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A B S T R A C T   

Introduction: We have developed a set of tools built with open-source software that includes both a database and a 
visualization component to collect LC-MS/MS data and monitor quality control parameters. 
Description of tool: To display LC-MS/MS data we built a parsing tool using Python and standard libraries to parse 
the XML files after each clinical run. The tool parses the necessary information to store a database comprised of 
three distinct tables. Another component to this toolkit is an interactive data visualization tool that uses the data 
from the database. There are 5 different visualizations that present the data based on interchangeable 
parameters. 
Evaluation of tool: Using histogram visualization, we assessed how quality control parameters that feed our 
quality control algorithm, SMACK, which assists to improve the efficiency of data review and results, performed 
against the collective data. Using the newly identified QC parameter values from the toolkit, we compared the 
output of the SMACK algorithm; the number of QC flags changed in that there was a 1.7% (31/1944 observa-
tions) increase in flags and a 7.1% (138/1944 observations) decrease in presumed false positive flags, increasing 
the overall performance of SMACK which helped staff focus their time on reviewing more concerning QC failures. 
Discussion: We have developed a customizable web-based dashboard for instrument performance monitoring for 
our opiate confirmation LC-MS/MS assay using data collected with each batch. The web-based platform allows 
users to monitor instrument performance and can encompass other instruments throughout the laboratory. This 
information can help the laboratory take proactive measures to maintain instruments, ultimately reducing the 
amount down time needed for maintenance.   

Introduction 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is 
an established testing method in clinical laboratories providing toxi-
cology services. The technique’s accuracy and throughput provide great 
advantages for analysis of small molecules. Every injection from an LC- 
MS/MS system is coupled with a wealth of instrument metadata that can 
be used to evaluate the acceptability of a given assay. As the size of data 
sets increase, there becomes a valuable opportunity to analyze the data 
for clinical and practical purposes on a large scale. In order to make such 
analyses possible, tools are needed for individual laboratories to use, 
explore, and mine large scale data sets. 

Laboratories have developed and implemented dashboard tools to 
monitor and track, optimize, and support specialized laboratory 

workflows that are not always well-supported by native laboratory in-
formation system functionality [1–5]. Outside of the clinical laboratory 
space, a number of tools focused on proteomics have been developed to 
assess LC-MS-based data quality, incorporating instrument performance 
[6–8]. Slade et. al [9] describe a similar tool used in the laboratory to 
gather and display instrument data with an interactive dashboard. As 
the complexity of LC-MS/MS assays increase, performing quality control 
assessment of data offers significant advantages, including identification 
of technical variability derived from sample collection, preparation, 
and/or instrument performance. 

The University of Washington Department of Laboratory Medicine 
and Pathology uses mass spectrometry in several testing contexts, 
including therapeutic drug monitoring [10,11], protein biomarker 
quantification [12–14], vitamin measurement [15–17], and monitoring 

Abbreviations: GB, Gigabyte; LC-MS/MS, Liquid chromatography tandem mass spectrometry; LLOQ, Lower limit of quantification; MB, Megabyte; QC, Quality 
control; RRT, Relative retention time. 
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of prescription pain medication. The most complex application of mass 
spectrometry in our setting is a dilute-and-shoot quantitative/semi- 
quantitative LC-MS/MS confirmation assay that measures 12 opioids 
and 11 metabolites [18], performed on Waters Xevo TQ-MS instruments. 
Pathologists on the Clinical Chemistry service then integrate results 
from the assay with information from the patient’s chart to provide in-
terpretations for the results. These results and interpretations are used to 
support decisions to continue or discontinue patient opioid therapy, and, 
therefore, robust quality control metrics are critical to the assay’s clin-
ical utility. To manage the complex workflow and data analysis process, 
our team previously developed software for automated quality control 
and data analysis for this opiate LC-MS/MS assay [19]. The software 
helped to improve the consistency of data analysis and reduce the 
amount of time technologists spent reviewing the data. The software 
identified any analyte that failed QC, which was then manually 
reviewed. There were a number of quality control metrics such as 
relative retention time of analytes and internal standard peak areas, for 
each patient specimen that required review. The software, “SMACK”, 
was developed as a command line application written in Python that 
ingests an XML file from the Waters Target Lynx application used to 
review chromatographic data and performs quality control calculations. 
The SMACK program contains algorithms that compare assay data to 
limits of detection and limits of quantification gathered during the 
validation of the assay to improve the efficiency of data review and 
resulting. The SMACK program assesses RRT, internal standard peak 
area cutoff, a cutoff peak area of the first calibrator, signal-to-noise 
cutoff, and ion ratio cutoffs. 

The assay protocol has evolved with new compounds and internal 
standards having been added to the assay over time. Currently, there are 
24 compounds and 24 internal standards. In 2020, the laboratory tested 
hundreds of samples a week, splitting the load between instruments. As 
the assay has evolved, it is important to ensure the QC parameters used 
to drive manual review of data are aligned with the expected values 
based on historical data. For these reasons, along with the nature of a 
dilute-and-shoot sample preparation method, QC limit assessment and 
instrument performance monitoring are critical to an efficient assay 
workflow. A challenge for many laboratories is having the ability to 
easily access metadata in a unified, central location. Not all MS instru-
ment middleware support the ability to flexibly review relevant histor-
ical data. Purpose-built middleware may be costly or may limit data- 
review to onsite access only. Also, laboratory information systems 
often store sample QC and result values only, excluding valuable data. 

To address our data review and quality needs, we developed a set of 
tools built with open-source software that includes both a database and a 
visualization component to collect LC-MS/MS data and monitor quality 
assurance parameters. These tools assist with automated quality control 
and data analysis for our complex LC-MS/MS assay for urine opiates and 
metabolites, and enable our team to continuously monitor and update 
the SMACK application QC parameters. 

Description 

One important component of this quality tool is a centralized and 
secure database to store all LC-MS/MS raw data using PostgreSQL, an 

open-source relational database management system. The database 
stores data in three separate tables (Table 1). A batch level table includes 
number of samples, instrument identification, and name of the XML 
files. A calibration level table includes the equation of the calibration 
curve by compound, the weighting on the curve equation, and r-square 
value. Finally, a result level table includes the sample type, sample 
name, vial position, batch file name, and compound information such as 
peak area, RRT, etc. This design was inspired by the data model used by 
Indigo BioAutomation in ASCENT, a commercial product used for 
automated mass spectrometry data review (www.indigobio.com/ 
ascent). The toolkit was developed to be incorporated into the labora-
tory workflow. Supplementary Fig. 1 provides a visual schematic out-
lining the flow of data in relation to the user review process. 

To load the data into the database, a parsing tool was developed as 
part of the toolkit. The tool was developed using Python with standard 
and open-source libraries, such as Pandas, NumPy, and SQLAlchemy. 
The tool’s input is an XML file or a folder containing several XML files. 
The tool automatically reads each file then parses out the relevant in-
formation and organizes the data in a tabular format that populates each 
database table. 

Another important component of the toolkit is an interactive data 
visualization tool that uses the data from the PostgreSQL database. The 
data visualization tool was built using the Dash open-source library from 
Plotly. We designed 5 different figures (Table 2) that visualize and 
summarize the quality control data, filtered by various metadata ele-
ments. A mock-live version of the quality control monitoring dashboard 
supplied with 2 week’s worth of mock data can be found at the following 
URL (https://desolate-citadel-06032.herokuapp.com/). 

The historical histograms provide a way to view instrument data 
collected across a set time period. The average plotted performance 
provides a closer statistical view of the data split by specific time pe-
riods. The plotted batch data provides a view of instrument performance 
for a given batch. The plotted Std-A signal provides one view to monitor 
signal performance from batch-to-batch. The absolute RT provides a 
direct statistical view of the chromatography performance from batch- 
to-batch for a set time period. Using these figures, the laboratory 
should be able to catch potential mass spectrometer and/or chroma-
tography issues and act swiftly. 

The complete Git repository including source code and documenta-
tion is available at https://github.com/pablouw/opiateDashboard. 

Evaluation 

The parameters that the SMACK application uses to evaluate assay 
results to determine result acceptance or failure are RRT, internal 
standard peak area cutoff, a cutoff peak area of the first calibrator, 
signal-to-noise cutoff, and ion ratio cutoffs. The values of each cutoff, or 
window, for each compound were obtained during validation. Using the 
histogram graph of the toolkit, we plotted the metadata for each com-
pound for each of the two mass spectrometers. We evaluated the his-
torical data using both the quality control materials and calibrators only, 
and then including the patient data. We also plotted the value of the 
cutoff of each parameter for comparison. Also, we plotted the calculated 
values that represented the borders that captured where the bottom 2% 

Table 1 
Database table schema. Three tables, ‘batch’, ‘calibration’, and ‘results’ hold the metadata for each batch that was parsed from the XML file. Each row in each table is 
assigned a primary key that is unique and acts as a row identifier .  

Table batch calibration results 

Columns batch primary key calibration primary key Weighting results primary key Sample Type Confirming Ion Area 
XML file name XML file name Slope XML file name Compound Internal Standard ID 
Timestamp Timestamp R-Squared LC Batch Name Compound ID Internal Standard 
Instrument ID Compound CC (Continuing Calibration) Injection Time Peak Area IS Peak Area 
Number of Samples Curve Type Internal Standard ID Vial Concentration IS RT  

Origin Internal Standard Sample RT IS SN    
Sample ID SN IS Confirming Ion Area  
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Table 2 
Visualization Tool Summary. Each visualization view plots or displays data in a different manner. Each column lists the interchangeable variables to specify separate 
data analysis views. The summary tables adjust as each variable is changed in the visualization.  

Histogram Plotted Average Plotted Batch Plotted Std-A Signal Absolute RT vs Monthly Average 

Instrument Instrument Instrument Instrument Date 
Sample Type Timeframe QC Parameter Batch Instrument 
QC Parameter QC Parameter Compound Compound Color code table summary 
Compound Sample Type Sample Type Month/Number Cumulation  
Date Range Compound Batch   

Statistical Summary Table Statistical Summary Table  

Fig. 1. Internal Standard Signal of Calibrators Across Instruments. Figures a, c, e show distributions of instrument 1, and b, d, f show distributions of instrument 2. 
Figures a, b display the distributions of fentanyl-d5. Figures c, d display the distributions of methadone-d9. Figures e, f display the distributions of normeperidine-d4. 
Each plot shows the current cutoff value for each internal standard relative to the distribution of the internal standard signal for the calibrators along the value where 
the bottom 2% of data was excluded. The percent of samples below the QC cutoff are 21%(a) (n = 1,460), 17%(b) (n = 1,489), 10%(c) (n = 1,460), 4%(d) 
(n = 1,489), 21%(e) (n = 1,460), and 0.5%(f) (n = 1,489). 
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of data were excluded. 
By using this graph and values we wanted to assess how the provided 

cutoff values and ranges programmed into the SMACK program per-
formed for each instrument over time. Graphing the control and cali-
brator data only, we found that for three compounds the internal 
standard cutoffs that were provided to the SMACK application were too 
high for a particular instrument. Fig. 1 displays the cutoff value relative 
to the distribution of the internal standard. We also uncovered variation 
in the performance of these cutoffs between the different instruments on 
which these assays were performed. For the remaining internal standard 
cutoffs, the values were not high enough. 

We expected that including patient data would provide a more 
realistic view of how the cutoffs performed due to the presence of matrix 
effects. Plotting patient data demonstrated that our internal standard 
cutoffs performed fairly well for one instrument, but not the other. Fig. 2 
shows the distribution of the internal standard Normeperidine-d4 on 
both MS instruments. 

We also saw bimodal distributions in some instances. Supplemental 
Fig. 2 displays the distribution of the internal standard EDDP-d3 as seen 
on instrument 1. Two possibilities could explain these instances. One, by 
using the raw data we consider noise that would be neglected if any 
concentration value was under our LLOQ by the SMACK software. Sec-
ond, the quality of the sample may not be neglected. Interfering sub-
stances may be present in the sample which affects the assay’s precision 
and accuracy of the analyte. 

Our results also show that the RRT range used in the ’SMACK’ soft-
ware was wide and that making it more stringent would improve the rate 
at which we capture false-positives for the majority of the compounds. 
When comparing the performance of the LC system, the elution time was 
mostly in agreement apart from a couple of compounds, varying slightly 
depending on the instrument. Fig. 3 displays the RRT distribution of 6- 
Monoacetylmorphine on both LCMS instruments. We would expect the 
compound and internal standard to co-elute, therefore, we would expect 
the RRT to be roughly 1.0. However, the quality of the urine specimen 
cannot be excluded, and interfering substances can be factors. 

From this data, we updated the parameters of the SMACK program. 
We then compared this new version with the previous version by 
assessing the QC flag output of the SMACK application. We used the 
same integrated XML files from different days, being sure to vary the 
technologist and instrument. Comparing the outputs, the number of QC 
flags changed in that there was a 1.7% (31/1944 observations) increase 
in flags and a 7.1% (138/1944 observations) decrease in presumed false 
positive flags. Flags help draw attention to reviewing staff for potentially 
problematic samples. The difference in the number of flags helped in the 
overall performance of SMACK which helped staff focus their time on 
reviewing questionable QC failures, rather than good-quality peaks that 
were raised as QC flags because they bordered the cutoff values and 

ranges. 

Discussion 

Using tools developed with open-source software, we parsed and 
collected valuable LC-MS/MS data and built a dashboard that summa-
rized the data in different graphical forms. From these interactive 
graphs, we assessed the values feeding our quality control algorithm and 
evaluated the performance of those values before and after making 
changes to the algorithm. Our assessment revealed that the values were 
not a great fit, and by updating the values we were able to improve upon 
the rate of false-positives and QC failures. 

We built this tool kit to collect and review data that was otherwise 
not fully utilized. We chose to use a SQL database for the many cus-
tomizable options and features it provides. One feature is that one can 
validate data on import to help keep data consistent. For instance, one 
can restrict data sources to make sure only numeric-type values are 
permitted. We had found many files that had missing pieces of data. For 
our purposes, we opted to accept this data as null. The application did 
not use these values in the calculations for the visualizations and sta-
tistics. Another feature is that the database is not tied to one instrument. 
This assay is spread across two instruments and can be expanded to 
include more without the need to rewrite any of the code. 

Additionally, a database can protect your data by limiting the access 
to the data to select personnel and even allows multiple people to view 
data simultaneously from multiple computers, something that is not an 
option with Microsoft Excel. Many laboratories use spreadsheets to 
maintain and work with historical data. Maintaining a spreadsheet to 
assess data only works for a limited volume of data. If the number of 
observations exceeds one million, spreadsheets become slow, unre-
sponsive, or may not allow the data set to be collected in a single file. 
Utilizing a database reduced the storage footprint from 11 GB to 
170 MB, a 64-fold decrease. While spreadsheets can be password pro-
tected, this is not standard practice. Also, spreadsheets are often limited 
to one person being able to edit the file. With a database, multiple users 
can edit simultaneously, and edits can be tracked. Our data imple-
mentation restricts user privileges to read only. We wanted to preserve 
the data as it was and there was no need for users to have the ability to 
edit historical data. Finally, the database can be stored in multiple lo-
cations. We chose to store the database, and the toolkit, on a protected 
server to allow users to access the toolkit from any computer with 
internet access without the need to download any software to a 
computer. 

We chose to display data summaries in a graphical format to allow 
for rapid assessment. The layout for the dashboard was chosen to pro-
vide all of the relevant data for a given figure clearly and concisely. 
Providing data-dense visualizations allows a large amount of 

Fig. 2. Distribution of Normeperidine-d4 internal standard on two separate LC-MS/MS instruments. The proportions of samples below the cutoff was 34.22% for 
instrument 1 (Fig. 1a, n = 14,589) and 6.79% for instrument 2 (Fig. 1b, n = 15,263). 

A. Pablo et al.                                                                                                                                                                                                                                   



Journal of Mass Spectrometry and Advances in the Clinical Lab 23 (2022) 44–49

48

information to be displayed within a limited and organized space. The 
graphs help identify problems that would not be provided by numerical 
statistical summaries alone. During the design stages, we worked with 
the laboratory to create and design the figures of the dashboard. Each 
graph was built with a specific purpose and to help provide the infor-
mation in a quick and efficient manner. Additionally, we created and 
designed the figures in stepwise fashion. We began our investigation of 
the QC parameters after the histogram figure had been created. The 
figures that were then added were placed for future and ongoing 
investigations. 

We found differences in internal standard peak area between in-
struments and updated the cutoff values in the algorithm. We have 
observed different peak areas on different instruments for many years, 
which we assume is due to differences in ion optics and detector gain 
settings. For this reason, we added the flexibility of the software appli-
cation to be able to account for between-instrument variability in in-
ternal standard peak areas. 

Instrument performance changes over time are expected. The QC 
parameter values were gathered during validation when the assay was 
first developed. Additional variables need to be taken into account when 
considering the baseline data set. For example, the internal standard 
solution was made in-lab, and slight variations can arise between 
batches. We arbitrarily accept a 10% bias between batches of internal 
standard. This provides a sensitive cutoff for worrisome ion suppression 
in a particular sample during production. When the batch is outside of 
the 10% threshold, the peak area in the software application is adjusted 
to avoid significantly altering sensitivity or sensitivity of the cutoff. 
Moreover, since the assay was first developed, additional compounds 
have been added and ion enhancement was evaluated. The QC param-
eter values we evaluate for each clinical sample are relative to each 
batch and drive the decision of further investigation. Therefore, slight 
variation is acceptable. For any laboratory investigating the overall in-
strument performance, the baseline data set should be carefully 
considered. Finally, SMACK flags analytes that fail QC, and staff review 
these, along with the overall output, manually. Updating the parameters 
helps reduce the amount of time staff spends reviewing false positives. 

We chose to code the software in Python, a programming language 
which emphasizes readability. In addition to being a common general 
purpose programming language, Python is the default language for our 
departmental informatics team, so it is inherently easier to distribute 
support needs across our staff. Our organization also frequently uses R 
for data visualization, and R was a good candidate for this use case; 
however the staff supportability and our organization’s familiarity with 
deploying Python-based web applications ultimately nudged us in that 
direction. We chose the Dash library from Plotly for its ability to create 
interactive and dynamic graphs, which allows users to more closely 
inspect the data by selecting ranges and zooming into sections of plots 
while displaying current QC parameters to compare against historical 

data. Additionally, the package provides a simple platform to allow 
users to create custom user interfaces while also simplifying the 
framework required to build an interactive web-based application. Also, 
we chose to work with Plotly because of its simplified support to install 
on different hosts. Security permissions can be handled by Plotly or by 
the host. 

The use of a relational database and Python libraries requires the 
expertise of experienced programmers and dedicated time to program. 
While Python is a beginner-friendly programming language, it stills re-
quires time to learn and a specific skill set in order to develop and 
maintain solutions. However, the practical benefits offered by the 
dashboard to the laboratory, in terms of medical laboratory scientist 
time saved, helps increase the return on investment. By collecting and 
displaying instrument performance information on a routine basis there 
is also a return on reducing the amount of time required in trouble-
shooting the instrument. This information can help the laboratory take 
proactive measures to maintain instruments, ultimately reducing the 
amount down time needed for instrument maintenance while main-
taining high quality performance. The ability to split data by instrument 
allows the laboratory to assess and compare LC-MS/MS instrument 
performance. The web-based platform allows users to monitor instru-
ment performance outside of the laboratory and allows for collaboration 
from multiple parties. The benefits of the dashboard can extend beyond 
this assay and into other instruments throughout our laboratory and 
department. In Slade et al [9], the authors describe a tool that collects 
and stores LCMS batch data in a secure data center which is then 
accessed on a desktop application built with the R programming lan-
guage. The tool described here is similar, in that interactive dashboards 
were constructed for dynamic analysis to explore instrument perfor-
mance and laboratory workflows. Our tool similarly provides the 
capability to review historical data along with QC cutoff values. In our 
setting, this tool and associated visualizations was not intended to 
support batch-level QC review; rather this data visualization capability 
helps inform a separate software module we use to aid in the QC process. 
Applying the tool for this use case (assuring efficiency of our software 
QC tool) has been uncontroversial. As with other improvement projects 
in the laboratory, we find that there is a significant amount of change 
management associated with adopting new data visualization tools to 
more broadly impact laboratory workflows; thus far, our tool has not yet 
been transitioned for use in production as a daily batch-level QC tool, 
although it would function well in that capacity. 

In conclusion we have developed a customizable web-based dash-
board for instrument and QC software performance monitoring for our 
opiate confirmation LC-MS/MS assay using the data that is collected 
with each batch. Dynamic, web-based dashboards are an additional tool 
laboratories can utilize when commercial options are not readily 
available or not fit for purpose. Data visualization tools are important for 
efficiently utilizing data-rich testing methodologies, such as LC-MS/MS, 

Fig. 3. Distribution of Relative Retention Time of 6-Monoacetlymorphine relative to 6-Monoacetlymorphine-d6. For both instruments the window ranged from 0.984 
to 1.024 where 0.12% of samples fell outside of the window for instrument 1 (a) (n = 8,039) and 4.71% fell outside the window for instrument 2 (b) (n = 8,940). 
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and can help maintain high quality instrument and assay performance. 
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