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In response to extra- or intracellular

stresses, the cellular gatekeeper p53 is able

to integrate multiple diverse signals to

determine the outcome of cell fate, by

regulating the expression of numerous

responsive genes [1,2]. The tumor sup-

pressor p53 has been extensively investi-

gated in the field of cancer research [3],

however there are reports it has a broader

role in several other biological processes,

such as metabolism, reproduction, or the

immune response [1–4].

Bacterial and viral infections represent a

major type of cellular stress, triggering

different biological countermeasures, no-

tably mediated by the p53 pathway. In the

process of evolutionary adaptation to the

host environment, pathogens have devel-

oped diverse strategies to hijack and

exploit such host machinery. This is

particularly well-illustrated for viruses,

with many examples of virally induced

deregulation of the p53 pathway (e.g., E1B

of Adenoviruses; EBNA3C of Epstein-Barr

virus, NS1 of influenza viruses) [5–7].

Similar interplays have also been reported

for bacteria models, such as Salmonella or

Helicobacter infections [8,9]. The mecha-

nisms and biological significance underly-

ing regulation of p53 in the context of

infection are not fully understood and

often appear contradictory.

In addition to full-length p53, the TP53

gene physiologically expresses several

protein isoforms, due to the use of

alternative promoters, splicing sites, and

translational initiation sites (Figure 1A)

[10–12]. This constitutes an additional

layer of p53 regulation concomitant to

transcriptional, translational, and post-

translational regulatory mechanisms [10–

12]. Two of the most characterized

isoforms are D133p53a, which lacks the

entire transactivation domain and part of

the DNA-binding domain, and p53b,

within which the oligomerization domain

is replaced by 10 new amino acids

(Figure 1B) [10,11]. p53b has been shown

to modulate p53 transcriptional activity in

a promoter-dependent manner [13]. In

contrast, D133p53a acts as a modulator

of full-length p53 in response to stress,

inhibiting p53-mediated apoptosis and

G1 cell cycle arrest without inhibiting

p53-mediated G2 cell cycle arrest. This

suggests that D133p53a promotes p53-

dependent cell survival in response to

stress [14,15]. Moreover, in normal hu-

man fibroblasts, D133p53a inhibits

whereas p53b promotes p53-mediated

replicative senescence [16]. An additional

isoform has been described, Dp53, which

lacks part of the DNA-binding domain

and the nuclear localization signal

(Figure 1B) [12,17]. Dp53 was reported

to be transcriptionally active toward

specific p53 target genes and involved in

the intra-S phase checkpoint in UV-

damaged cells. However, the biological

activity and relevance of this isoform

remain controversial [13,18]. Figure 1C

shows a schematic overview of the

reported biological functions of the p53

isoforms.

Although several studies report on the

suppressive function of p53 isoforms and

related deregulation of their expression

in human cancers [18], investigations

into the putative role of p53 isoforms

and their regulation in pathogen infec-

tions have only recently begun. Three

pioneer reports, including ours, have

recently highlighted the role of p53

isoforms in epithelial cells infected by

different pathogens: a gram-negative

bacterium (Helicobacter pylori), a RNA,

and a DNA virus (influenza and Simian

virus 40, respectively) [19–21]. Despite

major differences in terms of models

and experimental strategies, these stud-

ies share some interesting preliminary

conclusions regarding a new facet of p53

isoform biology.

Within SV40 lytic infection, p53 is

targeted and inactivated by T-Ag, and

Dp53 has been identified as a new player

in SV40 replication by Rohaly and

colleagues. They revealed that an ATR–

DNA damage response pathway mediates

the phosphorylation and stabilization of

Dp53, enhancing its transcriptional activ-

ity in a promoter-dependent manner [19].

The activation of such an ATR–Dp53–

p21 pathway results in down-regulation of

cyclin A-Cdk2/1 (AK), maintaining the

host cell in S-phase, which consequently

favors viral amplification (Figure 2). Addi-

tionally, the same authors reported that

the ATR–Dp53–p21 pathway also increas-

es the subpopulation of host DNA poly-

merase a interacting with T-Ag, whose

initiation is a prerequisite of origin-depen-

dent viral replication [19].

In human lung epithelial cells, we have

investigated the roles of both D133p53a
and p53b isoforms in the context of

influenza virus infection [20]. Our results

have shown that infection differentially

modulates the expression of D133p53a
and p53b at both transcriptional and

posttranscriptional levels. Reciprocally,

we have revealed that the modulation of

D133p53a and p53b isoforms play distinct

roles in the viral cycle by acting as

regulators of the p53-dependent antiviral

activity (Figure 2). However, the upstream

signaling cascade(s) and different down-

stream biological processes, both affected

by cross-talk between full-length p53 and

p53 isoforms, still require full character-
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Figure 1. p53 protein isoforms and their biological functions. (A) Schematic representation of the human TP53 gene. The human TP53 gene
contains 11 exons encoding several p53 products. The usage of the distal promoter (P1) leads to the production of p53 and D40p53 isoforms, while
the internal promoter regulates the expression of D133p53 and D160p53 isoforms. (B) Schematic representation of some human p53 isoforms. The
canonical p53 protein (p53a) contains a transactivation domain (TAD), a proline-rich domain (PXXP), a DNA binding domain (DBD), and a C-terminal
domain—with a nuclear localization signal (NLS) and an oligomerization domain (OD). The C-terminal p53 isoform p53b is produced by an alternative
splicing in intron 9, leading to the replacement of the OD by 10 new residues. The N-terminal p53 isoform D133p53 is encoded by a transcript
initiated in intron 4 and lacks the TAD, PXXP, and part of the DBD. The Dp53 protein isoform is generated by a noncanonical alternative splicing
between exons 7 and 9 and lacks part of the DBD and the NLS (Panels A and B adapted from Marcel et al. 2011 [10]). (C) Overview of known biological
functions of p53 protein isoforms. The green and red boxes indicate biological processes that are known to be either negatively or positively
regulated by full-length p53, respectively. The different arrows indicate the type of regulation by the p53 isoforms.
doi:10.1371/journal.ppat.1003246.g001
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ization in the context of influenza infec-

tion.

Recently, Helicobacter pylori has been

shown to interfere with p53 function via

up-regulation of the D133p53 isoform

both in vitro (gastric epithelial cells) and

in vivo (Mongolian gerbil) [21]. Moreover,

Wei and colleagues have identified the AP-

1 transcription factor (cFos/cJun) as the

upstream positive regulator of D133p53

transcriptional activity (Figure 2), leading

to the suppression of both p53 and p73

functions and consecutively increasing cell

survival. They also revealed that D133p53

is involved in the up-regulation of NF-kB

in a p53-dependent manner, in the context

of H. pylori infection (Figure 2). This study

highlighted new and interesting ideas not

only to decipher specific aspects of func-

tional p53/NFkB antagonism but to better

understand H. pylori pathogenesis and

associated tumorigenesis.

In conclusion, these three studies, based

on different pathogen models, have high-

lighted for the first time the functional role

of different p53 isoforms in the context of

infection. A preliminary model emerges in

which the isoforms act as regulators of the

p53-mediated cellular response against

pathogens. As an illustration, both influ-

enza viruses and H. pylori have an impact

on D133p53 to interfere with full-length

p53 activity via mechanisms remarkably

similar to those previously described in the

field of cancer [10]. However, the relative

contribution of each p53 isoform in the

hijacking of the p53 pathway by pathogens

and/or the cellular antimicrobial response

needs to be further explored. Based on

these observations, we recommend that

any future investigations focusing on the

interplay between p53 and pathogens

need to consider specific p53 isoforms,

taking into account their different param-

eters such as relative ratios, chemical

modifications, subcellular localizations,

and tissue-specific expression. This new

approach will certainly help to provide

new insights into the multiple roles that

p53 plays in pathogenesis, particularly by

exploring the different biological processes

involved, such as apoptosis, cell cycle, and

immune responses.
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Figure 2. Three different pathogens represent three examples of interplay with p53 isoforms during infection.
doi:10.1371/journal.ppat.1003246.g002
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