample_split, 10; and min_sample_leaf, 5.

Accuracy, recall, precision, and AUC were used for 
model evaluation, as shown in Table 2. The radiomics-
clinical model and the delta radiomics-clinical models had 
AUCs of 0.986 [95% confidence interval (CI): 0.977–0.995] 
and 0.974 (95% CI: 0.959–0.987) in the training set, 
respectively, and 0.949 (95% CI: 0.908–0.978) and 0.927 
(95% CI: 0.879–0.966) in the test set, respectively (Figure 4).  
The DeLong test of the two models showed statistical 
significance (P=0.03) in the training set but not in the test 
set (P=0.10). The calibration curve and the Brier score of 
the models are shown in Figure S6.

Interpreting the model

Global interpretation
SHAP was used to output a summary plot for visualizing the 

https://cdn.amegroups.cn/static/public/QIMS-23-1711-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1711-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1711-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1711-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1711-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-1711-Supplementary.pdf
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Table 1 Clinical and CT features of the non-IAC group and IAC group 

Clinical/CT features Total (n=303)

Non-IAC group vs. IAC group Training set vs. test set

Non-IAC group 

(n=213)
IAC group (n=90) P Training set (n=212) Test set (n=91) P

Age (years) 53.52±13.1 50.78±12.93 60.02±11.12 <0.001† 53 (14–77) 54 (28–76) 0.262§

Sex (%) 0.008‡ 0.532‡

Male 68 (22.4) 39 (18.3) 29 (32.2) 45 (21.2) 23 (25.3)

Female 235 (77.6) 174 (81.7) 61 (67.8) 167 (78.8) 68 (74.7)

Location (%) 0.22‡ 0.0979‡

Right upper lobe 91 (30.0) 58 (27.2) 33 (36.7) 60 (28.3) 31 (34.1)

Left upper lobe 96 (31.7) 73 (34.3) 23 (25.6) 76 (35.8) 20 (22.0)

Right middle lobe 20 (6.6) 16 (7.5) 4 (4.4) 11 (5.2) 9 (9.9)

Right lower lobe 53 (17.5) 39 (18.3) 14 (15.6) 38 (17.9) 15 (16.5)

Left lower lobe 43 (14.2) 27 (12.7) 16 (17.8) 27 (12.7) 16 (17.6)

Morphological features (%)

Lobulation 232 (76.6) 154 (72.3) 78 (86.7) 0.007‡ 170 (80.2) 62 (68.1) 0.0337‡

Spiculation 19 (6.3) 3 (1.4) 16 (17.8) <0.001‡ 10 (4.7) 9 (9.9) 0.149‡

Air bronchogram 57 (18.8) 27 (12.7) 30 (33.3) <0.001‡ 39 (18.4) 18 (19.8) 0.903‡

Vacuole/cavity 37 (12.2) 26 (12.2) 11 (12.2) 0.997‡ 29 (13.7) 8 (8.8) 0.317‡

Well-defined margin 252 (83.2) 179 (84.0) 73 (81.1) 0.534‡ 177 (83.5) 75 (82.4) 0.951‡

Pleural retraction/ 

indentation

100 (33.0) 49 (23.0) 51 (56.7)  0.001‡ 72 (34.0) 28 (30.8) 0.683‡

Follow-up interval (day) 352 (30 to 2,717) 372 (30 to 2,717) 281 (33 to 2,546) 0.51§ 375 (30 to 2,659) 284 (33 to 2,717) 0.098

Preoperative diameter (mm) 8.5 (4.0 to 30.0) 8.0 (4.0 to 19.0) 12.0 (4.5 to 30.0) <0.001§ 8.5 (4.5 to 30.0) 8.5 (4.0 to 27.5) 0.280§

Change in diameter (mm) 0.0 (−6.0 to 21.5) 0.0 (−3.0 to 7.5) 0.5 (−6.0 to 21.5) 0.006§ 0.0 (−6.0 to 16.0) 0.5 (−3.0 to 21.5) 0.120§

Preoperative 3D length (mm) 10.96 (6.0 to 42.06) 10.1 (6.0 to 23.93) 15.28 (6.07 to 42.06) <0.001§ 11.07 (6.07 to 42.06) 10.82 (6.0 to 31.12) 0.232§

Change in 3D length (mm) 0.36 (−8.12 to 24.73) 0.15 (−4.37 to 8.64) 0.85 (−8.12 to 24.73) <0.001§ 0.41 (−8.12 to 20.89) 0.31 (−4.37 to 24.73) 0.404§

Preoperative CT value (HU) −510.2  

(−908.52 to 10.9)

−549.1  

(−845.8 to −155.87)

−370.0  

(−908.52 to 10.9)

<0.001§ −512.85  

(−908.52 to 10.9)

−496  

(−795.1 to 9.6)

0.335§

Change in CT value (HU) 7.07  

(−509.41 to 636.96)

1.2  

(−509.41 to 636.96)

23.49  

(−367 to 460)

0.958§ 6.55  

(−509.41 to 449.88)

12.12  

(−422.68 to 636.96)

0.488§

Preoperative volume (mm3) 330.74  

(20.64 to 10,833.19)

258.25  

(20.64 to 3,183.55)

870.98  

(103.87 to 10,833.19)

<0.001§ 362.6  

(66.24 to 10,833.19) 

320.59  

(20.64 to 10,106.12) 

0.225§

Change in volume (mm3) 16.71  

(−524.62 to 10,037.12)

6.78  

(−174.63 to 2,270.39)

122.71  

(−524.62 to 10,037.12)

<0.001§ 16.72  

(−524.62 to 9,550.63) 

16.71  

(−245.44 to 10,037.12)

0.248§

Preoperative mass (mg) 164.02  

(11.68 to 10,695.61)

122.79  

(11.68 to 1,530.48)

508.99  

(47.10 to 10,695.61)

<0.001§ 172.86  

(31.07 to 10,695.61) 

154.46  

(11.68 to 8,223.35)

0.369§

Change in mass (mg) 10.73  

(−465.47 to 10,006.34)

2.19  

(−119.88 to 616.33)

92.98  

(−465.47 to 10,006.34)

<0.001§ 9.99  

(−465.47 to 2,052.72) 

12.48  

(−148 to 10,006.34) 

0.341§

Continuous variables are presented as the mean ± standard deviation or median (range). Categorical variables are presented as n (%). †, t-test; ‡, Chi-square 

test; §, Mann-Whitney test. CT, computed tomography; IAC, invasive adenocarcinoma; 3D, three-dimensional; HU, Hounsfield unit. 
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global interpretation of the model, in which each feature’s 
contribution is indicated (Figure 5). In Figure 5, features are 
sorted from top to bottom by importance and characterized 
by a string of colored dots in the plot in which each dot 
represents a sample (GGN). For instance, blue dots—
which represent samples of low feature value—of the most 
important feature “preoperative mass” have a negative effect 
on the model output, as the corresponding horizontal axis 

position has negative SHAP values, meaning these output a 
prediction of noninvasiveness. In the upper part of the plot, 
CT characteristics of the GGNs and their change, such as 
in preoperative mass, 3D length, mean diameter, mean CT 
value, mass, and volume, appear to play quite an important 
role in invasiveness prediction. Original_firstorder_
RootMeanSquared is suggested to be the most vital delta 
radiomics feature, with the higher delta value (difference 
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Figure 2 The LASSO coefficient profile of the radiomic features. 
Colored lines stand for the features after t-test selection. LASSO, 
least absolute shrinkage and selection operator. 

Figure 3 The LASSO coefficient profile of the delta radiomics 
features. Colored lines stand for the features after t-test selection. 
LASSO, least absolute shrinkage and selection operator. 

Table 2 Model evaluation

Model Dataset Accuracy Recall Precision AUC (95% CI)

Radiomics-clinical Train 93.40% 82.54% 94.55% 0.986 (0.977–0.995)

Test 87.91% 70.37% 86.36% 0.949 (0.908–0.978)

Delta radiomics-clinical Train 90.57% 76.19% 90.57% 0.974 (0.959–0.987)

Test 81.32% 62.96% 70.83% 0.927 (0.879–0.966)

AUC, area under curve; CI, confidence interval.
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Figure 4 ROCs of the radiomics-clinical model and the delta radiomics-clinical model in the training set (A) and test set (B). ROC, receiver 
operating characteristic; AUC, area under curve; CI, confidence interval.
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that occurs during follow-up) indicating a greater likelihood 
that the GGN is IAC.

Local interpretation
A waterfall plot was employed to arrange all features in 
order according to the contribution of each to the final 
output of a particular GGN while showing the direction 
of their contribution by color. E[ƒ(z)], the base value, 
refers to the average SHAP values of model prediction. As 
shown in Figure 6, although growth, especially in diameter, 
is seen in this GGN during follow-up, the preoperative 
mass, mean CT value, and the lack of change in original_
firstorder_RootMeanSquared do not support the prediction 
of invasiveness. The negative effects (blue) contribute to 
the current output ƒ(x) = 0, which is less than the base value 
E[ƒ(z)] = 0.26, indicating noninvasiveness.

Similarly, preoperative mean diameter, 3D length, and 
original_firstorder_RootMeanSquared appear to be the 
more significant features, as indicated by the arrow’s length. 
Figure 7 includes a GGN which showed an increase in the 
overall density and a focal density at the right edge (9 o’clock 

direction of the nodule) during follow-up, which might 
have caused a significant change in original_firstorder_
RootMeanSquared. The two features positively (red) 
contribute to output 1, which is greater than the base value 
0.26, suggesting invasiveness.

Discussion

In this study, we developed and validated a delta radiomics-
based model for predicting IAC and non-IAC GGNs, 
which in contrast to general radiomics models, incorporated 
the change in follow-up information. The delta radiomics-
clinical model achieved good performance and was not 
inferior to the radiomics-clinical model in the test set. We 
used SHAP to enhance the interpretability and visibility 
of the model, which indicated that preoperative mass, 3D 
length, mean diameter, volume, mean CT value, and delta 
radiomics feature original_firstorder_RootMeanSquared 
were the relatively more important features in the model.

There has been limited research conducted on the 
application of delta radiomics in predicting invasive lung 
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adenocarcinoma GGNs. Chen et al. (8) demonstrated that 
the use of nomogram coupled with radiographic features 
based on delta radiomics derived from non-contrast-
enhanced CT (NECT) and contrast-enhanced CT (CECT) 
scans enhances the performance in differentiating IACs 
from AIS/MIAs in patients with part-solid nodules (PSNs). 
Ma et al. (9) reported a radiomics signature that could aid 
in distinguishing between preinvasive GGNs (AAH/AIS) 
and invasive GGNs (MIA/IAC), with the delta radiomics 
signature demonstrating a higher AUC than the radiomics 
signature in identifying invasive GGNs. Lv et al. (10)  
observed that their delta radiomics model showed satisfactory 
diagnostic efficiency and superiority compared to the clinical 
model in distinguishing between invasive adenocarcinoma 
(IA) and preinvasive lesion (PIL)/MIA in GGN-like lung 
adenocarcinoma. However, its diagnostic efficiency was 
slightly lower than that of the radiomics or combined 
models, which seems to contradict the findings of Ma et al. 

In our study, although the delt radiomics-clinical model and 
the general radiomics-clinical model both demonstrated 
excellent performance, the former included fewer features 
yet did not exhibit a performance advantage, which, to some 
extent, aligns with the findings of Lv et al.’s study. However, 
Ma et al.’s study reported a relatively different result, which 
we attribute to the different groupings of the two studies. It 
is possible that significant radiomics changes occur during 
the transition from an AIS to an MIA, coinciding with the 
emergence of invasiveness. This discrepancy warrants further 
investigation and exploration.

The model-interpretation tool, SHAP, quantifies 
the importance of features and presents them visually, 
thereby enhancing the interpretability of the model. 
Interpretability can be broadly classified into transparency 
interpretability and post hoc interpretability (11). Although 
SHAP does little to solve the black box issue associated 
with transparency interpretability, it does offer a more 
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high-pass filters, respectively. 3D, three-dimensional; IAC, invasive adenocarcinoma; GGN, ground-glass nodule. 

extensive framework for post hoc interpretability. This 
aspect may hold greater clinical value, as it allows for the 
exploration of the conversion from nonsemantic features 
to clinical explanations, which may be highly valuable 
and warrants further investigation. Wang et al. (14) used 
the SHAP method to interpret their radiomics model for 
assessing the treatment response of whole-brain radiation 
therapy (WBRT). The authors found that SHAP identified 
3D contrast-enhanced T1-weighted [CET1-w (3D)]_
firstorderM as the most influential nonsemantic feature, 
which represents the median percentile of gray values 
within the volume. They hypothesized that the lower 
values of CET1-w (3D)_firstorderM in the nonresponding 
group compared to the responding group may indicate 
the absence of a gadolinium-based contrast agent in 
tumors due to inadequate vascular supply. Additionally, de  
Moura (17) evaluated the use of SHAP in radiomics-based 
machine learning classification models for coronavirus 
disease 2019 (COVID-19) pneumonia and identified middle 
left–first order–kurtosis as the most crucial feature. As 

kurtosis describes the peakedness of the distribution of the 
values (18), the low first-order kurtosis in COVID-19 makes 
sense, as the consolidation and ground-glass opacification 
observed in COVID-19 often induce a distribution with 
lighter tails and a flatter peak. By establishing a connection 
between nonsemantic features and the microscopic 
pathological changes and mechanisms involved in the 
growth of GGN and elucidating this relationship from a 
clinical standpoint, this approach becomes more akin to the 
process employed by clinicians in assessing the invasiveness 
of GGNs based on morphological characteristics. This not 
only enhances clinicians’ comprehension and utilization 
of radiomics models in clinical practice but also facilitates 
a deeper understanding of the pathological pathogenesis 
and evolutionary process of GGNs. In our study, original_
firstorder_RootMeanSquared was identified as the most 
significant delta radiomics feature. Root mean square 
(RMS) is a statistical measure that represents the square 
root of the average of all squared intensity values, serving 
as an indicator of the magnitude of image values (19). In 
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comparison to the arithmetic mean, RMS provides a more 
accurate reflection of data dispersion and is particularly 
useful when dealing with datasets containing both positive 
and negative values. This may be particularly relevant for 
examining PSNs characterized by a ground-glass area of 
low density ranging from –800 to –600 HU and a solid 
area of density ranging from 0 to 50 HU. The presence of 
significant RMS change, as evidenced by the red dots in the 
summary plot (Figure 5), suggested an increase in the focal 
or overall density of GGNs or even the emergence of a solid 
component during follow-up, positively influencing the 
model to generate an “IAC” output. Moreover, the use of 
SHAP analysis allowed us to ascertain that the model places 
considerable importance on CT characteristics and some of 
their changes, such as in mass, 3D length, mean diameter, 
mean CT value, and volume. This finding, to some extent, 
is consistent with our clinical judgment based on experience. 
The local interpretation provided by SHAP analysis is 
particularly valuable in comprehending the rationale behind 
a clinical decision made for a specific patient, especially when 
radiomic changes during the follow-up and clinical and CT 
characteristics are taken into consideration.

This study involved certain limitations that should be 
addressed. First, the inclusion of solely surgical cases might 
have introduced selection bias, and the surgical inclination 
toward high-risk nodules could have also contributed to bias 
in the selection process. Additionally, the median follow-up 
time interval of around one year might not have allowed for 
sufficient changes in the radiomic features of some GGNs. 
Furthermore, the use of different CT machines (between 
different patients and between the two scans of the same 
patient) could have potentially influence the results, even 
with the image data being normalized. Finally, our findings 
need to be verified by multicenter data.

Conclusions 

The use of delta radiomics features represents a viable 
approach for predicting both IAC and non-IAC GGNs and 
is an effective, precise, and noninvasive prediction method 
that includes the follow-up context. The incorporation 
of SHAP in the model’s interpretation and visualization 
enhances the comprehensibility of the model from a 
clinical standpoint and aids in facilitating its practical 
implementation. With further research, the integration 
of these two methodologies may contribute to a more 
profound comprehension of the pathological pathogenesis 
and evolutionary progression of ground-glass lung 

adenocarcinoma.
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