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Abstract: This study aims to delve into the application potential of immobilized lipases in
the catalytic synthesis of isoamyl acetate. Through a comparative analysis of various im-
mobilization methods, including physical adsorption, encapsulation, covalent binding, and
crosslinking, along with the utilization of nanomaterials, such as magnetic nanoparticles,
mesoporous silica SBA-15, and covalent organic frameworks (COFs) as carriers, the study
systematically evaluates their enhancing effects on lipase catalytic performance. Addition-
ally, solvent engineering strategies, encompassing the introduction of organic solvents,
supercritical fluids, ionic liquids, and deep eutectic solvents, are employed to intensify the
enzymatic catalytic process. These approaches effectively improve mass transfer efficiency,
activate enzyme molecules, and safeguard enzyme structural stability, thereby significantly
elevating the synthesis efficiency and yield of isoamyl acetate. Consequently, this research
provides solid scientific rationale and technical support for the industrial production of
flavor ester compounds.

Keywords: immobilized lipase; isoamyl acetate; biocatalysis; solvent engineering

1. Introduction
Flavor esters, as important aroma compounds in food additives, are primarily syn-

thesized through esterification reactions and are widely used in the beverage, baking,
confectionery, and other food industries [1,2]. Based on their aroma characteristics, they
can be classified into three major categories, as follows: fruity aroma type (such as isoamyl
acetate and ethyl butyrate), floral aroma type (such as methyl benzoate and geranyl bu-
tyrate), and mixed aroma type [3]. Among these, esters with a fruity aroma account for
over 65% of the market share [4].

Isoamyl acetate, with the chemical formula C7H14O2, is a naturally occurring ester
compound characterized by a unique aroma. It typically appears as a colorless to pale
yellow transparent liquid, emitting a combined fragrance reminiscent of bananas and
pears [5,6]. In the food industry, it serves primarily as a food additive in beverages, candies,
and dairy products, enhancing or imparting a desirable fruity flavor. Distinguished from
other similar products, its volatile properties align closely with the sensitive range of
human olfaction, allowing for significant flavor enhancement at low concentrations [7].
Industrially, the synthesis of this ester utilizes isoamyl alcohol and acetic acid, which have
a stable supply chain, and the reaction conditions are mild (60–80 ◦C), making it more
economically viable compared to similar products, such as ethyl butyrate, which require
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high temperatures and pressures [8,9]. According to global fragrance market reports,
isoamyl acetate has consistently ranked among the top three best-selling food flavorings
for five consecutive years, with an application coverage rate of 78% in the soft drink sector.
This is closely related to its stability within the pH range of 3–8, enabling it to adapt to the
processing requirements of various food matrices [10,11].

In the food industry, isoamyl acetate is extensively employed for the formulation of
various fruit-flavored edible flavorings due to its distinctive aroma. Whether it is for banana,
apple, strawberry, grape, or pineapple flavor profiles, isoamyl acetate can impart a rich and
authentic fruity aroma, enhancing the flavor of food products. Furthermore, it is permitted
for use as an edible flavoring agent to ensure the taste and safety of food [12,13]. Yin et al.
optimized process parameters to control the content ratio of ethyl acetate to isoamyl acetate
in the final beer product within the range of 5.9:1 to 6.1:1, thereby conferring the beer with
its characteristic taste and aroma [14]. Wang et al. introduced sterilized isoamyl acetate into
a selective culture medium and, through subsequent isolation and purification, obtained
isoamyl acetate-producing strains, providing valuable insights for the development and
utilization of flavor-enhancing strains in fermented foods, such as alcoholic beverages and
soy sauce [15].

Given that isoamyl acetate, a naturally occurring ester compound with a unique fra-
grance blending the aroma of bananas and pears, holds significant potential for widespread
application as a crucial food additive in the food industry, this review aims to compre-
hensively summarize the latest research advancements in the field of the immobilized
lipase-catalyzed synthesis of isoamyl acetate. Through an in-depth analysis of the impact
of various immobilization methods and carrier materials on the catalytic performance of
lipase, this study not only elucidates how immobilization technology markedly enhances
the stability, reusability, and catalytic efficiency of lipase but also explores the potential
and advantages of this technology in enabling large-scale production of flavor esters, such
as isoamyl acetate. This review innovatively compiles recent application examples of
immobilized lipase in the synthesis of isoamyl acetate, systematically compares the merits
and demerits of different immobilization methods, and envisions the innovative applica-
tion of solvent engineering in intensifying the enzymatic catalytic process. It provides a
comprehensive theoretical foundation and technical support for the industrial production
of isoamyl acetate, which is of great significance for advancing the green development of
the food industry.

2. Preparation Method of Isoamyl Acetate
Isoamyl acetate can be obtained through natural extraction, as well as prepared via

organic synthesis and enzymatic catalysis (Figure 1). Isoamyl acetate is widely found in
nature. It is abundant in fruits, such as bananas, apples and strawberries. In theory, it can
be separated from natural substances containing this component using extraction methods.
However, this approach often faces challenges, such as low extraction efficiency, insufficient
purity, and high costs [16]. Moreover, due to the limited content of naturally derived
isoamyl acetate, its current primary application is in high-value cosmetics. This method is
insufficient to meet the demand for large-scale production of food flavor esters [17].

Chemical synthesis, utilizing acetic acid and isoamyl alcohol as raw materials and
catalyzed by acidic catalysts, is employed for the esterification to produce isoamyl acetate.
However, this method is not deemed optimal for the production of isoamyl acetate intended
for use as a food additive due to its inherent limitations. In contrast, enzymatic synthesis, as
an emerging technology, has garnered considerable attention owing to its environmentally
friendly nature, high efficiency, energy conservation, and mild reaction conditions.
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Figure 1. Synthesis method of isoamyl acetate.

The chemical synthesis method involves the esterification of acetic acid with isoamyl
alcohol as substrates, catalyzed to produce isoamyl acetate. This reaction typically proceeds
under acidic conditions, with commonly used catalysts including inorganic acids, such as
sulfuric acid and phosphoric acid, as well as solid acids, like ion exchange resins [18]. Wang
et al. employed ion exchange resin-supported (NH4)6[MnMo9O32]·8H2O with a Waugh
structure to prepare a supported solid catalyst. Under optimized reaction conditions, the
yield of isoamyl acetate reached 95.1% [19]. Furthermore, the esterification reaction is
reversible, and to enhance the yield, measures are often taken to drive the reaction towards
ester formation. These measures include adding an excess of isoamyl alcohol substrate,
lowering the reaction temperature, and promptly removing the generated water [20,21].
Mansor et al. added an excess of alcohol in the synthesis of isoamyl acetate, providing a
high tendency for the reaction to proceed in the forward direction and ultimately increasing
the ester yield [22]. The advantages of the chemical synthesis method include the easy
availability of raw materials, rapid reaction rates, and low catalyst costs [23]. However,
this method suffers from drawbacks, such as environmental pollution caused by acidic
catalysts and the production of numerous high-temperature reaction byproducts, making it
difficult to obtain high-quality products. Additionally, considering food safety, it is not the
optimal production process for isoamyl acetate intended as a food additive [24].

Enzymatic synthesis has emerged as a novel technique for the preparation of isoamyl
acetate, garnering considerable attention due to its green, efficient, and mild-condition
advantages [25]. The interfacial activation of lipase at the oil–water interface can maintain
the stability of the transition intermediate products, so as to realize an efficient catalytic
esterification reaction. This method involves the esterification of acetic acid and isoamyl
alcohol, catalyzed by enzymes under mild conditions to produce isoamyl acetate. Narwal
et al. immobilized lipase from Bacillus aerius onto a silica gel matrix using a crosslinker,
glutaraldehyde, and investigated its efficiency in catalyzing the esterification reaction
for the synthesis of isoamyl acetate, achieving a yield of 68% under optimal reaction
conditions [26]. Dos Santos et al. employed the commercial enzyme Novozyme 435 to
catalyze the esterification of acetic anhydride and isoamyl alcohol in both batch and packed-
bed reactors, demonstrating that the packed-bed reactor yielded a higher isoamyl acetate
production rate than the batch reactor [27]. Zare et al. utilized Novozyme 435 to catalyze the
esterification of acetic anhydride and isoamyl alcohol, enhanced by microwave irradiation
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(100 W) during the reaction, achieving a 100% yield of isoamyl acetate within 1 h [28].
Despite the significant progress made in current enzymatic synthesis processes, there
remain shortcomings, such as low lipase activity, prolonged reaction times, and lower
product yields [29,30].

3. Research Progress on Enzymatic Synthesis of Isoamyl Acetate
3.1. Overview of Lipase

Lipase (EC 3.1.1.3) is ubiquitously present in the tissues of animals, plants, and mi-
croorganisms (such as molds and bacteria). It serves as a biocatalyst for various reactions,
including esterification, transesterification, acidolysis, and alcoholysis (Figure 2). Due to its
high efficiency, selectivity, mild catalytic conditions, and relatively high enzymatic activity,
lipase exhibits broad application potential [31,32]. Among the microbial sources of lipases,
yeast, as a eukaryotic organism, often secretes lipases with more complex glycosylation
modifications, which subsequently influence the stability and functional properties of
the enzyme. Among them, Candida rugosa has garnered significant attention due to its
ability to secrete multiple isozymes, with its lipase maintaining high activity in organic
solvents. Candida utilis predominantly secretes extracellular lipases, making it suitable for
large-scale fermentation production. The Pichia species has emerged as a popular host
for recombinant lipase production owing to its ease of genetic manipulation and high
expression levels. Lipases from the Rhodotorula species and Yarrowia species exhibit ap-
plication potential in specialized industrial scenarios due to their adaptability to extreme
environments, such as high temperatures and high salinity. Through genetic engineering
modifications or fermentation process optimization, these yeast strains can further enhance
lipase yield and performance, thereby providing crucial technological support for green
biomanufacturing [33].

Figure 2. Types of lipase-catalyzed reactions.

3.2. The Catalytic Mechanism of Lipase

The catalytic mechanism of lipase primarily relies on its unique active site structural
characteristics and interactions with substrates (Figure 3). The active center of lipase com-
prises a serine (Ser) residue, which, in conjunction with aspartic acid (Asp) and histidine
(His), forms the catalytic triad. This center is typically covered by an α-helical structure, re-
ferred to as the “lid” [34,35]. Upon contact with the oil–water interface, the “lid” undergoes
a conformational rearrangement, enhancing its hydrophobicity and thereby exposing the
lipase active site, enabling specific binding with the substrate. Through the formation of an
acyl–enzyme intermediate while maintaining the stability of the transition intermediate,
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lipase efficiently catalyzes esterification reactions. This process exemplifies the interfacial
activation phenomenon of lipase at the oil–water interface, which constitutes the core of its
catalytic mechanism [36].

Figure 3. (A) Lipase active pocket structure; (B) catalytic triplet Ser–Asp–His active center and
substrate-specific binding process.

This phenomenon of interfacial activation not only significantly enhances the affinity
of lipases for hydrophobic substrates but also regulates their catalytic activity through
dynamic conformational changes, thereby exhibiting unique advantages in heterogeneous
systems. Specifically, upon the uncoiling of the lipase “lid” structure at the oil–water inter-
face, the exposure of hydrophobic amino acid residues surrounding the active site not only
stabilizes the binding conformation of the substrate with the enzyme but also optimizes the
charge relay network composed of Ser–His–Asp by reducing the solvation effect of water
molecules on the catalytic triad. This, in turn, accelerates the formation and hydrolysis
steps of the acyl–enzyme intermediate. This conformational regulation mechanism stands
in stark contrast to the “closed state” of the enzyme in homogeneous solutions. For instance,
in organic solvent–water mixed systems, the interfacial activation efficiency of lipases can
be enhanced by 2–3 orders of magnitude [37]. Furthermore, molecular dynamics simula-
tions have demonstrated that the displacement amplitude of the “lid” during interfacial
activation is positively correlated with the carbon chain length of the substrate, suggesting
that it may dynamically adjust the active site cavity size to accommodate fatty acyl chains
of varying lengths. This provides a structural basis for lipases to process complex substrates
in industrial processes, such as biodiesel synthesis and oil modification [38]. Notably, the
“lid” region of some microbial lipases, such as Candida antarctica lipase B (CALB), contains
flexible loop structures. The conformational fluctuations of these loops may further expand
the enzyme’s adaptability to interface curvature, thereby maintaining efficient catalysis
even in confined systems, like microemulsions or nanoemulsions [39].

3.3. Present Situation of Lipase Used in Synthesis of Ester

Esterification and transesterification reactions are the primary methodologies em-
ployed in the enzymatic synthesis of isoamyl acetate. Direct esterification, owing to its high
yield and simplicity, is a frequently adopted approach among researchers. In recent years,
studies focusing on the enzymatic synthesis of isoamyl acetate have predominantly centered
around the utilization of Candida rugosa lipase (CRL) as the biocatalyst [40]. Furthermore,
there are sporadic reports in the literature concerning the use of other lipases, including
Candida antarctica lipase (CAL), Porcine pancreatic lipase (PPL), Bacillus licheniformis lipase
(BLL), and Burkholderia cepacia lipase (BCL) [41].

During the enzymatic synthesis process, the direct use of free lipase exhibits numerous
drawbacks, which limit its application in industrial production [42]. Firstly, the stability
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of free enzymes is relatively poor, making them susceptible to external factors, such as
temperature, pH, organic solvents, and inorganic ions, which can induce enzyme aggre-
gation or degradation, leading to denaturation and inactivation [43]. This instability not
only affects the catalytic efficiency of the enzyme but also increases production costs due
to the need for frequent enzyme supplementation. Secondly, free enzymes are difficult to
separate from the product after the reaction, often becoming impurities in the final product.
This not only reduces the purity of the product but also increases the difficulty and cost of
subsequent purification [44,45].

Considering the aforementioned drawbacks, the immobilization of lipase for practical
application has emerged as a more effective strategy. By anchoring lipase onto a support
material, its stability and reusability can be enhanced, thereby extending the catalyst’s
service life. This approach also simplifies the process of product separation and purifica-
tion, ultimately reducing production costs [46,47]. Furthermore, lipase represents a unique
class of interfacial-activated enzymes. Immobilization not only strengthens its adaptability
within complex reaction environments but also preserves its catalytic activity [48,49]. Addi-
tionally, compared to free enzymes, immobilized enzymes offer the industrial advantage
of enabling continuous reactions, which significantly boosts production efficiency [50].
Qian et al. enzymatically synthesized sucrose-6-acetate in organic solvents. Compared
with free lipase, the macroporous resin adsorption immobilized lipase-catalyzed sucrose
esterification rate increased by 1.7 times [51]. Li et al. immobilized CALB on hydropho-
bically modified cellulose, resulting in markedly improved stability of the immobilized
lipase at pH 9 and 70 ◦C, with relative activity retentions of 90.90% and 54.80%, respec-
tively [52]. Parneet et al. immobilized CRL on magnetic multi-walled carbon nanotubes,
and compared with free lipase, the esterification rate in the final product was increased by
2.3 times [53]. Xia et al. reported an activity recovery rate of 106.18% for Aspergillus oryzae
lipase (AOL) in their prepared immobilized lipase formulation [54]. Dias et al. utilized
Novozym 435 as a catalyst in a continuous packed-bed reactor under supercritical CO2

conditions to synthesize isoamyl acetate (Figure 4), ultimately achieving continuous high-
yield production (0.21 kmol/m3) of isoamyl acetate [55]. These studies have shown that
enzyme immobilization is a feasible and powerful means to overcome the defects of free
enzyme methods. Therefore, in the process of enzymatic synthesis of isoamyl acetate, the
immobilized enzyme technology has significant advantages and can better meet the needs
of industrial production.

Figure 4. Isoamyl acetate esters were synthesized under supercritical CO2 (SC-CO2) in a continuous
packed-bed reactor (PBR) using immobilized lipase (Novozym 435) as the catalyst [55].
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3.4. Immobilization Method of Lipase

The immobilization methods of lipase mainly include physical adsorption, embed-
ding, covalent binding, and crosslinking (Table 1). These four methods have their own
advantages and disadvantages. It is necessary to select the appropriate immobilization
method according to the characteristics of the enzyme and the catalytic environment.

Table 1. Different immobilization methods with enzymes.

Classification Adsorption Embedding Covalent Bonding Crosslinking

Advantages
Simple method,

little loss of activity,
cheap and fast

Large amount of immobilized
enzyme, no need for extraction

or purification, low loss
of activity

Strong bonding
properties,

excellent stability

Strongly binds to lipase,
good stability in
aqueous solution

Disadvantages Leaks easily,
binds non-specifically

Methodological complexity,
mass transfer limitations,

leakage

Increased cost,
decreased activity

May be inactive,
lack of mechanical

properties, difficult to
control size

Physical adsorption represents an effective strategy for the direct immobilization of
lipase. In this process, lipase adheres to a solid support through physical adsorption forces.
The adsorption primarily relies on weak, non-specific interactions, such as van der Waals
forces, hydrophobic interactions, hydrogen bonds, and ionic bonds [56]. The main advan-
tages of this method include its simplicity in the immobilization process and the minimal
alteration of lipase conformation, which help maintain high lipase activity and stability [57].
Overall, enzyme immobilization via adsorption is a straightforward technique that offers
cost-effectiveness while preserving high enzymatic activity (Figure 5) [58]. Compared
to other immobilization methods, it involves fewer chemical substances, utilizing only
non-toxic, inert supports, which aligns better with food safety requirements [59].

However, this approach also has some drawbacks; for instance, changes in pH, temper-
ature, organic solvents, and ionic strength of the buffer can adversely affect the enzymatic
catalytic performance due to the enzyme being predominantly adsorbed on the external
surface of the support [60]. Cunha et al. immobilized Yarrowia lipolytica lipase on agarose
supports via physical adsorption, and the immobilized lipase lost 80% of its activity within
2 h at 50 ◦C [61]. Additionally, physical adsorption exhibits relatively weak binding forces,
which are insufficient to firmly immobilize lipase onto the surface of solid supports. Long-
term exposure to the reaction environment can easily lead to lipase leaching [62]. Moreover,
the leaching of physically adsorbed lipase may increase under industrial conditions [63].
Mylena et al. immobilized Pseudomonas cepacia lipase onto activated carbon (LPAC) via
physical adsorption and onto functionalized carbon (LPFC) via covalent immobilization.
After a 3 h reaction at 40 ◦C, the conversion rates of isoamyl acetate were 93.41% and 91.42%,
respectively. However, the esterification stability of LPAC upon reuse was inferior to that
of LPFC, possibly due to desorption and re-adsorption phenomena during the physical
adsorption process [64]. Ghamgui et al. successfully immobilized Staphylococcus simulans
lipase (SSL) onto CaCO3 via physical adsorption. Under optimal reaction conditions, the
yield of isoamyl acetate reached 64%. However, after five cycles of use, a noticeable decline
in the yield of isoamyl acetate was observed, attributed to the leaching and loss of lipase
from the support material [65].

Encapsulation immobilization involves entrapping lipase within a carrier matrix,
fibers, lattice structures, or polymer membranes, allowing the simultaneous passage of
reactants and products while retaining the lipase [66]. Encapsulation can enhance mechani-
cal stability and reduce lipase leaching [67]. Similar to physical adsorption, this method
avoids lipase denaturation caused by chemical methods, as no chemical interactions oc-
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cur between the encapsulating polymer carrier and the lipase [68]. Polymers, such as
alginate, carrageenan, collagen, polyacrylamide, gelatin, silicone rubber, polyurethane,
and polyvinyl alcohol containing styryl groups, are commonly used as encapsulating
matrices for immobilized enzymes [69]. Sun et al. encapsulated a fluorescent reporter
protein (FLIPPi) within polyacrylamide nanoparticles, preserving FLIPPi activity while
preventing its degradation by soluble proteases (Figure 6) [70]. Additionally, encapsula-
tion can create an optimal microenvironment for lipase by altering the surface functional
groups of different carrier materials. This optimal microenvironment can be achieved using
polymers, sol–gels, polymer/sol–gel hybrids, and various inorganic materials [71]. Among
these methods, gelation of polyanionic and polycationic polymers through the addition
of multivalent counterions is the simplest and most widely applied approach for lipase
encapsulation. Zhang et al. successfully prepared dual-embedded activated lipase in-
trafloral hydrogel microspheres by mixing a lipase in an open conformation co-crystallized
with Ca3(PO4)2 with a sodium alginate solution, utilizing Ca2+ as the gelating polyvalent
counterion. The immobilized lipase exhibited improved thermal and pH stability, with an
enzyme activity retention rate of 83% even after 10 cycles of reuse [72].

 

Figure 5. Lipase immobilization was performed via physical adsorption on a novel metal-chelating
nanostructure consisting of (S)-N-(5-Amino-1-carboxypentyl) iminodiacetic acid (NTA), as a tetra-
dentate chelating agent, grafted onto MnFe2O4 nanoparticles coated with carboxymethyl cellulose
(CMC) for Co2+-chelated affinity lipase adsorption [58].

However, the embedding method has notable drawbacks. As the reaction progresses,
the aging of the carrier polymer leads to larger matrix pores, facilitating the leaching of
lipase from the carrier [73]. Additionally, unlike physical adsorption, enzymes often partici-
pate in polymerization reactions during the embedding immobilization process, which can
adversely affect enzyme activity. Achieving uniform pore size in polymeric carrier materials
during immobilization is challenging, ultimately resulting in mass transfer difficulties for
substrates within the immobilized enzyme during catalysis [74,75]. Lee et al. combined sil-
ica sol–gel with multi-walled carbon nanotubes for the embedding immobilization of CRL.
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In their study, immobilized lipase without the addition of multi-walled carbon nanotubes
exhibited complete loss of activity after five reuse cycles, attributed to rapid deactivation
caused by lipase leaching into the reaction medium [76]. Kanwar et al. employed a simple
embedding technique to immobilize Pseudomonas lipase in a polyvinyl alcohol (PVA)
membrane for the synthesis of isoamyl acetate via transesterification reactions [77]. After
3 months of storage at room temperature, the immobilized lipase retained 62% higher
activity compared to the free lipase. However, the maximum reaction rate (Vmax) of the
immobilized lipase was only 41.86% of that of the free enzyme, owing to mass transfer
resistance imposed by the PVA membrane embedding.

 

Figure 6. The fluorescent reporter protein (FLIPPi) was embedded into polyacrylamide nanoparticles
with a diameter of 40–120 nm [70].

Covalent binding is an irreversible enzyme immobilization process primarily achieved
through the interaction between amino acid residues on side chains and carrier materials.
These amino acid residues typically include amino groups (lysine), thiol groups (cysteine),
and carboxyl groups (aspartic acid and glutamic acid), as well as phenol and imidazole
groups that are not required for the catalytic activity of lipases [78]. The effectiveness of
covalent binding between lipases and carrier materials depends on the shape, surface,
size, and chemical structure of the carrier materials, such as agarose, cellulose, polyvinyl
chloride, and porous glass [79]. During the covalent binding process, lipases undergo
chemical reactions with the active groups on the surface of carrier materials, which is a
critical factor determining the stability of the biocatalyst. These active groups on the carrier
material surface can either be naturally present in the chemical structure of the carrier or
introduced through post-modification.

Compared to other immobilization strategies, covalently immobilized enzymes exhibit
superior reusability, stability, and reduced lipase leaching [80–82]. Hosseinzadeh et al.
successfully immobilized CRL in mesoporous zinc ferrite nanoparticles by covalent bonding
(Figure 7) [39]. The activity of the immobilized enzyme was 2.13 times that of the free
enzyme, and the thermal stability of the immobilized enzyme and the antibacterial activity
against Staphylococcus aureus were significantly enhanced. Finally, the yield of isoamyl
acetate was 64% by catalyzing the esterification reaction of acetic acid and isoamyl alcohol
in n-hexane solvent at 45 ◦C for 4 h. However, in the process of covalent binding, due
to the need for enzymes to participate in chemical reactions, the spatial conformation of
enzymes is easy to change, resulting in a decrease in enzyme activity. Bayramoglu et al.
covalently immobilized CRL on polydopamine-grafted magnetic chitosan microspheres,
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which improved the thermal stability and storage stability of the enzyme [38]. However,
with the increase in the polydopamine grafting degree, the activity of the immobilized
enzyme was only 60–80% of that of the free enzyme.

 

Figure 7. Mesoporous zinc ferrite nanoparticles coated with an amine-functionalized mesoporous
silica structure (ZnFe2O4@MS) were synthesized via the solvothermal method [39].

Crosslinking is achieved through intermolecular crosslinking between lipase molecules
and di- or multifunctional compounds [83]. In this process, carrier materials may not be
employed, and this technique is also referred to as carrier-free immobilization [84]. Under
such circumstances, lipase can act as its own support, yielding nearly pure lipase while
eliminating both the advantages and disadvantages associated with carrier materials.
Crosslinking methods can overcome the drawback of low spatial utilization of enzyme
proteins caused by the use of carrier materials [85]. In recent years, glutaraldehyde has been
predominantly used as a protein crosslinker due to its low cost and availability, facilitating
polymerization reactions through the reaction of free amino groups in enzyme proteins
with glutaraldehyde [86].

Immobilized enzymes prepared via carrier-free immobilization methods typically
exhibit small particle sizes and low mechanical strength, rendering them suitable only for
enzymes with small molecular substrates and products, and not for reactions involving
large molecules that require vigorous stirring. To expand the applicability of crosslinking
methods, scientists often combine them with carrier materials. Luo et al. utilized pectin as
a crosslinker to prepare magnetic crosslinked enzyme aggregates, which retained 82.72%
relative activity after eight usage cycles and exhibited negligible changes in enzyme activity
after 45 days of storage, demonstrating excellent reusability and storage stability (Fig-
ure 8) [87]. Sóti et al. employed poly(glycerol methacrylate) as a crosslinker to immobilize
CALB onto poly(vinyl alcohol) and poly(lactic acid) membrane nanofiber carriers, with the
resulting immobilized lipase retaining over 80% of its biocatalytic activity after ten cycles
of use [88].
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Figure 8. rINANE1 was successfully immobilized on polydopamine (PDA)-modified magnetic ferric
oxide nanoparticles (Fe3O4NPs) by adsorption–precipitation–crosslinking to obtain the crosslinked
enzyme aggregate (CLEA)–rINANE1–Fe3O4@PDA. The SEM diagram of Fe3O4 (a), Fe3O4@PDA
(b) and CLEA–rINANE1–Fe3O4@PDA (c). The means with different letters showed significant
differences (p < 0.05) [87].

3.5. Selection of New Immobilized Lipase Carrier

Currently, the performance of immobilized enzymes is primarily determined by two
aspects, namely the immobilization method and the selection of the immobilization carrier.
The adoption of an appropriate immobilization method and the selection of an excellent
immobilization carrier are particularly crucial for enhancing the activity and stability of
immobilized lipase [89].

A good carrier material should possess properties, such as thermal and chemical
stability, renewability, and low cost [90]. Additionally, the structure and surface of the
carrier should be easily modulated. The lid structure of lipase can be opened by functional
groups on the carrier surface, facilitating the binding of the enzyme active site to the
substrate molecule and, thus, enhancing enzyme activity. Meanwhile, by regulating the
carrier structure, substrate diffusion limitations can be reduced, accelerating the enzymatic
catalytic reaction process.

One of the critical issues that must be addressed is the removal of the catalyst from
the reaction system after the completion of the biocatalytic process. A favorable approach
to overcome this challenge involves immobilizing lipase molecules onto magnetic materi-
als, enabling the facile separation of the immobilized lipase using an external magnet or
magnetic field [91]. In addition to the presence of numerous hydroxyl groups, magnetic
nanoparticles are also renowned for their large surface area, which facilitates easy modifica-
tion and robustness when covalently bound to lipase. Magnetic materials exhibit significant
advantages, such as excellent mechanical stability and low porosity, which minimize steric
hindrance and foster the formation of a stable enzymatic biocatalytic matrix [92].

The primary characteristic of mesoporous materials lies in their ability to obtain the
desired porous matrix by adjusting synthesis parameters, enabling the stable attachment
of lipase, which is also the key distinguishing feature from other lipase immobilization
materials [93]. These carriers comprise ordered mesopores with pore sizes ranging from
2 to 50 nm, a density of approximately 1 g/cm3, and a specific surface area exceeding
1500 m2/g, making them excellent immobilization carriers for various lipases and other
biomolecules [94]. Due to their insolubility in water, hydrophilicity, sufficient active groups,
and chemical and thermal stability, mesoporous materials meet many requirements for
lipase immobilization carriers (Figure 9) [95]. During lipase immobilization on mesoporous
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surfaces, adsorption and covalent binding are typically employed [96]. Common meso-
porous materials include SBA-15, zeolites, and ordered mesoporous structured oxides [97].

 

Figure 9. Structural diversity in the M41S series of mesoporous silica materials [95].

Covalent organic frameworks (COFs) represent a novel class of non-metallic porous
materials that exhibit distinct advantages over conventional support materials, such as a
high specific surface area, excellent thermal stability, and tunable structures [98]. Currently,
physical adsorption (Figure 10) [99] or covalent bonding [100] methods are commonly
employed for enzyme immobilization using COFs. However, due to the limited pore
size of COFs, enzymes tend to be adsorbed or covalently linked to the external surface of
COFs, which often diminishes the operational stability of immobilized lipases. In recent
years, numerous researchers have achieved in situ encapsulation of enzymes within COF
materials, yielding immobilized enzymes with high enzyme loading and reduced leakage.

 
Figure 10. Horseradish peroxidase (HRP) was immobilized on a cationic macrocycle-based covalent
organic framework (COF) by physical adsorption. (a) Reaction scheme for the synthesis of ACA-COF.
(b) Schematic representation of layer stacking in ACA-COF. (c) Schematic representation of the
physical immobilization of HRP in ACA-COF [99].
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3.6. Research Progress on Synthesis of Isoamyl Acetate Catalyzed by Immobilized Lipase

A comprehensive review of the literature published in the past decade on the im-
mobilized lipase-catalyzed synthesis of isoamyl acetate was conducted, with the results
summarized in Table 2. Among the studies focusing on the immobilized enzyme-catalyzed
synthesis of isoamyl acetate, CRL emerged as the most frequently employed catalyst, pri-
marily due to its generally high efficiency in catalyzing esterification reactions, with yields
typically exceeding 85%. Approximately half of the relevant research utilized physical
adsorption as the immobilization method, owing to its operational simplicity and the ability
to largely preserve lipase activity. The direct esterification method utilizing acetic acid and
isoamyl alcohol for the synthesis of isoamyl acetate accounts for 70% of the relevant studies.
Following immobilization, lipases exhibited a slight elevation in their optimal catalytic
reaction temperatures, predominantly ranging from 40 to 50 ◦C, reflecting the enhanced
operational stability conferred by enzyme immobilization. Moreover, the elevated optimal
temperatures facilitated accelerated reaction rates and reduced reaction times, thereby
offering significant potential for the industrial-scale production of isoamyl acetate.

Table 2. Immobilized lipase-catalyzed synthesis of isoamyl acetate.

Lipase Carrier
(Immobilization Method) Reaction Method Temperature

(◦C)
Time

(h)
Yield
(%) Reference

Candida rugosa lipase COFs
(embedding) Esterification 50 7 86.94 [5]

Candida rugosa lipase SBA-15, calcium alginate gel
(adsorption, embedding) Esterification 50 8 85.19 [1]

Candida rugosa lipase Magnetic chitosan beads
(covalent bonding) Esterification 35 24 98.4 [38]

Candida rugosa lipase COFs
(embedding) Esterification 50 7 98.26 [6]

Candida rugosa lipase Epoxy-activated cloisite 30B
(covalent bonding) Esterification 50 4 91.6 [101]

Candida rugosa lipase ZnFe2O4@MS
(covalent bonding) Esterification 45 4 64 [39]

Candida rugosa lipase PDA@Co-MWCNT
(covalent bonding) Esterification 45 24 75 [102]

Porcine pancreatic lipase ILs/MZIF-90
(adsorption) Esterification 45 9 85.5 [103]

Porcine pancreatic lipase ILs/Fe3O4@MOF
(covalent bonding) Esterification 45 24 75.2 [104]

Porcine pancreas lipase Activated carbon
(adsorption) Esterification 40 3 93 [64]

Porcine pancreas lipase Metallized activated carbon
(adsorption) Esterification 40 4 96.62 [105]

Pseudomonas fluorescens lipase Octyl-silica
(adsorption) Esterification 37 24 96.9 [106]

Pseudomonas fluorescens lipase Mesoporous silica matrix
(adsorption) Transesterification 40 20 62 [107]

Thermomyces lanuginosus lipase K2SO4 crystal
(adsorption) Transesterification 50 6 95 [41]

Thermomyces lanuginosus lipase Fe3O4
(adsorption) Transesterification 30 7 61 [108]

Rhizomucor miehei lipase Al2O3-NP
(adsorption) Transesterification 50 1 15.4 [109]

Candida antarctica lipase B Purolite® MN102
(adsorption)

Transesterification 75 6 100 [110]

Aspergillus oryzae lipase Calcium alginate gel
(embedding) Transesterification 68.5 6 89.55 [111]
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Table 2. Cont.

Lipase Carrier
(Immobilization Method) Reaction Method Temperature

(◦C)
Time

(h)
Yield
(%) Reference

Bacillus aerius lipase Silica gel matrix
(covalent bonding) Esterification 55 10 68.38 [26]

Burkholderia cepacian lipase Calcium alginate gel
(embedding) Esterification 37 120 92 [112]

Zhang et al. employed CRL and consistently opted for the simplest direct esterification
approach to synthesize isoamyl acetate. Initially, starting from the enzyme immobilization
strategy, a dual immobilization method combining physical adsorption and hydrophobic
gel entrapment was utilized to immobilize the lipase. Under reaction conditions of 50 ◦C
for 8 h, the yield of isoamyl acetate reached as high as 85.19% [1]. Subsequently, the lipase
was encapsulated in situ within a COF under aqueous conditions, achieving an even higher
yield of 86.94% within a shorter reaction time of 7 h at 50 ◦C [5]. The observation of elevated
isoamyl acetate yields under reduced reaction durations underscores the pivotal role of
a well-designed immobilization strategy in facilitating optimal lipase activity expression.
Finally, the COF-encapsulated lipase was deployed in a deep eutectic solvent (DES), re-
sulting in a further enhanced yield of 98.26% for isoamyl acetate after 7 h of reaction at
50 ◦C [6]. This outcome highlights the significant impact of the reaction microenvironment
provided by an optimized reaction medium, demonstrating how solvent engineering can
effectively amplify enzymatic catalysis and profoundly influence reaction kinetics.

4. Prospect of Solvent Engineering to Enhance the Enzyme
Catalytic Process

Enzyme catalytic process enhancement technologies can be categorized into physical
and chemical enhancements. Physical enhancements primarily include ultrasonic disrup-
tion, microwave irradiation, and continuous flow reactors. Chemical enhancements mainly
encompass organic solvents, metal ions, surfactants, and other compounds. Currently, sol-
vent engineering for enhancing enzyme catalytic processes has garnered significant attention
from researchers due to its advantages of simplicity in operation and high controllability.

The addition of an appropriate amount of organic solvent to the reaction system can
reduce the viscosity of the system, thereby decreasing mass transfer resistance. The re-
duction in mass transfer resistance facilitates the diffusion and transport of substrates and
products within the reaction system, enabling more thorough contact between enzymes
and substrates, and consequently enhancing the rate of enzymatic reactions. The selection
of a suitable organic solvent can activate enzyme molecules to a certain extent, thereby
increasing their catalytic activity (Figure 11) [113]. This may be attributed to the interaction
between the organic solvent and the enzyme molecule, which alters the enzyme’s confor-
mation, making it more conducive to substrate binding and catalysis. Additionally, the
organic solvent may form stable interactions with the enzyme molecule, thereby protecting
it from damage by the external environment. The presence of organic solvents can also
mitigate side reactions predominantly driven by water. Enayati et al. employed CALB to
enzymatically synthesize lactyl fatty acid esters using fatty acids and lactose as substrates
in an organic solvent [114]. The results indicated that n-hexane and acetonitrile yielded the
highest substrate conversion rates for both free and immobilized lipase, achieving rates of
77% and 93%, respectively. Furthermore, it was noted that the esterification conversion rate
of free lipase was solvent-dependent, whereas the conversion rate of immobilized lipase
exhibited a lower degree of dependency on the solvent.
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Figure 11. Vitamin E succinate (VES) was synthesized through the catalysis of the organic solvent-
stable lipase UM1, resulting in an exceptional conversion [113].

Supercritical fluids represent a unique state of matter where substances exist at tem-
peratures and pressures exceeding their critical values, exhibiting both the high-density
solubility of liquids and the low-viscosity diffusivity of gases [115]. As green media for
enzymatic catalytic reactions, supercritical fluids can significantly influence enzyme molec-
ular conformations and substrate diffusion efficiencies by modulating their density and
solvation capabilities. Their low surface tension facilitates the dissolution of hydrophobic
substrates, thereby mitigating mass transfer resistance, while their temperature sensitivity
simplifies product separation and enzyme recovery [116]. Studies have demonstrated that
supercritical fluid media can enhance the catalytic activities of enzymes, such as lipases and
proteases, accelerating reaction processes, such as transesterification and hydrolysis, while
maintaining the three-dimensional structural stability of enzymes (Figure 12) [117]. Lee et al.
investigated the kinetic models of mixed immobilized lipase (MIL)- and co-immobilized
lipase (CIL) systems based on the transesterification reaction of soybean oil and methanol,
revealing that the initial reaction rates of MIL and CIL increase under supercritical fluid
conditions when the methanol concentration does not exceed twice that of the oil [118].

Figure 12. A usual high-pressure device applied to enzymatic sugar esters synthesis at supercritical
conditions [117].

Over the past several decades, the substitution of hazardous volatile organic solvents
with novel eco-friendly solvents boasting health and safety attributes has garnered sig-
nificant attention. Among these, ionic liquids (ILs) and deep eutectic solvents (DESs)
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have attracted considerable interest due to their exceedingly low vapor pressures, high
chemical and thermal stabilities, and capacity to readily dissolve a diverse range of com-
pounds [119,120]. Liu et al. immobilized Yarrowia lipolytica lipase onto magnetic iron oxide
supports and catalyzed the efficient kinetic resolution of (R, S)-2-octanol in mixed ionic
liquids. The catalytic performance of the immobilized lipase did not exhibit a notable de-
cline even after five reaction cycles in the mixed ionic liquid medium [121]. Papadopoulou
et al. opted for ILs and DESs as media for lipase-inorganic hybrid nanoflower-catalyzed hy-
drolysis and synthesis reactions [122]. An extremely low reaction yield was observed in all
cases studied when hydroxyl ammonium-type ionic liquids were employed as the reaction
medium. This phenomenon was attributed to the high capability of most water-soluble
ionic liquids to strip tightly bound water from protein molecules, thereby causing lipases to
lose their biocatalytic activity under low water content conditions [123,124]. Additionally,
they utilized ethylene glycol (EG) as a hydrogen bond donor to prepare DESs as solvents
for the CALB nanoflower-catalyzed hydrolysis of p-nitrophenyl butyrate (p-NPB). Under
these conditions, the hydrolytic activity of CALB nanoflowers was twice as high as that
observed in buffer solutions. This enhancement was attributed to the lower viscosity of
EG-based DESs [125], which reduced mass transfer limitations and thereby increased the
biocatalytic activity of the immobilized enzyme. Furthermore, the residual activity of CALB
nanoflowers after 24 h of incubation in a system with choline chloride as the hydrogen bond
acceptor was twice that observed in buffer solutions. The stabilizing effect of DESs can be
ascribed to specific interactions between the solvent and protein molecules, which may
lead to a more rigid and stable enzyme structure (Figure 13) [6,126]. Given their superior
solvent properties and high tunability, DESs hold significant potential as green media in
biocatalytic processes.

Figure 13. CRL was immobilized in COF carriers by in situ encapsulation in an aqueous phase at
room temperature. Furthermore, the above-prepared immobilized lipase was applied to catalyze the
synthesis of isoamyl acetate in different deep eutectic solvent (DES) environments [6].
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5. Conclusions
This review article summarizes the current research status of immobilized lipases in

the catalytic synthesis of isoamyl acetate, highlighting the pivotal role of immobilization
techniques in enhancing the stability, reusability, and catalytic efficiency of lipases. Despite
significant advancements in immobilization methods, carrier selection, and the elucida-
tion of enzymatic catalytic mechanisms, particularly the remarkable catalytic performance
demonstrated by specific lipases, such as Candida rugosa, lipase after immobilization,
which renders them suitable for large-scale production of isoamyl acetate, several limi-
tations persist. These include the potential reduction in enzyme activity associated with
certain immobilization methods, the high cost of some novel carrier materials, and techno-
logical bottlenecks hindering industrial applications. Future research endeavors should
focus on exploring cost-effective, high-performance immobilization carrier materials, opti-
mizing immobilization processes to preserve maximal enzyme activity, and enhancing the
application of solvent engineering in enzymatic catalysis, with a particular emphasis on
investigating catalytic efficiency in green solvents and supercritical fluid media. Moreover,
integrating modern biotechnology and materials science to develop novel immobilization
technologies is crucial for improving the stability and catalytic efficiency of lipases. This
will address the urgent demand for natural, high-efficiency food additives in the food
industry and facilitate the industrial production of flavor esters, such as isoamyl acetate.
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