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Objective: Many artificial intelligence approaches to muscle ultrasound image analysis have not been
implemented on usable devices in clinical neuromuscular medicine practice, owing to high computa-
tional demands and lack of standardised testing protocols. This study evaluated the feasibility of using
real-time texture analysis to differentiate between various pathological conditions.
Methods: We analysed 17,021 cross-sectional ultrasound images of the biceps brachii of 75 participants,
including 25 each with neurogenic disorders, myogenic disorders, and healthy controls. The size and loca-
tion of the regions of interest were randomly selected to minimise bias. A random forest classifier utilis-
ing texture features such as Dissimilarity and Homogeneity was developed and deployed on a mobile PC,
enabling real-time analysis.
Results: The classifier distinguished patients with an accuracy of 81 %. Echogenicity and Contrast from
the Co-Occurrence Matrix were significant predictive features. Validation on 15 patients achieved accu-
racies of 78 %/93 % per image/patient over 15-second videos, respectively. The use of a mobile PC facili-
tated real-time estimation of the underlying pathology during ultrasound examination, without
influencing procedures.
Conclusions: Real-time automatic texture analysis is feasible as an adjunct for the diagnosis of neuromus-
cular disorders.
Significance: Artificial intelligence using texture analysis with a light computational load supports the
semi-quantitative evaluation of neuromuscular ultrasound.
� 2024 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recent advances in muscular ultrasound technology have sig-
nificantly enhanced the detection and visualisation of the distribu-
tion and properties of the muscles affected in neuromuscular
diseases, reaching a precision comparable to that of magnetic res-
onance imaging (MRI) (Pillen et al., 2008; Pillen et al., 2016; Van
Alfen et al., 2018). Muscle ultrasonography is particularly valued
for its practicality as a convenient bedside assessment tool capable
of identifying a wide range of neuromuscular conditions (Walker,
2004; Hobson-Webb and Simmons, 2019; Albayda and Van Alfen,
2020). Modern clinical ultrasound equipment can visualise muscle
fibres as small as 100 lm in diameter, and fascicles wrapped in
endomysium could be clearly identified (Hodges et al., 2003). This
non-invasive tool provides several key features regarding the
underlying muscle pathological conditions, such as muscle
echogenicity changes, atrophy, degeneration, particularly fatty
degeneration, unusual intramuscular structures, fascial thickening,
and involuntary muscle contractions (Misawa et al., 2011; Pillen
and Van Alfen, 2011).

Despite these advantages, the qualitative analysis of muscle
ultrasound remains highly dependent on the expertise of the
observer, and its quantitative analysis is significantly influenced
by the characteristics of the equipment and the associated high
computational costs (Pillen et al., 2006; Pillen et al., 2007;
Wijntjes et al., 2022). As such, the diagnostic process relies heavily
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on visual inspection, and lacks quantifiability (Wijntjes and Van
Alfen, 2021; Fukushima et al., 2022).

Many artificial intelligence (AI) approaches to muscle ultra-
sound image analysis have limitations in real-time clinical applica-
tions in neuromuscular medicine because of their computational
demands and non-standardized testing methods (Burlina et al.,
2017; Marzola et al., 2021). However, recent research has explored
the use of artificial intelligence (AI) and machine learning tech-
niques to objectively quantify offline muscle ultrasound images.
Texture analysis methods, such as the grey-level co-occurrence
matrix (GLCM) and grey-level run-length matrix (GLRLM), have
demonstrated the potential to distinguish between normal, neuro-
genic, and myogenic conditions based on image texture features
(Sogawa et al., 2017; Nagawa et al., 2021; Paris and Mourtzakis,
2021; De Jong et al., 2023).

Texture analysis quantifies the variation in the surface intensity
or patterns in an image, providing valuable information about the
underlying structure. The GLCM analyses the frequency of pixel
pairs with specific values in a specified spatial relationship. The
GLRLM assesses the lengths of consecutive runs of pixels with
the same value. These methods capture detailed textural features
that are not easily discernible by the human eye, enabling the dif-
ferentiation between various tissue types and pathological
conditions.

The objective of this study was to evaluate the feasibility of
real-time muscle ultrasound quantification using texture analysis
to differentiate between pathological conditions. First, we devel-
oped a machine-learning model to estimate background patholo-
gies based on image patterns, after which we constructed an
externally available environment that could provide real-time esti-
mation results during the examinations. This study addressed the
important issue of ensuring objectivity in muscle ultrasound anal-
ysis, with the aim of improving the diagnostic accuracy and acces-
sibility of muscle ultrasound.
2. Methods

2.1. Patients and ultrasound examination procedures

This study included patients who visited our clinic to undergo
muscular ultrasound (US) for clinically suspected neuromuscular
disorders between August 2021 and July 2023. Patients with con-
current diseases, poor image quality, or focal neurological condi-
tions (e.g. carpal tunnel syndrome) that did not meet the
respective disease diagnostic criteria were excluded. As such, only
patients with neurogenic or myogenic disorders who met the diag-
nostic criteria were included in the study. Neurogenic disorders are
diagnosed on the basis of comprehensive clinical evaluations, elec-
trodiagnostic assessments (nerve conduction studies and needle
electromyography), blood tests, and genetic testing (Hobson-
Webb and Simmons, 2019; Masrori and Van Damme, 2020;
Koczwara et al., 2022). Myopathy was diagnosed through clinical
evaluations, creatine kinase blood level testing, electromyography,
and muscle biopsies, following the recommended diagnostic
guidelines (Emery, 2002; Koczwara et al., 2022). The healthy con-
trol group comprised individuals with normal neurological exami-
nation results, no history of diabetes or hormonal disorders, no use
of neurotoxic drugs, no exposure to industrial materials, and no
family history of neurological diseases.

Muscular ultrasound examinations on the biceps brachii muscle
were conducted by two experienced physicians (YN and SM) using
a LOGIQe US device (GE Healthcare, Buckinghamshire, England),
with a fixed linear transducer operating at a frequency of
12 MHz (Walker, 2004). Subjects were positioned supine, with
the probe placed at the centre of the upper arm. Ultrasound images
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were captured while the subjects performed controlled flexion and
extension arm movements and were stored as 15-second films in
an Audio Video Interleaved Format. The study included 75 patients
evenly divided into healthy control, neurogenic, and myogenic
groups, each consisting of 25 patients. The healthy control group
had an average age of 38.16 ± 11.93 years. The neurogenic group,
averaging 57.31 ± 19.88 years, included cases with amyotrophic
lateral sclerosis (7 cases), progressive muscular atrophy (7 cases),
spinal muscular atrophy (4 cases), spinal and bulbar muscular
atrophy (3 cases), and cervical spondylotic amyotrophy (4 cases).
The myogenic group, with an average age of 57.80 ± 16.42 years,
comprised cases with Duchenne muscular dystrophy (7 cases),
Becker muscular dystrophy (8 cases), myotonic dystrophy (4
cases), facioscapulohumeral muscular dystrophy (3 cases), and
mitochondrial diseases (3 cases). The biceps brachii muscle
strength was assessed using the Medical Research Council (MRC)
scale. The neurogenic group had a mean MRC score of 4.4 ± 0.6
(range: 3–5), while the myogenic group had a mean MRC score
of 3.1 ± 1.2 (range: 2–5). The study protocol was approved by our
Institutional Review Board (approval no. B220238). The require-
ment for written informed consent was waived because of the
study’s retrospective anonymised design, and consent was
obtained through an opt-out form. This form included an outline
of the research, purpose and methods, and use of materials, and
included a point of contact to allow patients to refuse to participate
at any time. The authors declare no conflicts of interest.

2.2. Texture analysis and machine learning of ultrasound images

The ultrasound video images for each case were randomly
divided into 60 training sets and 15 test sets. A comprehensive
region of interest (ROI) was established on one side of the biceps
brachii muscle, and the ROI size was randomly altered in each
frame (Supplementary Video 1). Initially, 38,700 frames were
extracted from the training dataset. Frames with an ROI smaller
than 3,000 pixels were excluded. This diagnostic system was con-
structed using open-source software, including scikit-image and
scikit-learn, which are freely available Open CV Library, 2024.
The use of open-source materials allows other researchers and
medical institutions to easily access, replicate, and improve the
system, thereby enhancing the transparency and reproducibility
of research. The program includes an innovative identification
module capable of detecting and quantifying motion within images
using a background subtraction method that calculates the abso-
lute difference between the background image generated by the
preceding moving averaged image and the current image (Open
CV library accumulateWeighted; Gijsbertse et al., 2018). The
motion ratio was determined by dividing the number of pixels that
shifted within the ROI by the total number of pixels within the ROI.
Additionally, a motion-detection function identified frames show-
ing voluntary muscle contractions, involuntary muscle contrac-
tions, and blurring caused by the examiner’s hand movements.
Specifically, images with a motion ratio greater than 0.5 were
excluded from the analysis. The final number of frames used for
the training was 17,021. The test set was then calculated in the
same manner, and the final number of frames used for validation
was 3,555.

For texture analysis and machine learning, we used the OpenCV,
scikit-image, and scikit-learn libraries in Python 3.9. In our study,
we computed the echo values of the ultrasound images as his-
tograms using the OpenCV library, and calculated the histogram
features, including the mean and standard deviation. Texture fea-
tures were extracted using a grey-level co-occurrence matrix
(GLCM) from the scikit-image library, which is a statistical tool that
quantifies the frequency of occurrence of pixel pairs in a specified
direction and distance within an image (Molinari et al., 2015). We
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configured the GLCM to analyse the pixel pairs in the 0� direction
at a two-pixel distance. Each GLCM element quantifies the fre-
quency of two-pixel values appearing at a set offset, enabling the
derivation of texture features such as Contrast, Dissimilarity,
Homogeneity, Angular Second Moment, and Correlation. These fea-
tures help elucidate the frequency of adjacent pixel values, thereby
enhancing texture understanding and aiding in differentiating
between regions within the image.

We developed a model using the scikit-learn library to differen-
tiate various neuromuscular disorders using diverse data analysis
algorithms. To ensure that data from the same patient were not
used in both the training and testing phases, we classified the fea-
tures extracted from each frame individually per patient. After fea-
ture selection, the model was trained using a random forest
classifier (RFC) (Scikit-learn. random forest classifier). RFC, which
integrates multiple decision trees, bases its decisions on a majority
vote among the trees. To ensure the generalisability of the RFC
model, we applied Group K-Fold cross-validation (Scikit-learn.
Group K-Fold cross-validation), dividing the dataset into five
groups. This method prevents information leakage and ensures
no overlap between the training and validation sets, with each
group being used once as the validation set and the remainder used
for training. RFC was executed 300 times per fold, after which the
results were averaged. This cross-validation process was repeated
five times to confirm the reliability of the results. This strategy
allowed our model to accurately assess its generalisability across
different patient groups, thereby enhancing the reliability of the
predictions for new patient data.

2.3. Generalisation performance verification

To validate the generalisability of the model, we further con-
ducted additional evaluations using 15 patients and healthy sub-
jects who were not included in the training dataset. Two
approaches are used for this evaluation. The first method involved
a muscle imaging approach, in which ROIs of varying sizes were
extracted from each frame, and the predicted labels for each frame
were compared with the correct labels. The second involved a per-
patient approach, in which the entire 15-second video for each
patient was considered. The prediction rate was defined as the
number of most likely predicted labels per frame divided by the
total number of frames evaluated. The accuracy rate was denoted
as the percentage of frames that displayed the correct labels. Using
these approaches, the generalisation performance of the model
was assessed using an independent dataset separate from the
training data. This study adhered to the Checklist for Artificial
Intelligence in medical imaging (CLAIM), ensuring rigorous stan-
dards for AI deployment in clinical settings, and enhancing the reli-
ability and reproducibility of our results (Mongan et al., 2020).

2.4. Application implementation for real-time texture analysis

To develop an application that could display underlying patho-
logical assumptions based on real-time texture analysis of current
ultrasound images, we used the OpenCV and Scikit-Image libraries.
This program portrays the echogenicity through a grayscale his-
togram consisting of 255 shades in the lower-right corner of the
screen, and further allows users to select an ROI within muscle
ultrasound videos. Random ROIs were extracted from the selected
ROIs, and the program computed the mean and standard deviation
of the echogenicity. This conducts texture analysis using GLCM and
detects motion.

The computed texture features included mean echogenicity;
standard deviation of histogram features; and texture descriptors
such as Contrast, Dissimilarity, Homogeneity, Angular Second
Moment (ASM), and Correlation from the GLCM.
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The accumulated assumptions of the texture analysis results
were calculated using a pretrained machine-learning model. The
application was implemented on a mobile tablet (Surface Pro 8;
Microsoft Corporation, WA, USA) running on the Windows operat-
ing system and connected to the external output of an ultrasound
examination device.
3. Results

3.1. Machine learning analysis

Fig. 1 illustrates the results of the machine learning analyses,
focusing on seven key features. Using the holdout method for eval-
uation, the model achieved an accuracy of 81.11 % in classifying the
three distinct groups: normal, neurogenic, and myogenic. Notably,
the mean echogenicity derived from the histograms and contrast
from the co-occurrence matrix were identified as the most signifi-
cant features in determining the classifications.

3.2. Generalization performance validation

The results of the validation of the generalisation performance
of the model are presented in detail. Fig. 2 illustrates the outcomes
of the muscle image approach, including a confusion matrix. This
method involved comparing the predicted labels with the correct
labels for each frame of the muscle ultrasound data. Using this
approach, the model achieved an overall accuracy of 78.3 %. Specif-
ically, it correctly classified 79.91 % normal cases, 61.53 % neuro-
genic cases, and 90.76 % myogenic cases. However, it
misclassified 17.50 % of the normal cases as neurogenic, 24.86 %
of neurogenic cases as normal, and 7.90 % of myogenic cases as
neurogenic, indicating areas for potential improvement.

In contrast, the per-patient approach analysed the entire 15-
second video for each patient, considering the highest prediction
rate among the diagnostic categories: ’Normal’, ’Neurogenic’, and
’Myogenic’. This approach successfully distinguished 14 of the 15
patients, with an accuracy greatly exceeding 50 %. A detailed anal-
ysis revealed that the model accurately diagnosed all five normal
cases, 4 of the five neurogenic cases, and five myogenic cases.
The overall accuracy of this approach was 93.3 %, which was signif-
icantly higher than that of the frame-by-frame analysis. This high
accuracy indicates the strong capability of the model to generalise
across different datasets, and suggests that the per-patient
approach may be more robust for clinical applications.

The confusion matrix in Fig. 2 and detailed case-by-case results
in Table 1 collectively demonstrate the model’s performance and
potential clinical applicability. The muscle image approach pro-
vides a granular frame-by-frame analysis, whereas the per-
patient approach offers a more holistic assessment, both of which
provide valuable insights into the model’s diagnostic capabilities.

3.3. Real-time texture analysis during ultrasound examination

The results of our real-time AI diagnostic tool were demon-
strated on a tablet PC with data transmitted from the ultrasound
system via a capture board. This tool enables the real-time estima-
tion of muscle pathology using ultrasound without interfering with
standard examination procedures. The system interface allows the
examiner to adjust the size of the ROI and the sensitivity of the
analysis, ensuring precise and customisable assessments.

The echogenicity of the muscle tissue, highest predictive classi-
fication, and its probability were dynamically displayed on the
screen. The probabilities of each classification were visualised
through comprehensive graphs, aiding in understanding the likeli-
hood of different muscle conditions such as ’Normal’, ’Neurogenic’,



Fig. 1. Performance Evaluation of the random forest Classifier using Ultrasound Data. This figure overviews the comprehensive two-part analysis of the ultrasound data
processed using a random forest classifier. The left panel displays the confusion matrix for the validated model, showing the accuracy of diagnoses based on the regions of
interest (ROI). The evaluation employed the holdout method with matrix entries representing the percentages of correct and incorrect classifications for Normal, Neurogenic,
and Myogenic conditions. The right panel shows a Feature Importance Plot that ranks the factors most significantly influencing the decision-making process of the model.
Notably, Mean echogenicity and Contrast were highlighted as the top features that significantly affected the model’s predictions.

Fig. 2. Generalization Performance on Test Data Using Muscle Image Approach The efficacy of the muscle image approach on the test data illustrated in Fig. 3, which
presents a confusion matrix that compares the predicted labels with the actual labels per frame, yielding an accuracy of 78.3%.
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and ’Myogenic’. The prediction results were displayed in the upper
left corner of the screen only when the ROI size exceeded 3,000
pixels and the motion ratio was less than 0.5. This real-time feed-
back allowed for the immediate identification of pathological con-
ditions, thereby enhancing the examiner’s evaluation.
245
The system tracked and represented temporal changes in the
echogenicity and motion ratio within the ROI using blue and green
lines, respectively. These visual indicators allow continuous moni-
toring of the muscle condition over time, which is crucial for
detecting dynamic changes in muscle pathology. A histogram of



Table 1
Generalization Performance on Test Data Using the Patient Approach. This table compiles the outcomes of applying the quantitative analysis tool to muscle ultrasonography
data. Each row corresponds to a unique clinical case, detailing the actual condition of the patient (’True label’), alongside the diagnosis inferred by the predictive model (’Predicted
label’), which is selected based on the highest prediction rate. The diagnostic categories were as follows: The Accuracy rate column quantifies the precision of the model
predictions on a case-by-case basis. In addition, the prediction rate was delineated for each diagnostic category, reflecting the probabilistic assessment of each model condition.

Case True label Prediction label Accuracy rate Prediction rate

Normal Neurogenic Myogenic

1 Normal Normal 0.963 0.963 0.036 0
2 Normal Normal 0.96 0.96 0.035 0.003
3 Normal Normal 0.842 0.842 0.157 0
4 Normal Normal 0.867 0.867 0.132 0.001
5 Normal Normal 0.885 0.885 0.092 0.022
6 Neurogenic Neurogenic 0.589 0.098 0.589 0.312
7 Neurogenic Neurogenic 0.853 0.123 0.853 0.022
8 Neurogenic Normal 0.159 0.84 0.159 0
9 Neurogenic Neurogenic 0.708 0.004 0.708 0.286
10 Neurogenic Neurogenic 0.795 0.198 0.795 0.005
11 Myogenic Myogenic 0.906 0 0.093 0.906
12 Myogenic Myogenic 0.982 0 0.017 0.982
13 Myogenic Myogenic 0.813 0.004 0.182 0.813
14 Myogenic Myogenic 0.98 0 0.019 0.98
15 Myogenic Myogenic 0.923 0.01 0.065 0.923
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echogenicity is also provided, offering a detailed real-time analysis
of muscle tissue characteristics.

These capabilities are shown in Fig. 3 and Supplementary Video
2, and have been demonstrated in clinical settings. The use of this
tool during standard ultrasound examination procedures provides
semi-quantitative information to the examiner, without disrupting
the workflow.
4. Discussion

This study effectively demonstrated the feasibility and efficacy
of employing real-time texture analysis using RFC to diagnose neu-
romuscular disorders by muscle ultrasound. Our method signifi-
cantly reduced the computational demands associated with
artificial intelligence techniques, making it practical for clinical
Fig. 3. Operation of the Real-Time Automatic Muscular Ultrasound Diagnostic Too
ultrasound analysis. The system allows adjustments in the size of the Region of Interest (R
as the highest predictive classification and its probability, are dynamically displayed on th
Additionally, temporal changes in echogenicity and motion ratio within the ROI were tra
the echogenicity is also provided in real-time feedback (⑤).
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use. Validation of this model in additional patients with video
assessments has underscored its practical utility in clinical set-
tings. The ability to perform texture analysis in real-time without
disrupting clinical workflows represents a significant advancement
over traditional diagnostic methods. By directly integrating quanti-
tative analysis into the clinical examination process, our approach
further enhances diagnostic precision and markedly accelerates
decision making, thereby improving patient outcomes and clinical
efficiency.

Traditionally, muscle ultrasound images or videos have been
used to visually identify whether muscles are normal or patholog-
ical; however, unlike needle electromyography, they cannot distin-
guish between neurogenic and myogenic origins. Visual
evaluations can detect obvious abnormalities, such as changes in
brightness, atrophy, tumours, or abnormal movements; however,
they require substantial expertise and achieve only approximately
l. This image shows the examiner using the automatic diagnostic tool for muscle
OI) and sensitivity of the analysis via a user interface (①). The echogenicity, as well
e screen (②). The probability of each classification was visualised using graphs (③).
cked and are represented by blue and green lines, respectively (④). A histogram of
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70 % efficacy in differentiating between healthy and abnormal
muscle tissues (Pillen et al., 2006). Electromyography findings are
often need to complement these visual evaluations to ensure an
accurate assessment.

The grayscale histogram provides data on the distribution of
image brightness, but is insufficient for assessing textural charac-
teristics such as patterns and granularity. Thus, computing textural
features using methods such as GLCM and GLRLM is essential
(Sogawa et al., 2017; Nagawa et al., 2021; Paris and Mourtzakis,
2021). However, these calculations require specialised software
and result in high computational costs (Molinari et al., 2015),
emphasising the need for more efficient methods that preserve dis-
criminative power.

In neuromuscular disorders, the underlying pathological
changes and textural differences in ultrasound images vary signif-
icantly under different conditions (Zaidman and Van Alfen, 2016;
Filosto et al., 2022). Because of the lack of a universally optimal
method for distinguishing background pathologies, we employed
ensemble learning, which integrates multiple methods (Sogawa
et al., 2017; Tannemaat et al., 2023). A major advantage of our tool
is its ability to display the results from machine learning algo-
rithms in real time. Currently, muscle ultrasonography primarily
serves as a supplementary tool to electromyography for the diag-
nosis of neuromuscular diseases. Unless these AI-driven assess-
ments become more reliable and the evaluation process becomes
quicker, traditional diagnostic techniques that depend on invasive
procedures, such as electromyography and muscle biopsy, will
likely remain prevalent (Pillen et al., 2008; Van Alfen et al., 2018;
Hobson-Webb and Simmons, 2019). The benefits of quantitative
muscle ultrasound analysis over electromyography include a wider
ROI and more consistent evaluations, without sampling bias. More-
over, it is non-invasive and enables analysis both during muscle
contractions and at rest. Nevertheless, it is uncertain to what
extent the image variation is due to the pathology itself versus
other factors, such as muscle atrophy due to malnutrition or differ-
ences in body size. Furthermore, the variability in imaging tech-
niques presents additional challenges. AI analysis using extensive
training data and enhanced analytical methods may mitigate these
variabilities (Verdú-Díaz et al., 2020; Paris and Mourtzakis, 2021).
Our study is the first to demonstrate that even with limited train-
ing data, integrating multiple analysis methods can achieve rapid,
high-performance classification, proving invaluable for clinical
applications.

This study had several limitations. First, the cohort used for
machine learning was relatively small, and the training dataset pri-
marily consisted of neuromuscular disorders with confirmed diag-
noses such as motor neuron diseases and muscular dystrophy,
excluding acute and subacute neuromuscular conditions. Although
the overall accuracy was reported to be 78 %, the discrimination
between normal and myogenic cases was comparatively high,
whereas it remained low for neurogenic conditions. This disparity
likely stems from textural variations associated with different
stages of the disease (Nodera et al., 2016; Nodera et al., 2018). To
enhance the classification accuracy, adopting a patient-specific
approach that averages decisions across individual frames may
be beneficial. Further improvements will require an increase in
the number of cases and the inclusion of texture differences related
to the disease stages in the training dataset. Furthermore, whether
real-time AI classification for neuromuscular ultrasound has a
diagnostic value should be confirmed in another study using this
device.

In addition, our study’s training and test data were acquired
using the same ultrasound machine with identical settings. The
sensitivity of ultrasound devices can vary significantly based on
the equipment and settings, meaning our model may not be uni-
versally applicable across all devices. However, our methodology
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allows for creating a customized learning model specific to the
equipment used, enabling real-time quantitative muscle ultra-
sound tailored to specific devices. As our next objective, we aim
to investigate how texture features vary across different presets
from various manufacturers and how these variations impact
learning outcomes. This approach aims to develop a standardized
model that can be utilized across different ultrasound devices,
ensuring consistent performance.

This study demonstrates the potential of real-time quantitative
analysis of muscle ultrasound as a non-invasive diagnostic method
for neuromuscular disorders. This enables a faster and more accu-
rate diagnostic process in a clinical setting. Moving forward, our
aim is for this technology to be widely adopted in clinical practice
and become a new standard in the management of neuromuscular
diseases.

5. Conclusions

This study represents a pioneering effort in applying real-time
analysis and automatic evaluation to enhance the utility of ultra-
sound in clinical settings. Real-time semi-quantitative analysis of
muscle ultrasound facilitates the objective and detailed assess-
ment of muscle conditions, thus advancing the clinical application
of ultrasound in the management of neuromuscular diseases.
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