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Abstract

Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) causing
coronavirus disease 2019 (COVID‐19) has infected 10millions of people across the

globe, and massive mutations in virus genome have occurred during the rapid spread of

this novel coronavirus. Variance in protein sequence might lead to a change in protein

structure and interaction, then further affect the viral physiological characteristics,

which could bring tremendous influence on the pandemic. In this study, we in-

vestigated 20 nonsynonymous mutations in the SARS‐CoV‐2 genome in which in-

cidence rates were all ≥ 1% as of September 1st, 2020, and then modeled and analyzed

the mutant protein structures. The results showed that four types of mutations caused

dramatic changes in protein structures (RMSD≥ 5.0 Å), which were Q57H and G251V

in open‐reading frames 3a (ORF3a), S194L, and R203K/G204R in nucleocapsid (N).

Next, we found that these mutations also affected the binding affinity of intraviral

protein interactions. In addition, the hot spots within these docking mutant complexes

were altered, among which the mutation Q57H was involved in both Orf3a–S and

Orf3a–Orf8 protein interactions. Besides, these mutations were widely distributed all

over the world, and their occurrences fluctuated as time went on. Notably, the in-

cidences of R203K/G204R in N and Q57H in Orf3a were both over 50% in some

countries. Overall, our findings suggest that SARS‐CoV‐2 mutations could change viral

protein structure, binding affinity, and hot spots of the interface, thereby might have

impacts on SARS‐CoV‐2 transmission, diagnosis, and treatment of COVID‐19.
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1 | INTRODUCTION

The ongoing outbreak of coronavirus disease 2019 (COVID‐19), caused
by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), has
been characterized as a pandemic by the World Health Organization

(WHO). SARS‐CoV‐2 is a positive‐sense single‐stranded RNA virus and

belongs to betacoronavirus,1 whose genome has ~30,000 nucleotides,

containing 12 open‐reading frames (ORFs), encoding 4 structural

and 22 nonstructural proteins. The structural proteins include spike

protein (S), envelope protein (E), membrane protein (M), and nucleo-

capsid protein (N), while the nonstructural proteins (nsp) contain

nsp1–16 encoded by ORF1ab and six accessory proteins, which are

Orf3a, 6, 7a, 7b, 8, and 9b.2 It is known a virus that undergo evolution

and natural selection, and most of them evolve rapidly. As reported, the
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evolution rate of a typical RNA virus is about 10−4 substitutes per year

per site,3 and mutations could occur during each replication cycle. The

high mutation rates of RNA viruses, coupled with short generation

times and large population sizes, allow viruses to evolve rapidly and

adapt to the host environment. The rapidity of viral mutation also

causes problems in the development of successful vaccines and antiviral

drugs. With the continued spread of SARS‐CoV‐2 around the world,

thousands of mutations have been identified, some of which have

relatively high incidences, but their potential impacts on virus char-

acteristics still remain unknown.

Among all the mutations, nonsynonymous mutations cause amino

acid substitutions, then could alter virus protein structures, which

might affect viral reproduction and give rise to false‐negative diag-

noses and drug resistance. It is reported that, after depletion of nine

amino acids in SARS‐CoV‐2 Orf6, its protein structure was dramati-

cally changed and its transmembrane localization was also shifted,

which would lead to interferon (IFN) resistance during antiviral

therapy.4 Additionally, along with the occurrence of S139A and F140A

mutations, the structure of SARS‐CoV 3CLpro altered remarkably,

followed by the decrease of its enzyme activity.5 Furthermore, mod-

ified protein structure begotten by mutations can also affect

protein–protein binding, and intraviral protein–protein interactions

are often indispensable in assembly and release of coronavirus. In

SARS‐CoV, the interactions between structural proteins are essential

for its maturation,6 while the binding between nonstructural proteins

guarantees the completion of virus replication.7 Besides, mutations

I529T and D510G in MERS‐CoV S reduced the binding affinity of the

receptor‐binding domain (RBD)‐CD26, respectively, which impaired

the virulence of the virus.8 However, it is still unclear whether some

SARS‐CoV‐2 mutations can lead to the changes in protein structures,

protein–protein interactions, protein function, and even virus infec-

tion, which could strike on COVID‐19 epidemic control.

In this study, we selected the nonsynonymous mutations of

SARS‐CoV‐2 with ≥1% incidence, predicted and compared their

protein structures, and found that four types of mutations had sig-

nificant impacts on protein structures, which resulted in remarkable

changes in binding affinities and hot spots between virus proteins.

Besides, statistical analyses on mutation rates exhibited dynamic

changes in the process of time, and also demonstrated that these

four SARS‐CoV‐2 variants were widely distributed and had relatively

high incidences in certain countries. These findings on SARS‐CoV‐2
mutations would be very helpful for better understandings of this

virus and dealing with the complicated situations in COVID‐19 pre-

vention, diagnosis, and treatment.

2 | METHODS

2.1 | Online resources

All information about SARS‐CoV‐2 genomes were obtained from the

China National Center for Bioinformation 2019 Novel Coronavirus

Resource (CNCB 2019nCoVR; https://bigd.big.ac.cn/ncov).

2.2 | Protein structure prediction

Protein structure of control SARS‐CoV‐2 S was from C‐I‐TASSER
(https://zhanglab.ccmb.med.umich.edu/C-I-TASSER/2019-nCoV/),9

while other SARS‐CoV‐2 protein structure models were predicted by

I‐TASSER.10 For each protein, five models were generated and the

model with the highest C‐score was selected as the best one and used

for the following analysis.

2.3 | Protein structure alignment

The mutant protein structures were aligned to corresponding control

ones by using the TM‐align web‐server (https://zhanglab.ccmb.med.

umich.edu/TM-align/).11 Random structural similarity was de-

termined by TM‐score between 0.0 and 0.3 and root‐mean‐square
deviation (RMSD) ≥ 5.0 Å.11,12

2.4 | Molecular docking and hot spots prediction

Protein–protein docking was performed with the HADDOCK web‐
server (http://haddock.chem.uu.nl/).13 The structure was chosen ac-

cording to the HADDOCK score, and a complex binding affinity was

calculated by PRODIGY.14,15 Hot spots within protein–protein in-

terfaces were predicted using Knowledge‐based FADE and Contacts

Server (KFC, https://mitchell-web.ornl.gov/KFC_Server/index.php).16

Data visualization was accomplished by PyMOL.

3 | RESULTS

3.1 | SARS‐CoV‐2 mutations led to altered protein
structures

As the COVID‐19 pandemic is spreading around the world, more

than 10,000 SARS‐CoV‐2 mutations have been evolved. To in-

vestigate these SARS‐CoV‐2 nucleotide polymorphisms, first, one of

the earliest reported SARS‐CoV‐2 genome sequences (GenBank ac-

cession number: MN908947.3) was chosen as a control, then 20

nonsynonymous mutations with frequency ≥1% were selected from

CNCB 2019nCoVR database (see Section 2), as of September 1st,

2020, which were located in 10 different SARS‐CoV‐2 protein‐coding
regions (Table S1). Specifically, there was one amino acid substitution

in nsp5, nsp6, or nsp7. Meanwhile, two single substitutions were

observed in nsp2, nsp12, nsp13, S, Orf3a, or Orf8, among which

mutation D614G in S had the highest incidence (43.27%), and five

single ones were found in N. In particular, there were also some

mutation combinations, such as P504L/Y541C in nsp13 and R203K/

G204R in N (Table S1). Briefly, there were 17 types of mutants

composed of 20 mutations with ≥1% incidence, which included one

nsp5, nsp6, nsp7, or nsp13 mutant, two nsp2, nsp12, S, Orf3, or Orf8

mutants and three N mutants.
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To examine whether these mutations had effects on protein

structures, three‐dimensional (3D) structures of each mutant and its

reference protein were predicted with I‐TASSER (Table S1),10 and

the structural similarity between mutant and control protein were

measured by RMSD.11 After structural alignment, we found that four

mutants exhibited a significant difference in protein structural mor-

phology from their control ones (RMSD ≥ 5.0 Å), which were Q57H

Orf3a, G251V Orf3a, S194L N, and R203K/G204R N (Figure 1 and

Table S1).

3.2 | SARS‐CoV‐2 mutations resulted in the changes
in protein–protein interactions

The SARS‐CoV‐2 proteins have been shown to display characteristic

SARS‐CoV features.17,18 So here, we referenced SARS‐CoV protein

combined patterns and explored the effect of these SARS‐CoV‐2
mutations related to mutant structure alterations on intraviral pro-

tein interaction, which was known as a rate‐limited procedure for

virus reproduction.19–22 Among 16 mutant docking pairs, five mutant

complexes had significantly higher binding affinity than control ones

(Figure 2). Differently, another four mutant pairs showed weakened

binding affinity in comparison with the control, and there was no

obvious change in the remaining seven groups in which absolute

values of ΔΔG (=Gcontrol −ΔGmutant) were <1 kcal/mol (Figure 2).

Strikingly, the binding affinity of Q57H Orf3a–S complex showed the

greatest increase (ΔΔG = 4.2 kcal/mol), while the most dramatic de-

crease was observed in the binding affinity of G251V Orf3a–M

complex (ΔΔG = −2.3 kcal/mol; Figure 2A). Moreover, in the process

of Orf3a interacting with M or S, Q57H mutant pairs showed en-

hanced binding affinity, while G251V mutant pairs had attenuated

ones as just mentioned (Figure 2A), suggesting that diverse amino

F IGURE 1 Comparisons of protein structures
between SARS‐CoV‐2 control and mutant
proteins. The aligned structures of control ones

and Q57H Orf3a (A), G251V Orf3a (B), S194L N
(C), and R203K/G204R N (D) are shown in blue
(control, Ctrl) and warm pink (mutant) with the

value of RMSD below. N, nucleocapsid protein;
RMSD, root‐mean‐square deviation; SARS‐CoV‐2,
severe acute respiratory syndrome coronavirus 2
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acid replacements in the same protein have given different

consequences on binding affinity.

3.3 | SARS‐CoV‐2 mutations caused varied hot
spots within protein complexes

Hot spots are functional sites within protein‐interacting inter-

faces, which are conservative and often taken as attractive drug

targets via preventing protein–protein interactions. To further

study the influence of SARS‐CoV‐2 mutations on protein‐binding
hot spots, we predicted the hot spots in nine mutant complexes

with altered bind affinity using the KFC2 server (Figure 3, S1, S2,

S3, and S4). Surprisingly, the results showed that the binding hot

spots on mutant protein–protein interfaces were notably differ-

ent from control ones, and few identical ones were shared by both

the mutant and control complexes. In particular, Q57 residue in

control Orf3a was not involved in the protein‐binding interfaces,

but amino acid substitution Q57H became a hot spot in both

Orf3a–S and Orf3a–Orf8 complexes (Figure 3). These results in-

dicated that SARS‐CoV‐2 mutations might destroy drug‐targeting

sites and lead to therapy failure by shifting the protein‐binding
interface.

3.4 | SARS‐CoV‐2 mutations were globally
distributed with dynamic incidences over time

The changes in SARS‐CoV‐2 proteins caused by mutations can affect

virus transmission, pathogenesis, and immunogenicity. And with the

spread of the COVID‐19 pandemic, the incidence and lethality of

SARS‐CoV‐2 infection varied from country to country. Hence, to link

SARS‐CoV‐2 mutations and COVID‐19 prevalence, we analyzed the

occurrence of these four types of mutations (Q57H and G251V in

Orf3a, S194L and R203K/G204R in N) based on CNCB 2019nCoVR.

To avoid deviation caused by insufficient sample size, we screened

out the countries or regions where the number of SARS‐CoV‐2
genome sequences submitted was no more than 100, as of Septem-

ber 1st, 2020. The statistical results showed that SARS‐CoV‐2 mu-

tations with high incidences were distributed nearly all over the

world with dynamic occurrences over time (Figure 4). The frequency

of all these mutations was relatively high in some countries

F IGURE 2 Protein‐binding affinity in SARS‐CoV‐2 mutant complexes. Bars show Gibbs‐free energy (ΔG) for representing the binding affinity
in Orf3a (A) and N (B) relevant complexes. Nsp3N: 1‐595aa of nsp3, Ubl1: 1‐112aa of nsp3. E, envelope protein; M, membrane protein;
N, nucleocapsid protein; SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2; S, spike protein
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(Figure 4). Among them, we noticed that the incidence of R203K/

G204R in N was as high as 86.97% in Bangladesh; meanwhile, it was

also over 50% in the other four countries, with a trend of escalation

(Figure 4D). Analogously, the frequency of Q57H in Orf3a in Finland,

Egypt, South Korea, and Denmark had shown high incidences, which

were 69.4%, 67.26%, 59.72%, and 58.03%, respectively (Figure 4A).

4 | DISCUSSION

The mutation is one of the major mechanisms of how viruses undergo

continuous change as a result of genetic selection. Although most of

the point mutations are neutral and do not change the protein that

the gene encodes, yet there are always some occasionally favorable

ones that can help viruses confer evolutionary advantages such as an

abrupt epidemic outbreak. In addition, the single amino acid sub-

stitution would alter protein structure as well, and it has been re-

ported that G104E mutation in SARS‐CoV nsp9 could prevent viral

replication via changing protein structure and further destroying the

helix–helix interface.23 In the same vein, masses of single nucleotide

polymorphisms (SNPs) have emerged in SARS‐CoV‐2 genomes. Ac-

cording to the data in CNCB 2019nCoVR, as of September 1st, 2020,

we screened 20 SARS‐CoV‐2 nonsynonymous mutations with ≥1%

incidence, which were categorized into 17 types of mutation com-

binations. After structural alignment, four protein mutants (Q57H

Orf3a, G251V Orf3a, S194L N, and R203K/G204R N) were found

displaying different structures from control ones, which corre-

sponding mutations were located in the coding region of N and Orf3a

known as essential proteins for coronavirus assembly24 and

cytotoxicity.25 Remarkably, the incidences of Q57H in Orf3a and

F IGURE 3 Hot spots within interactions between SARS‐CoV‐2 Orf3a and S or Orf8. The hot spots in Ctrl Orf3a–S (A), Q57H Orf3a–S (B),
G251V Orf3a–S (C), Ctrl Orf3a–Orf8 (D), or Q57H Orf3a–Orf8 (E) complexes are shown as sticks. Control and mutant Orf3a are shown in
violet, and S or Orf8 is shown in marine or cyan. The residues of Orf3a and docking proteins are colored in red and black, respectively. Asterisk

(*) represents a mutated residue. N, nucleocapsid protein; SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2; S, spike protein
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F IGURE 4 Temporal and spatial analyses of SARS‐CoV‐2 mutation incidences. Bars show the incidences of Q57H (A) and G251V (B) in

Orf3a, S194L (C) and R203K/G204R (D) in N at different time periods or in the top five countries and globe (total), as of September 1st, 2020.
N represents the all available nucleotide sequences of the country or globe submitted. SARS‐CoV‐2, severe acute respiratory syndrome
coronavirus 2
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R203K/G204R in N were quite high (15.12% and 17.84%), which

could be a sign that these mutations are correlated with enhanced

virulence, evolvability, and traits considered beneficial for the virus.

However, it is interesting that some mutations, such as P323L in

nsp12 and D614G in S, with even much higher occurrence rates

(43.21% and 43.27%) were found with no significant impact

on protein structure, which indicates they maybe could affect

virus characteristics via altering RNA second structure,26 protein

stability,27 or partial structure,28 instead of integral protein struc-

ture. For instance, a study reported that D614G in S could lead to

increased virus infectivity by eliminating side‐chain hydrogen bond,

which was only a tiny change in overall protein structure,29 and our

data also showed a slight structural difference between control and

D614G mutant (RMSD = 2.33 Å). Therefore, more research about

SARS‐CoV‐2 mutations are worth doing to determine whether these

structure alterations of Orf3a or N could influence protein function

and even virus infectivity.

Besides the protein structure alteration, the mutations in the

SARS‐CoV‐2 genome could also affect protein–protein interactions.

With molecular docking and ΔG value calculation, we found that

protein‐binding affinity changed between each of all four above

mutants and their intraviral docking proteins, and these protein

interactions in SARS‐CoV have been confirmed to play indis-

pensable mediating roles in virus replication and infected

ability.6,25,30 Moreover, the combination of SARS‐CoV Orf3a and S

can prevent the release of premature viral RNA,31 and Orf3a–M

complex is localized in Golgi,32 where virus particles are assembled

by budding.33 Our results showed stronger binding affinities in

Q57H Orf3a–M and Q57H Orf3a–S complexes, but weaker affi-

nities in G251V Orf3a–M and G251V Orf3a–S complexes. Mean-

while, considering the great disparity between the incidences of

Q57H in Orf3a (15.12%) and G251V in Orf3a (2.25%), it could be

speculated that the virus assembly and transmission would be dis-

proportionately affected by different Orf3a mutations. Further-

more, some research indicated that the interaction between N and

E had a function in the SARS‐CoV virus release,21,34,35 and the N–M

complex was necessary for the assembly of coronavirus.22 There-

fore, the enhanced interaction between each SARS‐CoV‐2 N mutant

(S194L or R203K/G204R) and E might promote virus release, while

decreased binding affinity of S194L N–M might attenuate virus

assembly. Besides, SARS‐CoV N can bind to heterogeneous nuclear

ribonucleoprotein A1 (hnRNP A1) of host cells and their interaction

plays a regulatory role in the synthesis of SARS‐CoV RNA,36 so it

would be interesting to detect whether these N mutants would

interfere with the combination of proteins in host cells. What is

more, the hot spots that play critical roles in protein–protein in-

teractions can be used as drugs target,37 and our results demon-

strated that all these selected SARS‐CoV‐2 mutations (Q57H and

G251V in Orf3a, S194L and R203K/G204R in N) had great influ-

ences on hot spots within protein combinations, which the changes

could have strong impacts on clinical treatment. Nevertheless, sci-

entific experiments are indispensable to clarify the impacts of these

mutations on virus characteristics, such as investigating mutated

virus protein interaction with its partners and analyzing the in-

fectivity of the mutated virus to host cells, which it is essential to

confirm the interference of SARS‐CoV‐2 mutations during the de-

velopment of vaccines or drugs.38 Previous experimental research

showed that Y195A mutation in SARS‐CoV M was found to disrupt

its interaction with S, resulting in a declined ability of virus

assembly.39 Accordingly, mutations of the virus could alter in-

traviral protein–protein interactions and the characteristics of the

virus, which illustrate that our results are valuable for providing

important proofs for future studies.

In the last several months, populations in more than 180 coun-

tries/regions have been affected by SARS‐CoV‐2, and the emergence

of mutations probably already makes important contributions to

virus adaption to new environments and selective pressures, which,

in turn, can impact transmissibility, pathogenesis, and im-

munogenicity of SARS‐CoV‐2.40 It has been reported that variant

SARS‐CoV‐2 genomes occurred in different areas.41–45 Our results

also showed that some mutations were widely distributed, and their

occurrence rates showed different dynamic fluctuations. Take

R203K/G204R in N as an example; this mutation combination with

increased incidence was found mainly in Europe till March 2020,46,47

while its high frequency also happened in Asian and African countries

as of September 2020. Although there is no reliable evidence for any

necessary link between SARS‐CoV‐2 mutations and epidemic out-

break in specific countries/regions, it is still particularly important to

certify the relevance of geographically aggregated mutations to

SARS‐CoV‐2 transmission and pathogenicity for effective contain-

ment of COVID‐19 outbreak.
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