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Abstract

Dogs develop cancer spontaneously with age, with breed-specific risk underlying differences in genetics. Mammary
tumors are reported as the most frequent neoplasia in intact female dogs. Their high prevalence in certain breeds
suggests a genetic component, as it is the case in human familial breast cancer, distinctly in BRCA2-associated
cancers. However, the molecular genetics of BRCA2 in the pathogenesis of canine cancer are still under
investigation.
Genetic variations of canine BRCA2 comprised single nucleotide polymorphisms, insertions and deletions. The
BRCA2 level has been shown to be reduced in tumor gland samples, suggesting that low expression of BRCA2 is
contributing to mammary tumor development in dogs. Additionally, specific variations of the BRCA2 gene affect
RAD51 binding strength, critically damage the BRCA2-RAD51 binding and further provoke a defective repair. In
humans, preclinical and clinical data revealed a synthetic lethality interaction between BRCA2 mutations and PARP
inhibition. PARP inhibitors are successfully used to increase chemo- and radiotherapy sensitivity, although they are
also associated with numerous side effects and acquired resistance. Cancer treatment of canine patients could
benefit from increased chemo- and radiosensitivity, as their cancer therapy protocols usually include only low doses
of drugs or radiation. Early investigations show tolerability of iniparib in dogs. PARP inhibitors also imply higher
therapy costs and consequently are less likely to be accepted by pet owners.
We summarized the current evidence of canine BRCA2 gene alterations and their association with mammary
tumors. Mutations in the canine BRCA2 gene have the potential to be exploited in clinical therapy through the
usage of PARP inhibitors. However, further investigations are needed before introducing PARP inhibitors in
veterinary clinical practice.
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Background
Cancer is the most common cause of death in dogs
worldwide. For instance, it affects about 4 million dogs
per year in the USA [1, 2]. A diverse range of cancers
are observed in dogs. Age, nutrition, sex, reproductive
status and environmental exposures are factors that in-
fluence canine tumor initiation and progression [3].
Mammary tumors are the most frequent type of tumor

found in intact female dogs [4–6]. Certain breeds show
high susceptibility to canine mammary cancer, indicative
of an inheritable component [5, 7, 8]. Commonly, the

dog’s owners notice tumors when macroscopic changes
are already visible, or are found during a routine physical
exam [9]. So far, surgical excision is the only effective
treatment, consisting of the removal of altered glands
and local lymph nodes. However, because of the high
rate of metastases, surgery alone does not cure all canine
patients [6, 10]. Consequently, in some cases chemother-
apy or radiotherapy are used as adjuvant therapies [11].
Unfortunately, many tumor cells are showing resistances
to theses therapeutics [12–14]. Thus, treatment of
mammary tumors in dogs would benefit from additional
therapies in order to increase the efficacy of chemo- and
radiotherapy.
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Additionally, canine patients present genetic alterations
that drive cancers, evidenced by the elucidation of the ca-
nine genome [15]. Example of these include alterations of
p53 in canine mammary cancer and various cancer types
as lymphoma and leukemia [16, 17], and mutations found
in the tyrosine kinase growth factor receptor KIT in
mast cell tumors of dogs [18, 19]. Thus, certain bio-
markers of canine mammary tumors have been discov-
ered and investigated in order to improve early
detection of the tumors [20]. Among other gene muta-
tions, mutations in the BRCA1/2 genes (Breast Cancer
1 and 2; their protein products are commonly called
breast cancer type 1 or 2 susceptibility protein) have
been reportedly associated with the development of
mammary tumors in dogs [21–23]. Apart from being
useful as biomarkers, BRCA1/2 have been also investi-
gated as potential treatment targets [24]. Indeed, the
wild-type BRCA2 gene is known as a tumor suppressor
gene; BRCA2 maintains genome stability by its involve-
ment in the repair of DNA double-strand breaks (DSBs)
during homologous recombination [25, 26]. Homolo-
gous recombination occurs in the late S/G2 phase of
the cell cycle and provides high-fidelity repair of DNA
DSBs by using a sister chromatid or chromosome as a
template. During the repair process, BRCA2 is attracted
by BRCA1 to the place of damage and facilitates the
loading of RAD51 protein onto RPA-coated (Replica-
tion Protein A) single-strand DNA, leading to RPA-
RAD51 exchange (see Fig. 1). BRCA2 binds to RAD51
and localizes it to the nucleus, which is the site of DNA
damage [25, 27, 28]. In BRCA2-mutated (deficient)
cells, RAD51 is not transported into the nucleus and
remains aberrantly in the cell. Ochiai et al. confirmed
that canine BRCA2 protein also interacts with canine
RAD51 [29, 30]. Hence, together with BRCA1, BRCA2
acts as a tumor suppressor; mutations in these genes
will impede the cell’s ability to repair DNA damage,
especially DNA DSBs. Damage can then accumulate
in the cells, creating new mutations, pushing the cells
towards becoming more prone to neoplastic trans-
formation [27, 28, 31].
Thus, in human patients, women who present BRCA1

and/or BRCA2 mutations have a very high lifetime risk
of developing breast and ovarian cancer [31]. Testing for
BRCA1 and 2 mutations is nowadays used to screen for
cancer susceptibility in women with a family history of
breast or ovarian cancer [32]. Because BRCA2-deficient
tumors present these particular type of defects, it has
been exploited therapeutically through the principle of
synthetic lethality. Synthetic lethality implies that the
deficiency in the expression of one gene leaves the cell
viable, but the perturbation of two genes simultaneously
results in the loss of viability. Therefore, patients carry-
ing germline mutations of BRCA2 are sensitive to a class

of drugs called inhibitors of PARP (Poly(ADP-ribose)
protein), because they have a specific type of DNA repair
defect through the BRCA2 mutation [24]. The specific
mutation status of these cells represents a diagnostic
and therapeutic target that on the one hand explains the
consequences of BRCA2 deficiency but on the other
hand can be used to therapeutically attack the tumor
cells [24, 33]. PARP inhibitors (or PARPi) have been
clinically approved to exploit this principle and are now
included in patients’ treatment, particularly in cases of
BRCA2-mutated tumors. Patients carrying these germ-
line mutations are responding to the drugs, because
PARPi, such as olaparib, trap the single-strand breaks
(SSBs) protein PARP1. Without specific SSB repair, the
homologous recombination pathway is triggered, but in
the absence of a functional BRCA2 protein, breaks accu-
mulate, leading to more cell death [24, 33].
The present review aims to investigate the current

knowledge about BRCA2 mutations in canine cancer
and the consequence of identified polymorphisms on the
interaction with RAD51 protein and discuss the poten-
tial of applying synthetic lethality in the treatment of
canine mammary tumors.

Main text
Mechanisms for reduced BRCA2 expression in dogs
Rivera et al. showed that canine BRCA2 is associated
with benign and malignant mammary tumors [22]. Out
of 10 other human breast cancer genes, BRCA2 (and
BRCA1) stood out as contributing to the risk of canine
mammary tumors in the English springer spaniel [22].
Thus, Yoshikawa et al. later investigated the mRNA

levels of BRCA2 in canine mammary tumor samples
compared to mammary gland samples and found a
significantly reduced level in the tumor samples, sug-
gesting that low expression of BRCA2 contributes to
mammary tumor development in dogs [23]. In con-
trast, a study conducted by Ripoli et al. did not show
a significant difference in BRCA2 gene expression
levels in between canine healthy tissue, malignant and
benign tumors from fresh frozen samples [34]. How-
ever, in cases where a lower expression of BRCA2 is
observed, what are the mechanisms triggering the
tumor development?
BRCA2 mRNA levels seem to be likely reduced as

result of a mutation occurring in the promoter region
of the BRCA2 gene, as it was suggested by previous re-
search using human samples [35, 36]. For instance,
Maia et al. identified haplotypes having an impact on
the expression profile of breast cells [35]. They showed
several variants involved in altering the binding of tran-
scription factors and mapped them to the promoter and
two intronic regulatory elements of BRCA2. Thus, single
nucleotide polymorphisms (SNPs) in the vincinity of the
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human BRCA2 gene seem to disturb the expression levels
of BRCA2 mRNA and increase the breast cancer risk. An-
other mechanism that may reduce human BRCA2 expres-
sion is nonsense-mediated mRNA decay (NMD), a post-
transcriptional quality control mechanism that ensures
transcriptome fidelity by eliminating mRNAs contain-
ing premature termination codons (PTCs), avoiding the
synthesis of truncated proteins [37]. Ware et al. found
that in the human BRCA2 gene, some PTC-induced
mutations, following alternative splicing, were associ-
ated with NMD [38]. Yoshikawa et al. investigated pos-
sible reasons for this reduction in expression in canine
BRCA2 mRNA levels [23]. After identification and se-
quencing of the BRCA2 promoter region, the authors
first highlighted that activity of the canine and human
BRCA2 promoters were comparable, though some cis-

elements in human BRCA2 promoter were not con-
served. Additionally, variations located near the corre-
sponding site of a human BRCA2 cis-element were
found (nine allele types identified), but none of these
alleles seemed to alter the canine BRCA2 promoter
activity. Second, they examined whether the NMD
system induced by PTCs was triggering BRCA2 level
reductions. They detected two types of splice variants
(they form the PTCs) in eight canine mammary
tumor samples. One of the variant induced a frame-
shift mutation and PTC that could lead to NMD [23].
In conclusion, a possible mechanism for reduced

BRCA2 mRNA levels in canine tumors is nonsense-
mediated mRNA decay. However, it is not yet com-
pletely clear whether mutations in the BRCA2 promoter
region are involved.

Fig. 1 Simplified steps leading to BRCA2-RAD51 interaction after a break, depending on the BRCA2 mutation status. After formation of the DSB,
DNA resection is dependent on BRCA1. BRCA2 then localizes RAD51 to the DNA, and RAD51 is loaded onto RPA-coated DNA to invade the DNA
double helix. When the BRCA2 gene is mutated, and therefore the BRCA2 protein deficient, RAD51 cannot be efficiently localized onto DNA
(figure based on: Wooster R. et al., 1995; Prakash R. et al., 2015; Shailani A. et al., 2018 [25, 27, 28])
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Polymorphisms found in the canine BRCA2 gene
The first finding of a polymorphic marker for canine
BRCA2 was made by Yoshikawa et al. in 2005 (all
following polymorphisms are summarized in Table 1)
[39]. In their study, they found a single insertion/dele-
tion polymorphism in the nuclear localization signal 2
(NLS2) of canine BRCA2, named 10204ins/delAAA.
These nuclear localization signals (NLS1, 2 and 3) were
shown in humans to have a role in the mislocalization of
BRCA2 and thus in tumorigenesis in humans, as BRCA2
protein needs to be translocated from the cytoplasm to
the nucleus to act in DNA damage repair [44, 45]. They
showed that the NLS2 variation 10204insAAA causes an
amino acid change, which enhances nuclear localization
[39]. Their study further suggests that the translocation
efficiency of BRCA2 may be associated with mammary
tumor morbidity in dogs, because the morbidity rate of
dogs was higher with AAA insertion than with AAA
deletion [39].
In a subsequent study made to investigate a suitable

polymorphic marker for loss of heterozygosity, Yoshi-
kawa et al. reported other polymorphisms [40]. Consid-
ering the genomic sequences of the exon 27 regions of
mammary-tumor bearing and tumor-free dogs, they
found four novel SNPs in addition to 10204ins/delAAA,
some of them closely located to NLS3 [40].
The authors further concluded that this marker is not

sufficient for an adequate loss of heterozygosity analysis
of BRCA2. They investigated the establishment of novel
polymorphic markers: from canine mammary tumors,
they were able to highlight three novel genetic markers
with high heterozygosity rates [41]. Because the hetero-
zygosity rates were greater than 50%, they were sufficient
to analyze the loss of heterozygosity. Additionally, they
also report the first loss of heterozygosity in canine

BRCA2, identified from a canine mammary tumor. In
this dog, four novel missensse variations, one insertion
variation and one silent variation were found, causing
probably detrimental mutations.
Overall, genetic variations of canine BRCA2 comprised

SNPs, insertions and deletions. However, both coding
and non-coding SNPs have perhaps a role in tumorigen-
esis, affecting either protein function or transcription. By
comparing sequences from mammary tumors and
healthy mammary glands, Enginler et al. showed the ex-
istence of two SNPs in exon 24 and exon 27 of BRCA2,
showing a significant association of exon 24 polymorph-
ism in canine mammary tumors [21].
In addition, Hsu et al. investigated variations of exon 11

in malignant mammary tumors [42]. Exon 11, in both
humans and dogs, is the largest exon and encodes the BRC
repeats domains, conserved motifs that are crucial for inter-
action with Rad51 [46]. They identified multiple variations
among 11 canine mammary tumors. These SNPs were for
the most part missense mutations that could elicit struc-
tural changes in BRCA2 protein and silent mutations that
do not provoke amino acid alteration [42] but may influ-
ence protein folding, as it was previously proposed [47, 48].
Maués et al. investigated canine BRCA2 exon 11 as well,

evaluating the frequency of exon 11 SNPs in bitches with
mammary tumors [49]. In their study, 97.9% of the bitches
were affected by one to three SNPs in BRCA2 exon 11,
suggesting a correlation between these gene polymor-
phisms and carcinogenesis [49].
Furthermore, Yoshikawa et al. investigated polymor-

phisms in the BRC repeats region of the BRCA2 gene
[43]. They showed the T1425P and K1435R mutations
in BRC3 in canine mammary tumor samples. As men-
tioned, the BRC repeats region has an important role in
the interaction with the DNA repair protein RAD51,

Table 1 Variations found in the canine BRCA2 gene

Type of variation Name/designation Localization Studied material Reference

1 insertion/deletion 10204ins/delAAA NLS2 (exon 27) Blood samples of tumor-free dogs [39]

2 missenses 10398A > G (Y3397C)
10421A > C (T3405P)

NLS3 (exon 27) Blood/tissue samples of mammary
tumor-bearing and tumor-free dogs

[40]

4 missenses H143R, C386W, E643K, K1435R histone acetyltransferase (HAT),
P300/CBP-associated factor
(P/CAF), BRC3

Tissue samples of canine mammary tumor [41]

1 insertion 10,204 insertion AAA NLS3 Tissue samples of canine mammary tumor [41]

1 silence 7138C- > T Fanconi anemia group G
protein (FANCG)

Tissue samples of canine mammary tumor [41]

1 SNP ss748770619 Exon 24 Blood samples of canine mammary tumors [21]

1 SNP ss748770620 Exon 27 Blood samples of canine mammary tumors [21]

1 SNP 2414 G > A Exon 11 Tissue samples of canine mammary tumors [42]

2 missenses 2414 A > G 2383 A > C BRC4 (exon 11) Tissue samples of canine mammary tumors [42]

2 missenses T1425P K1435R BRC3 In silico analysis derived from
mammary tumors

[43]
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which is why mutations in this regions may imply a fur-
ther effect on DNA repair, as we will address later on.

How do these polymorphisms affect the interaction with
RAD51?
The BRCA2 protein plays a key role in genome stability
by recombining DNA and repair of DNA DSBs. BRCA2
interacts with the RAD51 protein, which catalyzes hom-
ologous DNA pairing and DNA strand exchange, and
overexpression of BRCA2 and RAD51 is associated with
poor prognosis in human cancer. The Rad51 gene has
been identified also in dogs [50–52]. Ochiai et al. showed
that canine BRCA2 protein interacts with canine RAD51
through the BRC repeats (BRC1–8, located in exon 11)
and the extreme C-terminus [29, 30].
In addition, they later analyzed polymorphisms in

canine BRC3 and in dogs of multiple breeds: they
showed significant reduction of binding strength of
BRC3–4 containing the a specific allele version (1425P)
with RAD51 (all following polymorphisms summarized
in Table 2) [53]. More recently, Ozmen et al. investi-
gated the sequence variations of BRC1-BRC8 and C-
terminus of canine BRCA2 [54] and found multiple
SNPs in exon 11 and one insertion/deletion polymorph-
ism in exon 27. Further in silico investigations added to
speculation that a specific variation in BRC3 is the most
likely to affect the RAD51 binding strength. Conse-
quently, variations affecting the binding of RAD51 are
critical, as they do not allow a proper BRCA2-RAD51
binding and further provoke an impaired repair through
homologous recombination [54].

Potential of applying this knowledge to canine mammary
tumor therapy
Surgery is widely the most accepted treatment for dogs
with mammary tumors, as it is the most effective for local
tumor control [9, 55]. However, as a surgical treatment
can be unsuitable because of the presence of metastases,
chemo- and radiotherapy are reasonable additional ther-
apies. There is, however, limited information about their
efficacies in canine mammary tumors and tumors often
present resistances [9, 12]. As a consequence, there is an
interest to investigate additional treatments to increase
the efficacy of chemo- and radiotherapeutics, and take
advantage of mutations observed in mammary cancer in

dogs. Therefore, the group of pharmacological drugs of
PARP inhibitors could be investigated for treatment of
mammary tumors in canine patients.
PARPi are inhibitors of the PARP1 protein, critical for

SSB repair. If PARP1 is inhibited, SSBs induced by
radiation or alkylating agents will be converted to DSBs
during replication, eventually triggering cell death [24,
33, 56]. PARPi, e.g., olaparib, rucaparib, and niraparib,
are compounds that “trap” PARP1 on DNA, preventing
autoPARylation and PARP1 release from the site of
damage. Consequently, they hamper the catalytic cycle
of PARP1, and differ in their ability to trap, some being
more potent than other PARPi [57–59]. PARPi were first
used in human clinical trials testing the rucaparib/temo-
zolomide combination in melanoma human patients
[60] (following studies are summarized in Table 3). New
studies arose based on preclinical data showing the syn-
thetic lethality interaction between BRCA2 mutations
and PARP inhibition [33, 56]. In 2009, a phase I clinical
trial of olaparib was started, including ovarian and breast
tumor patients (among other tumor types included) with
germline BRCA1 or BRCA2 mutations. Sixty-three per-
cent of the patients with mutations experienced a clin-
ical benefit, thus showing the clinical effect of synthetic
lethality using PARPi [61]. This was further confirmed
with phase II trials [62–64] and as a consequence, ola-
parib was recently approved for ovarian cancer [65],
followed by other PARPi such as rucaparib, niraparib
and talazoparib [66–68]. Unfortunately, as with other
targeted therapies, acquired resistance to PARPi therapy
is observed in most patients with advanced cancer [24].
Mechanisms developed by cancer cells to resist include
inactivation of DNA repair proteins [69, 70] and second-
ary mutations, both leading to the restoration of the
homologous recombination function [71, 72] and in
some cases, leading even to restoration of PARP1 [73].
Another combination therapy has been shown to

interfere with DNA repair pathways: hyperthermia. Con-
trolled heat applied to tumors prior to radiotherapy is
used clinically to increase the efficiency of the radiation
treatment. Amongst other changes in the microenviron-
ment including increased blood perfusion [74–76], one
reported cellular effect of hyperthermia is the inhibition
of DNA repair mechanisms. There is evidence of the
influence of heat on several DNA repair pathways,

Table 2 Variations affecting the interaction with RAD51

Type of variation Name/designation Localization Effect Studied material Reference

1 polymorphism 1425P allele BRC3–4 Reduced binding strength
with RAD51

Blood samples of tumor-
free dogs

[53]

19 SNPs amongst others,
c.2383A > C (T1425P)

BRC1-BRC8, C-terminus
region (exon 11)

Affects RAD51 binding
strength

Tissue samples from
canine mammary tumors

[54]

4 substitutions S1078W, A1108G,
T1425P, T1559P

BRC3 Affects RAD51 binding
strength

In silico analysis derived
from mammary tumors

[54]
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including the homologous recombination pathway [77–79].
Krawczyk et al. demonstrated that mild hyperthermia
(41 °C applied with an incubator for a duration of 60min)
inhibits homologous recombination: they showed in par-
ticular that hyperthermia delays formation of IRIF (irradi-
ation induced foci) by RAD51 and BRCA2 proteins,
possibly by inducing temporary but robust degradation of
BRCA2 [79]. Therefore, degradation of BRCA2 by heat
carries the promise that PARPi could be successfully used
in much broader patient populations, as it will temporarily
inactivate homologous recombination, regardless of the pa-
tient’s genetic background [78, 80, 81]. Oei et al. recently
investigated triple modality therapy using hyperthermia,
radiotherapy and PARPi in BRCA2-proficient and -deficient
mouse cell lines. In all cell lines tested, the addition of heat
to radiotherapy and PARPi resulted in the lowest cell sur-
vival, the highest levels of DNA damage and apoptotic
levels compared to duo-modality treatments [81].
As of today, no PARPi has been approved or is rou-

tinely used for the treatment of cancer in dogs. HowSaba
et al. reported in 2016 their investigations on canine
treatment with PARPi in a study using iniparib [82] (we
must mention, though, that iniparib was reportedly
shown not to be a bona fide PARPi [83–85]). In their
work, inaparib could be safely administrated to dogs:
they were treated with inaparib alone and in combin-
ation with carboplatin. Plasma and tumor tissue sam-
ples were collected before and at several times after
treatment in order to perform pharmacokinetic (PK)
and biologic analysis.

Additionally, although PARPi have extended patients’
progression-free survival in the clinical trial setting, they
are also associated with high costs. For instance, in 2017,
a 30-day supply of olaparib amounted to $13,000, plus
additional costs for therapy monitoring and management
of adverse events [86]. To investigate the benefit of add-
ing PARPi therapies that are efficient - to a certain point,
as resistances are common and develop through multiple
mechanisms - but also costly and toxic, researchers have
performed studies on their cost-effectiveness [86, 87]. In
2018, Zhong et al. showed that olaparib and niraparib
may not be cost-effective treatments; indeed, they
determined an ICER value (Incremental Cost-Effectiveness
Ratio, a statistic tool which summarizes the additional cost
of an outcome gained by one intervention compared with
another) of $250,000 per PFS (Progression-free survival)
life-year [86]. When considering a reference value of
society’s willingness to pay of $100,000 per PFS life-year,
olaparib and niraparib are not considerable options.
Toxicities of the different available PARPi overlap, and

some differences exist. The most common adverse side
effects include anemia, fatigue, nausea and neutropenia
[88]. For instance, the SOLO2/ENGOT-Ov21 phase 3
trial testing olaparib resulted in patients suffering from
anemia (18%), fatigue (4%), neutropenia (4%) and ab-
dominal pain (5%). To limit the seriousness of the
adverse effects, the researchers interrupted doses (45%),
reduced them (25%) or discontinuated treatment (11%)
[89]. PARPi are not completely harmless and show a di-
versity of relevant adverse effects. However, as previously

Table 3 Summary of mentioned clinical studies involving PARP inhibitors

PARP inhibitor tested Cancer type Number of patients
receiving the drug

Dose Efficacy Major side effects
attributable to the drug

Reference

Rucaparib
(/temozolomide)

Metastatic
melanoma

46 150–200mg/m2/day Clinical benefit
for 34.8% of the
patients

Anemia (87%),
constipation (48%),
fatigue (54%)

[60]

Olaparib Solid tumors
(ovarian: 35%)

60 10 to 600mg
twice daily

Clinical benefit for
63% (in the BRCA
mutations carriers
patients)

Nausea (32%), fatigue
(30%), vomiting (20%)

[61]

Olaparib Breast Cohort 1: 27 400 mg twice daily ORR*: 41% Fatigue (56%), nausea
(56%), vomiting (22%)

[62]

Cohort 2: 27 100 mg twice daily ORR*: 22% Nausea (41%),
fatigue (30%),

Olaparib Ovarian Cohort 1: 33 400 mg twice daily ORR*: 33% Nausea (48%), fatigue
(33%), anemia (18%)

[63]

Cohort 2: 24 100 mg twice daily ORR*: 13% Nausea (37%),
fatigue (38%),

Olaparib Ovarian, breast,
pancreatic and
prostate

298 400mg twice daily Tumor response
rate*: 26.2%

Fatigue (60%), nausea
(60%), vomiting (37%)

[64]

Olaparib Ovarian 223 400mg twice daily ORR*: 34% Anemia (34%), nausea
(64%), fatigue (66%)

[65]

ORR* (Objective Response Rate): according to RECIST, with confirmation of response at least 28 days apart by CT scan and RECIST. Tumor response rate*:
according to RECIST, with confirmation of response at l east 28 days apart
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mentioned, Saba et al. showed that iniparib could be ad-
ministrated safely to dogs, at above dosages comparable
to those used in humans [82]. In the 19 dogs, toxicity
did not increase beyond carboplatin toxicity alone. How-
ever, more clinical studies administrating PARPi to treat
breast or ovarian canine cancer are clearly needed to
rightly report PARPi-related adverse effects in canine
patients.
Finally, PARPi would represent an additional cost to

the treatment of dogs against cancer, which is a factor
should not be overlooked. For a dog, the treatment
would cost the owners an additional $10,000–15,000 per
month. Unfortunately, the majority of pet owners do not
have insurance for their dog and have to bear the costs
on their own. As chemo- and radiotherapy for canine
patients often amounts to several thousand dollars, this
already represents a burden for the owners of these pa-
tients. Therefore, the value of using PARPi for canine
patients is questionable due to financial reasons, espe-
cially without a larger efficiency added to the common
therapy.

Conclusions
There is evidence that canine BRCA2 gene alterations
are associated with mammary tumors. Indeed, mutations
in the BRCA2 gene were found in dogs, and they seem
to affect interactions with RAD51 and impact DNA re-
pair [22, 23, 35]. Reduced expression levels of BRCA2
have been evidenced in canine mammary tumors [90,
91] and are caused by different reported mechanisms.
First, mutations of BRCA2 lead to different genetic vari-
ations of the gene and disturb mRNA levels [35, 36].
Second, non-sense mediated mRNA decay is described
to be involved in the reduction of BRCA2 expression
[23, 37]. Thus, polymorphisms in the canine BRCA2
gene, in particular in the NLS regions, are involved in
the mislocalization of BRCA2. Furthermore, variations in
NLS2 were shown to affect translocation of BRCA2 and
were associated with the morbidity rate of the studied
dogs [39]. Additionally, polymorphisms in the BRC re-
peats region (where the interaction with RAD51 takes
place) of canine BRCA2 are reported [43]. These varia-
tions are critical: without a proper binding of BRCA2
and RAD51, repair through homologous recombination
is impaired [54].
PARPi compounds, i.e. olaparib, rucaparib, and nira-

parib, are based on the synthetic lethality interaction be-
tween BRCA2 mutations in some patients, and PARP
inhibition [24, 33, 56]. First investigations in dogs show
that one type of PARPi, iniparib, is tolerable to them
[82]. Unfortunately, no more investigations about use of
PARPi in canine patients have been performed to date.
Before these therapies are administered in combination
with chemo- and radiotherapy in animal clinics, more

investigations are needed. In addition, PARPi represent a
non-negligible addition to the already-high cost of can-
cer treatment for owners of dogs.
Nevertheless, mutations of the BRCA2 gene in dogs

can be exploited for both diagnosis and treatment of
mammary tumors in canine patients and to further
advance cancer treatment in veterinary oncology.
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