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Optimal Down Regulation of mRNA 
Translation
Yoram Zarai1, Michael Margaliot1,2 & Tamir Tuller2,3

Down regulation of mRNA translation is an important problem in various bio-medical domains ranging 
from developing effective medicines for tumors and for viral diseases to developing attenuated virus 
strains that can be used for vaccination. Here, we study the problem of down regulation of mRNA 
translation using a mathematical model called the ribosome flow model (RFM). In the RFM, the mRNA 
molecule is modeled as a chain of n sites. The flow of ribosomes between consecutive sites is regulated 
by n + 1 transition rates. Given a set of feasible transition rates, that models the outcome of all possible 
mutations, we consider the problem of maximally down regulating protein production by altering 
the rates within this set of feasible rates. Under certain conditions on the feasible set, we show that 
an optimal solution can be determined efficiently. We also rigorously analyze two special cases of the 
down regulation optimization problem. Our results suggest that one must focus on the position along 
the mRNA molecule where the transition rate has the strongest effect on the protein production rate. 
However, this rate is not necessarily the slowest transition rate along the mRNA molecule. We discuss 
some of the biological implications of these results.

Gene expression is the process by which the genetic code inscribed in the DNA is transformed into proteins. 
The process consists of four main steps: transcription of a DNA gene into an mRNA molecule, translation of the 
mRNA molecule to a protein, degradation of mRNA molecules, and degradation of proteins. During mRNA 
translation, macromolecules called ribosomes move unidirectionally along the mRNA molecule, decoding 
it codon by codon into a corresponding chain of amino acids that is folded to become a functional protein. 
Translation is a fundamental biological process, and understanding and re-engineering this process is important 
in many scientific disciplines including medicine, evolutionary biology, and synthetic biology1.

New methods that measure gene-specific translation activity at the whole-genome scale, like polysome profiling2  
and ribosome profiling3, have led to a growing interest in mathematical models for translation. Such models can 
be used to integrate and explain the rapidly accumulating biological data as well as to predict the outcome of 
various manipulations of the genetic machinery. Recent methods that allow real-time imaging of translation on a 
single mRNA transcript in vivo (see, e.g. refs 4–7) are expected to provide even more motivation for developing 
and analyzing powerful dynamical models of translation.

Down-regulation of translation is important in cell biology, medicine, and biotechnology. Indeed, diverse 
viruses down regulate host translation by cleaving proteins such as eIF4G8 in order to free more resources for 
translating the viral genes. As another example, in many organisms small RNA genes, such as microRNAs, 
hybridize to the mRNA in specific locations9,10 in order to down-regulate translation initiation or elongation11,12 
and/or promote mRNA degradation. Alterations in the expression of microRNA genes contribute to the patho-
genesis of most, if not all, human malignancies13, and many times cancer cells are targeted via generating tumor 
specific RNA interference (RNAi) genes that down-regulate the oncogenes14–16. Furthermore, many viral ther-
apeutic treatments and viral vaccines are based on the attenuation of mRNA translation in the viral genes17–21. 
Down regulation of mRNA translation in an optimal manner is also related to fundamental biomedical topics 
such as molecular evolution and functional genomics22–24.

Here we study for the first time optimal down regulation of translation in a dynamical model of translation. 
A standard model for translation is the totally asymmetric simple exclusion process (TASEP)25,26. In this model, 
particles hop unidirectionaly along an ordered lattice of N sites. Simple exclusion means that a particle cannot 
hop into a site that is already occupied by another particle. This models hard exclusion between the particles, and 
creates an indirect coupling between the particles. Indeed, if a particle remains in the same site for a long time 
then all the particles preceding this site cannot move forward leading to a “traffic jam”. The hops along the lattice 
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are stochastic, and the rate of hoping from site i to site i +​ 1 is denoted by γi. A particle can hop to [from] the first 
[last] site of the lattice at a rate α [β]. The flow through the lattice converges to a steady-state value that depends 
on N and the vector of parameters

µ α γ γ β= … ′.−: [ , , , , ] (1)N1 1

In the context of translation, the lattice is the mRNA molecule; the particles are the ribosomes; and hard exclu-
sion means that a ribosome cannot move forward if the codon in front of it is covered by another ribosome. In the 
homogeneous TASEP (HTASEP) all the transition rates within the lattice are assumed to be equal and normalized 
to 1, i.e. γi =​ 1, = … −i N1, , 1, and thus the model is specified by an input rate α, an exit rate β, and an order N. 
TASEP is a fundamental model in non-equilibrium statistical mechanics that has been used to model numerous 
natural and artificial processes including traffic flow, surface growth, communication networks, evacuation 
dynamics and more27,28.

The ribosome flow model (RFM)29 is a nonlinear, continuous-time compartmental model for the unidirectional 
flow of “material” along a chain of n consecutive compartments (or sites). It can be derived via a mean-field 
approximation of TASEP27,30. In the RFM, the state variable  →+x t( ): [0, 1]i , = …i n1, , , describes the nor-
malized amount (or density) of “material” in site i at time t, where xi(t) =​ 1 [xi(t) =​ 0] indicates that site i is com-
pletely full [completely empty] at time t. Thus, the vector = … ′x t x t x t( ) : [ ( ) ( )]n1  describes the density profile 
along the chain at time t. A parameter λi >​ 0, = …i n0, , , controls the transition rate from site i to site i +​ 1, 
where λ0 [λn] is the initiation [exit] rate (see Fig. 1). The output rate at time t is R(t) =​ λnxn(t). In the context of 
translation, the “material” are the moving ribosomes, and each site represents a group of codons, i.e. the mRNA 
is coarse-grained into n consecutive sites of codons. Thus, R(t), the output flow of ribosomes at time t, is also the 
protein production rate at time t. It is known31 that the RFM admits a unique steady-state production rate denoted 
by R =​ R(λ), where λ λ λ= … ′: [ ]n0 .

Both TASEP and the RFM are phenomenological models of unidirectional transportation with excluded 
flow. The RFM approximates the equations describing the stochastic evolution of the site occupancy probabilities 
in TASEP by ignoring high-order correlations. This provides a good approximation except perhaps at specific 
parameter values where TASEP undergoes a sharp change (phase transition). The standard TASEP and the RFM 
also ignore the fact that the moving ribosome actually covers several codons. RFM with extended objects is an 
important research direction, but not pursued here. However, we show in the Appendix that the RFM, based on 
coarse graining of the mRNA molecule, provides predictions that agree well with the extended objects TASEP 
model.

It is important to note that mRNA translation has also been modeled and studied using more detailed sto-
chastic models that include additional features such as both cognate tRNA-capture rates and translocation rates32, 
competition for near-cognate and non-cognate tRNAs33, and more. Typically, models with this level of detail can 
only be studied via simulations. An important advantage of the RFM is that it is amenable to rigorous analysis. 
This allows deriving general results that hold for any set of feasible parameters values. In order to confirm the 
validity of the results derived below using the RFM, we compare the results with those obtained using simulations 
of TASEP. We also include below a detailed example with parameter values derived from the S. cerevisiae gene 
YBL025W that encodes the protein RRN10.

Here we apply the RFM to analyze how to maximally down-regulate mRNA translation. To do this, we formu-
late the following general optimization problem. Given an mRNA molecule with n sites, and a convex and com-
pact region of feasible transition rates Ωn+1, find a vector λ ∈ Ω +⁎ n 1 such that λ λ= λ∈Ω +

⁎R R( ) min ( )n 1 . In other 
words, the problem is how to select transition rates, within a feasible region, such that the production rate is 
minimized (see Fig. 2). To the best of our knowledge, this is the first time that such a problem is analyzed in a 
dynamical model of mRNA translation.

As a concrete example, consider an RFM with dimension n and rates λ λ…, , n0 . Given a “total reduction 
budget” λ∈b [0, min{ }]i , define the feasible set Ω ⊂+

+
+n n1 1 by

λ ε λ ε ε ε ε− … − ≥ + + = . b{[ ]: 0, }n n i n0 0 0

In other words, the feasible set is the set of all the rates obtained by reducing the rates of the given mRNA 
molecule by the total reduction equal to b. The question is how to distribute the total reduction budget over the 
rates so as to obtain the minimal possible protein production rate. We prove that:

Figure 1.  The RFM models unidirectional flow along a chain of n sites. The state variable ∈x t( ) [0, 1]i  
represents the density at site i at time t. The parameter λi >​ 0 controls the transition rate from site i to site i +​ 1, 
with λ0 >​ 0 [λn >​ 0] controlling the initiation [exit] rate. The output rate at time t is R(t) =​ λnxn(t).
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•	 If some rate λk is a “bottleneck” rate, in a sense that will be made precise below, then an optimal reduction in 
protein production rate is obtained by using all the reduction budget b to further decrease λk;

•	 If all the given rates are equal, i.e. λ λ= = n0 , then the transition rate at the middle of the mRNA molecule 
is the bottleneck rate, and thus an optimal reduction in protein production rate is obtained by using all the 
reduction budget to reduce this transition rate.

Thus, in these cases there exists a single site such that mutating it yields the maximal inhibition of translation. 
Our results allow to determine where this site is located.

The remainder of this paper is organized as follows. We first briefly review some known results on the RFM 
that are needed for our purposes. The following section poses the problem of down-regulating the steady-state 
protein production rate in the RFM in an optimal manner, and then describes our main results. Analysis of the 
RFM is non-trivial, as this is a nonlinear dynamical model. In particular, the mapping from λ to R(λ) is nonlinear 
and does not admit a closed-form expression. Nevertheless, by combining tools from convex optimization and 
eigenvalue sensitivity theory, we show that this optimization problem is tractable in some cases, and rigorously 
prove several results that have interesting biological implications. The final section summarizes and describes 
several directions for further research. To increase the readability of this paper, all the proofs are placed in Section 
A in the Appendix. Section B in the Appendix includes a comparison between the RFM and extended objects 
TASEP predictions showing that the correlation between these two models is very high.

Ribosome Flow Model
The dynamics of the RFM with n sites is given by n nonlinear first-order ordinary differential equations:
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Figure 2.  The problem we consider is how to efficiently select transition rates along the mRNA 
molecule, within a given set of possible rates, such that the protein production rate is minimized. In 
practice, translation rate modification can be done by introducing mutations into the gene or by designing a 
corresponding RNAi molecule.
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If we define =x t( ) : 10  and =+x t( ) : 0n 1  then (2) can be written more succinctly as

λ λ= − − − = … .− − +x x x x x i n(1 ) (1 ), 1, , (3)i i i i i i i1 1 1

Eq. (3) can be explained as follows. The change of occupancy at site i at time t is equal to the flow of material 
from site i −​ 1 to site i minus the flow of material from site i to site i +​ 1 at time t. The latter is λixi(t) (1 −​ xi+1(t)). 
This flow is proportional to xi(t), i.e. it increases with the density at site i, and to (1 −​ xi+1(t)), i.e. it decreases as site 
i +​ 1 becomes fuller. This corresponds to a “soft” version of a simple exclusion principle. Note that the maximal 
possible flow from site i to site i +​ 1 is the transition rate λi.

Let x(t, a) denote the solution of (2) at time t ≥​ 0 for the initial condition x(0) =​ a. Since the state-variables 
correspond to normalized density levels, with xi(t) =​ 0 [xi(t) =​ 1] representing that site i is completely empty [full] 
at  t ime  t ,  we  a lways  assume t hat  a  b e longs  to  t he  c los ed  n -d imens iona l  unit  c ub e : 

= ∈ ∈ = …C x x i n: { : [0, 1], 1, , }n n
i . Let int(Cn) [∂​Cn] denote the interior [boundary] of Cn. It is straightfor-

ward to verify that ∂​Cn is repelling, i.e. if ∈ ∂a Cn then ∈x t a C( , ) int( )n  for all t >​ 0, so Cn and also int(Cn) are 
invariant sets for the dynamics.

An important property of the RFM is the symmetry between the “particles” (i.e. ribosomes) moving from left 
to right and “holes” (i.e. “lack” of ribosomes) moving from right to left (in the TASEP literature, this property is 
sometimes referred to as the “particle-hole” symmetry). Indeed, let qj(t): = 1− xn + 1− j(t), = …j n1, , . Then

λ λ
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λ λ
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This is another RFM, but now with rates λ λ…, ,n 0.
The RFM has been used to model and analyze the flow of ribosomes along the mRNA molecule during the 

process of mRNA translation. The (soft) simple exclusion principle corresponds to the fact that ribosomes have 
volume and cannot overtake one another.

It has been shown in ref. 29 that the correlation between the production rate based on modeling using RFM 
and using TASEP over all S. cerevisiae endogenous genes is 0.96. In addition, it has also been shown there that the 
RFM agrees well with biological measurements of ribosome densities. Furthermore, it has also been shown that 
the RFM predictions correlate well (correlations up to 0.6) with protein levels in various organisms (e.g. E. coli,  
S. pombe, S. cerevisiae). Given the high levels of bias and noise in measurements related to gene expression and 
the inherent stochasticity of intracellular biological processes (see e.g. refs 34,35), these correlation values demon-
strate the relevance of the RFM in this context.

Steady-State Spectral Representation.  Ref. 31 has shown that the RFM is a tridiagonal cooperative 
dynamical system36, and that (2) admits a unique steady-state point λ λ= … ∈e e C( , , ) int( )n

n
0  that is globally 

asymptotically stable, that is, =→∞x t a elim ( , )t  for all ∈a Cn (see also ref. 37). This means that the ribosomal 
density profile always converges to a steady-state profile that depends on the rates, but not on the initial condition. 
In particular, the production rate R(t) =​ λnxn(t) converges to a steady-state value λ=R e: n n.

At steady-state (i.e., for x =​ e), the left-hand side of all the equations in (2) is zero, so

λ λ
λ

λ
λ

− = −
= −

= −
=
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− −


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e e
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e

R
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(4)
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n n
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This yields

λ= − = …+R e e i n(1 ), 0, , , (5)i i i 1

where =e : 10  and =+e : 0n 1 . Ref. 38 used these expressions to provide a spectral representation of the mapping 
from the set of rates λ to the steady-state production rate R. Let  = ∈ ≥ = …+ y y i n: { : 0, 1, , }n n

i  and 
 = ∈ > = …++ y y i n: { : 0, 1, , }n n

i .

Theorem 1 [Ref. 38] Given an RFM with rates λ λ λ= … ′ ∈ ++
+[ ]n

n
0

1, let R =​ R(λ) denote its steady-state pro-
duction rate. Define an (n +​ 2) ×​ (n +​ 2) Jacobi matrix A =​ A(λ) by
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Then:

1.	 The eigenvalues of A are real and distinct, and if we order them as ζ ζ< < + n1 2 then ζ λ=+
−R( ( ))n 2

1/2.
2.	 Let λ λ=

λ
∂

∂
s R( ) : ( )i

i
, i.e. the sensitivity of R with respect to (w.r.t.) the rate λi. Let ∈ ++

+v n 2 denote an 
eigenvector of A corresponding to the eigenvalue ζn+2. Then

λ
λ

=
′

= … .+ +s R
v v

v v i n( ) 2 , 0, ,
(7)

i
i

i i

3/2

3/2 1 2

This means that the steady-state production rate, and its sensitivity with respect to the transition rates, can be 
computed efficiently using numerical algorithms for computing the eigenvalues and eigenvectors of tridiagonal 
matrices. Theorem 1 also implies that

λ λ λ λ… = … >R c c cR c( , , ) ( , , ), for all 0, (8)n n0 0

i.e. R(λ) is homogeneous of degree one.
Another important implication of Theorem 1 is that R is a strictly concave function of the transition rates 

λ λ…{ , , }n0  over ++
+n 138. Also, it implies that >

λ
∂

∂
R 0

i
 for all i, that is, an increase in any of the rates yields an 

increase in the steady-state production rate.
For more on the analysis of the RFM, and also networks of interconnected RFMs, using tools from systems 

and control theory, see e.g. refs 38–44.

Main Results
We begin by posing a general minimization problem for the steady-state production rate in the RFM (see Problem 
1 below). Using the concavity of the mapping from the rates λ to the steady-state production rate R implies that 
any solution to this problem must be an extremal point of the feasible set (see Proposition 1 below). We then show 
how various interesting biological problems can be cast as special cases of this general problem.

Problem 1 Given a convex and compact feasible set of transition rates Ω ⊂+
++

+n n1 1, find λ ∈ Ω +⁎ n 1 such that 
λ λ= .λ∈Ω +

⁎R R( ) min ( )n 1

From the biological point of view, the feasible set of transition rates Ωn+1 depends on all the biophysical con-
straints on the transition rates along the coding sequence. For example, the maximal/minimal decoding rate of 
a codon (e.g. via its adaptation to the tRNA pool)45, the maximal possible effect of mRNA folding (after codon 
substitution) on each codon46, the maximal possible effect (after amino acid substitution) of the interaction of 
the ribosome with amino acids of the nascent peptide47, and the maximal possible elongation slow down due to 
interaction with microRNAs9,10.

Below we explain how to pose various interesting biological problems in the framework of Problem 1. 
Examples include finding the minimal number of mutations that down regulate translation of a gene/mRNA 
under a certain “total reduction budget”. This is practically important when we use costly (in terms of time and 
money) gene editing approaches. Another related question is how to down regulate translation of a gene/mRNA 
with a maximal number of mutations. This is important when attenuating viral replication rate for generating 
a safe live attenuated vaccine. A large number of mutations reduces the probability of reverting. One may also 
define the feasible set in Problem 1 in such a way that some rates cannot be changed. This is relevant for example 
when some codons along the mRNA cannot be modified. Indeed, various positions along the mRNA affect regu-
latory mechanisms that we may not want to alter (e.g. co-translational folding and splicing).

It is well-known (see, e.g. ref. 48, Thm. 7.42) that if Ω →+f : n 1  is a continuous and strictly convex function 
defined over a convex and compact set Ωn+1 then all the maximizers of f over Ωn+1 are extreme points of Ωn+1 (for 
more on the problem of maximizing a convex function, or equivalently, minimizing a concave function, see e.g. 
ref. 49). Combining this with the fact that R is a strictly concave function of the transition rates over ++

+n 1 implies 
the following.

Proposition 1 Every solution of Problem 1 is an extreme point of Ωn+1.
In particular, if the set of extreme points of Ωn+1 is finite then one can always solve Problem 1 by simply calcu-

lating R(λ) for all λ that are extreme points of Ωn+1, and then finding the minimum of these values. In particular, 
if Ωn+1 is a convex polytope then the extreme points are just the vertices of Ωn+1. Thus, when the biophysical 
constraints lead to a feasible set of rates that is a convex polytope then it is computationally straightforward to 
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determine how to modify the rates so as to obtain the largest decrease in production rate under reasonable bio-
physical constraints.

In the remainder of this section, we consider three special cases of Problem 1 for which it is also possible to 
obtain analytic results.

Problem 2 Given an RFM with n sites, rates λ λ…, , n0 , and a total reduction budget λ∈b [0, min{ }]i , let 
λΩ = Ω+ + b( , )n n1 1  be the set

∑λ ε λ ε ε ε





− … − ≥ =





.
=

b[ , , ]: 0,
(9)

n n i
i

n

i0 0
0

Find λ ∈ Ω +⁎ n 1 such that λ λ= λ∈Ω +
⁎R R( ) min ( )n 1 .

In other words, Ωn+1 is the set of all the rates that can be obtained by applying a total reduction b to the given 
rates λi. From a mathematical point of view, b provides a bound on the total possible rate reduction. It also couples 
the reduction in different rates, as a larger reduction in one rate must be compensated by smaller reductions in the 
other rates so that the total reduction will not exceed b. From a synthetic biology point of view, b can be used to 
capture the idea of maximally inhibiting the production rate while minimizing the side-effects of this down reg-
ulation. For example, a very small value of b forces a solution with small modifications in all the rates. This is 
expected of course to minimize the effect of the mutations on the fitness of the cell/organism. Since 
co-translational folding50–52 is related to the ribosome transition rates along the mRNA, smaller changes in the 
rates are expected to have a smaller effect on protein folding (and thus on the functionality of the protein and the 
overall organismal fitness). Smaller changes in the transition rates are also related to a “simpler” biological solu-
tion in the sense of fewer mutations, less miRNAs, etc.

The next example demonstrates Problem 2.

Example 1 Consider an RFM with length n =​ 4 and transition rates

λ λ λ λ λ= . = . = . = . = . .0 85, 0 92, 0 78, 0 57, 0 880 1 2 3 4

The steady-state production rate is λ λ… = .R ( , , ) 0 23080 4  (all numbers are to four digit accuracy). Suppose 
that the total reduction budget is b =​ 0.1. Then, for example, the vector

λ λ= − . . . ′: [0 05 0 0 0 02 0 03] ,

belongs to Ω5, and R(λ) =​ 0.2260. An optimal solution for Problem 2 is

λ = . . . . . ′ ∈ Ω⁎ : [0 85 0 92 0 78 0 47 0 88] ,5

with R(λ*) =​ 0.2140. Note that this corresponds to reducing b from the rate λ3, which is the minimum of all the 
rates λi, leaving all the other rates unchanged.�  

Let ∈ +di n 1 denote the (i +​ 1)’th column of the (n +​ 1) ×​ (n +​ 1) identity matrix. The set λΩ + b( , )n 1  is a 
convex polytope with vertices:

λ λ= … ′ − = … .v bd i n: [ ] , 0, ,i
n

i
0

If there exists an index i such that λ = bi  then it is clear that an optimal solution is to reduce λi to 0, as then the 
steady-state production rate will be zero. So we always assume that b takes values in the set λ ρ−[0, min{ } ]i , for 
some ρ >​ 0. This means that Problem 2 is a special case of Problem 1, as λΩ + b( , )n 1  is a convex polytope contained 
in ++

+n 1.
By Prop. 1, every solution of Problem 2 is contained in the set …v v{ , , }n0 . In other words, every minimizer 

corresponds to reducing all the available budget b from a single rate. This immediately yields a simple and efficient 
algorithm for solving Problem 2: use the spectral representation of R to compute R(vi), = …i n0, , , and then find 
the minimum of all these values. Since the matrix A in (6) is symmetric and tridiagonal, calculating R(vi) can be 
done efficiently even for large values of n. We wrote a simple (and unoptimized) MATLAB script for solving 
Problem 2, and ran it on a MAC laptop with a 2.6 GHz Intel core i7 processor. For an RFM with n =​ 500 (a typical 
coding region includes a few hundred codons53), rates λ = 1i , = …i 0, , 500, and b =​ 0.1, the optimal solution is 
found in 3.14 seconds.

Example 1 may suggest that reducing the slowest transition rate by b always yields an optimal solution, but in 
general this is not true (see Example 3 below).

One may also consider a different feasible set in Problem 2, namely,

∑λ ε λ ε ε ε





− … − ≥ ≤



=

b[ , , ]: 0, ,n n i
i

n

i0 0
0

i.e. here the total reduction is up to b. However, by Theorem 1 λ >
λ
∂

∂
R ( ) 0

i
 for all i, and thus an optimal solution 

for this problem is guaranteed to agree with an optimal solution of Problem 2.
The next example demonstrates the effect of increasing the total reduction rate b on the optimal solution of 

Problem 2. As noted above, we also compare the results derived for the RFM to TASEP simulations. The simula-
tions used throughout this paper use a parallel update mode. At each time tick tk, the sites along the lattice are 
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scanned from site N backwards to site 1. If it is time to hop, and the consecutive site is empty then the particle 
advances to the consecutive site. If the consecutive site is occupied the next hopping time, tk +​ εk, is generated 
randomly. For site i, εk is exponentially distributed with parameter (1/μi+1) (see (1)). The occupancy at each site 
is averaged throughout the simulation, with the first 107 cycles discarded in order to obtain the steady-state value. 
Let ρ ρ µ= ∈ +( ) N  denote the averaged occupancy and µ βρ= =J J ( ) : N  denote the averaged current (or output 
rate).

Example 2 Consider an RFM with dimension n =​ 10, and rates λ = 1i , = …i n0, , . Here λ = .R ( ) 0 2652. We 
calculated the optimal solution λ* for different values of b, and also the value λ λ∆ = − ⁎R b R R( ) : ( ) ( ), that is, the 
optimal reduction in the protein production rate that can be obtained for various values of b. We also simulated 
TASEP with N =​ 10, µ λ= , and also with the optimal solution µ λ=⁎ ⁎: , for different values of b, and computed 
the value µ µ∆ = − ⁎J b J J( ) : ( ) ( ). Figure 3 depicts Δ​R and Δ​J as a function of b. It may be seen that Δ​R and  
Δ​J increase quickly with b (specifically, the relation is superlinear), and that Δ​R provides a good approximation 
of Δ​J.�  

Optimal reduction and sensitivities.  It is also possible to derive theoretical results on the structure of an 
optimal solution λ* in Problem 2 using the sensitivities λ λ=

λ
∂

∂
s R( ) : ( )i

i
 (that can be computed efficiently using 

(7)). Recall that the proofs of all the analysis results are placed in Section A in the Appendix.

Proposition 2 Consider Problem 2. If there exist i, ∈ …j n{0, , } such that

λ λ<s s( ) ( ) (10)i j

then any optimal solution λ* satisfies λ λ=⁎
i i.

In other words, if the sensitivity of the steady-state production rate to rate λi at λ is lower than some other 
sensitivity then an optimal solution will not include a reduction in λi. Indeed, it is better to distribute the reduc-
tion budget over some other, more sensitive, rates.

Remark 1 Note that since R is a strictly concave function of the rates,

λ
λ

λ
λ

∂
∂

=
∂

∂
<s R( ) ( ) 0,

i
i

i

2

2

for any λ ∈ ++
+n 1 and any ∈ …i n{0, , }. In other words, a decrease in λi increases the sensitivity w.r.t. this rate.

Proposition 2 leads to the following definition.

Definition 1 Given an RFM with rates λ, a transition rate λ j is called a bottleneck rate if λ λ>s s( ) ( )j i , for all ≠i j.
In other words, a bottleneck rate is one with a maximal sensitivity.
Combining this with Proposition 2 immediately yields the following result.

Corollary 1 Given an RFM with rates λ, suppose that λs ( )j  is a bottleneck rate. Then the unique optimal solution to 
Problem 2 is obtained by reducing λ j by b.

An important observation is that the slowest rate along the mRNA molecule and the bottleneck rate may be 
different. The next example demonstrates this.

Figure 3. ΔR and ΔJ as a function of b in Example 2. 
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Example 3 Consider an RFM with dimension n =​ 4, and rates λ = .1 853 , λ = .2 0i , i =​ 0, 1, 2, 4. In this case, 
λ = .s ( ) 0 02970 , λ = .s ( ) 0 06871 , λ = .s ( ) 0 09012 , λ = .s ( ) 0 08563 , and λ = .s ( ) 0 03434 . Thus, although the mini-

mal rate is λ3, the bottleneck rate is λ2. In particular, the optimal solution will be to reduce λ2 by b, and not λ3, 
even though λ3 is the minimal rate. � 

However, note that Remark 1 implies that if some rate λi is decreased enough then it will eventually becomes 
a bottleneck rate.

Proposition 2 can be used to derive analytic results in cases where we can obtain explicit information on the 
sensitivities at a point λ ∈ +

+n 1. The next two results demonstrate this.

Proposition 3 Consider an RFM with dimension n and with equal rates, i.e. λ λ= = n0 . If n is even then the 
unique optimal solution to Problem 2 is: λ λ= −⁎ bdn/2. If n is odd then there are two optimal solutions: 
λ λ= −⁎ ⌊ ⌋bd n/2  and λ λ= − +⁎ ⌊ ⌋bd n/2 1.

In other words, in the case where all the rates are equal, the bottleneck is at the center of the chain. These 
results are closely related to the fact that in a dynamic model for phosphorelay54, that is very similar to the RFM, 
the middle layer in the model is the most sensitive to changes in the input. This also agrees with the so called 
“edge-effect” in the HTASEP55–57, i.e. the fact that the steady-state output rate is less sensitive to the rates that are 
close to the edges of the chain. For more on the sensitivity of TASEP to manipulations in the initiation, hopping, 
and exit rates, see refs 57–60.

Another case where analytic results can be derived is when the rates in the RFM lead to equal steady-state 
occupancies along the mRNA molecule. This happens when λ λ λ λ λ= = = = +− n n1 2 1 0  (see (4)).

Proposition 4 Consider an RFM with dimension n and rates λ such that = = =e e e:n c1 , i.e. all the steady-state 
occupancies are equal, and ec denotes their common value.

1.	 If ec <​ 1/2 then the unique optimal solution to Problem 2 is

λ λ= − .⁎ bd (11)0

2.	 If ec >​ 1/2 then the unique optimal solution to Problem 2 is

λ λ= − .⁎ bd (12)n

3.	 If ec =​ 1/2 then (11) and (12) are the optimal solutions.

In other words, if the equal occupancy is relatively low [high] then maximal inhibition of the production 
rate is obtained by reducing the total reduction rate from the initiation [exit] rate, leaving all the other rates 
unchanged.

Example 4 Consider Problem 2 for an RFM with n =​ 5, rates λ = ′[1 5/2 5/2 5/2 5/2 3/2] , and b =​ 1/2. Note 
that in this case = = =e e 2/51 5 . A calculation yields λ − = .R bd( ) 0 39990 , λ − = .R bd( ) 0 56511 , 
λ − = .R bd( ) 0 57622 , λ − = .R bd( ) 0 58293 , λ − = .R bd( ) 0 58744 , and λ − = .R bd( ) 0 57465 , so the optimal 

solution is λ λ= −⁎ bd0. Since ec <​ 1/2, this agrees with Proposition 4. We also simulated TASEP with N =​ 5, 
µ λ= 2

5
 (this scaling is used to make μi ≤​ 1 for all i), and a reduction budget = =q b: 1/52

5
. The TASEP simula-

tion yields J(μ −​ qd0) =​ 0.1595, J(μ −​ qd1) =​ 0.2302, J(μ −​ qd2) =​ 0.2324, J(μ −​ qd3) =​ 0.2337, J(μ −​ qd4) =​ 0.2344, 
and J(μ −​ qd5) =​ 0.2221, so also for TASEP the optimal solution is μ* =​ μ −​ qd0. � 

In some cases it may be more natural to define the transition rate reduction in relative rather than absolute 
terms. This is captured by the following optimization problem.

Problem 3 Given an RFM with n sites, rates λ λ…, , n0 , and a total reduction budget ∈q [0, 1), let 
λΓ = Γ ⊂+ +

++
+q( , )n n n1 1 1 be the set

∑λ δ λ δ δ δ





− … − ≥ =





.
=

q[ (1 ), , (1 )]: 0,
(13)

n n i
i

n

i0 0
0

Find λ ∈ Γ +⁎ n 1 such that λ λ= λ∈Γ +
⁎R R( ) min ( )n 1 .

For ∈ …i n{0, , }, let ∈ + × +Di n n( 1) ( 1) denote the (n +​ 1) ×​ (n +​ 1) identity matrix, but with entry (i +​ 1, 
i +​ 1) changed to 1 −​ q. The set Γ +n 1 is a convex polytope with vertices λ=u D:i i , = …i n0, , . Thus, Problem 3 is 
also a special case of Problem 1, and so the minimizer λ* satisfies λ ∈ …⁎ u u{ , , }n0 .

In practice, each codon (or coding region) admits a minimal and a maximal possible decoding rate. There are 
also minimal and maximal values for the initiation rate. These bounds are determined by the biophysical proper-
ties of the transcript and the intracellular environment. To model this, we can modify the optimization problems 
described above to include a bound i on the maximal allowed reduction of rate i, for = …i n0, , . The next prob-
lem demonstrates such a modification for Problem 2.

Problem 4 Consider an RFM with n sites and rates λ λ…, , n0 . Given a total reduction budget λ ρ∈ −b [0, min{ } ]i , 
for some ρ >​ 0, and also bounds λ< <0 i i, = …i n0, , , with ∑ >=  bi

n
i0 , let Ωn+1 be as defined in Problem 2, and let
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

∩
λ λ λ λΨ = ∈ ∈ − = …

Φ = Ω Ψ .

+
++

+

+ + +

 i n: { : [ , ], 0, , },

: (14)

n n
i i i i

n n n

1 1

1 1 1

Find λ ∈ Φ +⁎ n 1 such that λ λ= λ∈Φ +
⁎R R( ) min ( )n 1 .

In other words, the feasible set Φ +n 1 in Problem 4 is the intersection of the set Ωn+1 (defined in Problem 2), 
and the closed (n +​ 1)-dimensional cube Ψ +n 1 that models constraints on the maximal possible reduction of each 
rate.

Since Φ +n 1 is compact and convex (being the intersection of two compact and convex sets), Problem 4 admits 
a solution that is an extreme point of Φ +n 1. In general, not all the rates can be reduced by b, and thus an optimal 
solution may include a reduction of several rates.

Example 5 Consider Problem 4 for an RFM with dimension n =​ 2, rates λ = .1 0i , i =​ 0, 1, 2, and parameters 
b =​ 0.85, and = . 0 4i , i =​ 0, 1, 2. In other words, the total possible reduction is 0.85, but any rate can be reduced 
by no more than 0.4. Figure 4 depicts the feasible set Φ3 (blue polytope) that is the intersection of the set Ω3 (gray 
polytope) and the set Ψ3 (green cube). Shown also are the three extreme points of Φ3:

= . . . ′

= . . . ′

= . . . ′ .

v
v
v

: [0 95 0 6 0 6] (red circle),
: [0 6 0 6 0 95] (blue circle),
: [0 6 0 95 0 6] (magenta circle)

1

2

3

A calculation yields R(v1) =​ R(v2) =​ 0.2538, whereas R(v3) =​ 0.2764. It follows that λ* =​ v1 and λ* =​ v2 are opti-
mal solutions. Note that these solutions correspond to reducing several rates along the mRNA molecule. Note also 
that λ = . . . ′s ( ) [0 1056 0 1708 0 1056] , so both optimal solutions correspond to a maximal possible reduction in 
a most sensitive rate, and a maximal possible reduction in another most sensitive rate. � 

In some cases, there may be positions along the coding region that we cannot modify due to their potential 
effect on various intracellular processes. An important advantage of Problem 4 is that it allows capturing this by 
simply setting some of the is to zero. If the problem with the additional constraints can be described as a special 
case of the general Problem 4 then we can efficiently determine the optimal solution.

On the other hand, in down regulation of a viral gene it may be desirable to distribute the synonymous codon 
modifications over many mRNA sites in order to reduce the chance of spontaneous mutations yielding the origi-
nal wild type. This is captured by Problem 4 when we set the is to small non-zero values, as then an optimal 
solution will include a transition rate reduction in many sites.

A biological example.  To demonstrate how the results above can be used to analyze translation and provide 
guidelines for re-engineering the mRNA, we consider the S. cerevisiae gene YBL025W that encodes the protein 
RRN10, which is related to regulation of RNA polymerase I. This gene has 145 codons (excluding the stop codon). 
Similarly to the approach used in ref. 29, we divided this mRNA into 6 consecutive pieces: the first piece includes 
the first 24 codons (that are also related to later stages of initiation52). The other pieces include 25 non-overlapping 
codons each, except for the last one that includes 21 codons. This partitioning was found to optimize the correla-
tion between the RFM prediction and biological data measurements.

To model this using an RFM with n =​ 5 sites, we first estimated the elongation rates λ λ…, ,1 5 using ribo-seq 
data for the codon decoding rates45, normalized so that the median elongation rate of all S. cerevisiae mRNAs 
becomes 6.4 codons per second61. The site rate is (site time)−1, where site time is the sum over the decoding times 
of all the codons in this site. These rates thus depend on various factors including availability of tRNA molecules, 

Figure 4.  The sets Ω3 (gray polytope), Ψ3 (green cube), and Φ3 (blue polytope) in Example 5. 
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amino acids, Aminoacyl tRNA synthetase activity and concentration, and local mRNA folding1,45,52. Note that if 
we replace a codon in a site of mRNA by a synonymous slower codon then the decoding time increases and thus 
the rate associated with this site decreases.

The initiation rate (that corresponds to the first piece) was estimated based on the ribosome density per 
mRNA levels, as this value is expected to be approximately proportional to the initiation rate when initiation 
is rate limiting29,62. Again we applied a normalization that brings the median initiation rate of all S. cerevisiae 
mRNAs to be 0.863. Adding the initiation time (1/0.4482) to the site time of the first piece yields an RFM with 
n =​ 5 and parameters:

λ λ… = . . . . . . .[ ] [0 1678 0 2572 0 2758 0 2514 0 2612 0 3002]0 5

A calculation yields that the steady-state production rate in this RFM is R =​ 0.0732. We also simulated TASEP 
with N =​ 5 and µ λ= , and for these values the simulation yields the steady-state current J =​ 0.0776.

In order to analyze the solution of Problem 2 for this RFM we calculated the sensitivities using (7). This yields: 
λ = . . . . . .s ( ) [0 0795 0 0669 0 0611 0 0578 0 0328 0 0092], so λ0 is a bottleneck rate. This means that the solution 

for Problem 2 is to reduce all the reduction budget b from λ0. In biological terms, this suggests that maximal 
inhibition of production should be based on replacing some (or all) of the first 24 codons with slower synony-
mous codons. For comparison with the optimization scenarios described below, consider the total budget 
b =​ 0.0089. The solution for Problem 2 is then to reduce λ0 by b, and this yields

= . .⁎R 0 0725 (15)

Reducing λ0 by b in the model is possible by substituting codons in the first site with their slowest synonymous 
mutation (for example, the third codon AGA should be replaced by the synonymous codon CGG, increasing the 
codon decoding time from 0.1128 seconds to 0.2246 seconds). A TASEP simulation with α reduced by b yields

= . .⁎J 0 0767 (16)

Now suppose that we are not interested in modifying these codons because in this region there are various 
regulatory signals that we may not want to change (see, for example, ref. 52). To maximize inhibition of produc-
tion rate under this constraint, we apply Problem 4, with = 00 , and > bi  for all ≠i 0. Now the optimal solu-
tion is to reduce b from λ1. Note that λ1 has the second largest sensitivity. This yields R* =​ 0.0726, and is, as 
expected, higher than the value in (15). Again, the biological data shows that such a reduction can be done by 
synonymously replacing codons 34 (GCT with GCA), 35 (GTT with GTA), 36 (CCT with CCC), 38 (CCG with 
CCC), 39 (TTC with TTT), and 49 (GTG with GTA). A TASEP simulation with γ1 reduced by b yields J =​ 0.0769, 
which is indeed higher than the value in (16).

Finally, to demonstrate mutations in multiple sites, we used the data to find a scenario where a set of mutations 
yields the same total decrease in the rates. This can be done by synonymously replacing codons 21 (GTG with 
GTA), 29 (GAA with GAG), 58 (TTC with TTT), 82 (AAG with AAA), 110 (CTA with CTG), and 141 (GCG with 
GCA), leading to

λ = . . . . . . ′.[0 1677 0 2557 0 2733 0 2489 0 2599 0 2991]

Note that all the rates are reduced and that the total reduction is b. This yields R =​ 0.0727, which is again 
higher than the value in (15). A TASEP simulation with μ =​ λ yields J =​ 0.0771, which is again higher than the 
value in (16).

Discussion
There are several approaches for effectively down-regulating translation. Global down-regulation can be achieved 
by controlling basic translation factors or by using drugs that induce ribosome stalling64–66.

Here we consider down regulation of specific genes via targeting specific codons/regions in these genes. This 
leads to the problem of finding the codon regions that have the most effect on the steady-state production rate. We 
pose this problem of optimal down regulation of mRNA translation as a general optimization problem (Problem 
1 above) for a mathematical model for ribosome flow, the RFM. All possible modifications of the rates define a 
feasible set of rates, and, under certain conditions, we give a simple algorithm for finding the optimal solution, 
that is, the rates that lead to a maximal decrease in the protein production rate. For some specific cases, we also 
derive theoretical results on the optimal solution. Our general formulation thus provides guidelines on how to 
pose the optimal down regulation problem properly.

Our results show that the solution must focus on the positions along the mRNA molecule where the transi-
tion rate has the strongest effect on the protein production rate. However, this position is not necessarily the one 
with the minimal rate (though in many cases there are correlations between the two definitions). Many previous 
studies in the field emphasized the importance of the translation bottleneck22,59,67, however, this is always defined 
as the minimal rate. We believe that the sensitivity of the coding region sites should be further studied in order to 
understand better the evolution of transcripts and their design.

In addition, we demonstrated using TASEP simulations that the analytical results obtained for the RFM may 
be used to obtain an optimal solution in the nonhomogeneous TASEP as well. This is important since TASEP 
and its many variants are employed to analyze many biological (and other) phenomena, and the analytical results 
obtained in this paper may be useful in these cases as well.

The optimization problems posed here are flexible enough to capture various scenarios. For example, in some 
cases it may be desirable to introduce a minimal number of changes in the transcript to obtain the desired decrease 
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in the translation rate. Indeed, generating mutations and using suitable RNAi molecules is costly in time and 
money. Also, any change in the translation rates can affect various important phenomena such as co-translational 
folding50–52, as well as other properties that are encoded in the coding region52,68,69. In other cases, such as gener-
ating a down-regulated virus strain, it may be desirable to introduce as many mutations as possible.

There are various approaches for synthesizing molecules that block mRNA translation (see e.g. http://www.
gene-tools.com/choosing_the_optimal_target). In practice, when determining an optimal position to target (e.g. 
with RNAi molecules) one must take into account additional biophysical aspects. For example, the GC content 
at the different regions along the mRNA, the folding of the mRNA, the potential binding affinity of the RNAi and 
the mRNA, potential un-desired binding of the RNAi to additional mRNAs or regions within the mRNA, etc. 
Nevertheless, we feel that our results can be integrated to improve the design of such tools.

In addition, it is entirely possible that in the future this downregulation problem will be studied using other 
and perhaps more detailed models of translation. For example, in practice, there are many mRNA molecules in 
the cell and they all compete for the finite pool of free ribosomes. In particular, if more ribosomes are stuck in a 
traffic jam on a certain mRNA molecule then the pool of free ribosomes is depleted yielding a reduction in the 
production rates in other mRNA molecules. The RFM is a model for ribosome flow along a single isolated mRNA 
molecule. This is a reasonable model when the expression levels (e.g. the mRNA levels and the total number 
of ribosomes on the mRNA molecules related to the gene) are relatively low, so that changes in the translation 
dynamics on one mRNA have a negligible effect on the pool of ribosomes and thus on the other mRNAs. A model 
for a network of RFMs, interconnected via a dynamic pool of free ribosomes, has been studied in ref. 44. It may 
be of interest to study the problem of down regulation of a specific mRNA molecule within this framework. In 
this case, one can also down regulate the mRNA indirectly by affecting the ribosomal pool. However, the analytic 
tools used here do not directly apply, as the convexity results for a single chain do not necessarily carry over to the 
case of a network of RFMs.

The results here suggest several biological experiments for studying the problem of optimal down regulation 
and, in particular, validating the theoretical predictions derived using the RFM. Libraries encoding the same 
protein using mRNAs with different codons (but similar mRNA levels and translation initiation rates) can be 
generated as was done in ref. 17. For each variant the protein levels, that are expected to monotonically increase 
with the production rate29, can be measured either via a reporter protein17 or directly70. The codon decoding rates 
can be estimated based on ribo-seq experiments17,45. Such an experimental testbed can be used to validate the 
results reported in this study.
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