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Abstract This article reviews dual X-ray absorptiometry
(DXA) technique and interpretation with emphasis on the
considerations unique to pediatrics. Specifically, the use of
DXA in children requires the radiologist to be a “clinical
pathologist” monitoring the technical aspects of the DXA
acquisition, a “statistician” knowledgeable in the concepts
of Z-scores and least significant changes, and a “bone
specialist” providing the referring clinician a meaningful
context for the numeric result generated by DXA. The
patient factors that most significantly influence bone
mineral density are discussed and are reviewed with
respect to available normative databases. The effects the
growing skeleton has on the DXA result are also presented.
Most important, the need for the radiologist to be actively
involved in the technical and interpretive aspects of DXA is
stressed. Finally, the diagnosis of osteoporosis should not
be made on DXA results alone but should take into account
other patient factors.

Keywords Pediatric DXA - Technique interpretation -
Osteoporosis

Introduction

After its commercial introduction in 1987, dual energy X-
ray absorptiometry (DXA) has become a widely available
and clinically useful tool in the evaluation and management
of adult bone diseases. More recently, its utilization in the
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pediatric population has rapidly increased. DXA presents
unique challenges to pediatric radiologists, and the aim of
this article is to review the technique and interpretation of
DXA. Special focus is on the issues unique to pediatric
DXA emphasizing the need for an expanded role for the
pediatric radiologist in the performance and interpretation
of DXA examinations.

Is the result of a DXA examination a number or a
diagnosis? From the radiologist’s perspective, it is both,
making it different from all other imaging studies. Like
many laboratory tests, the DXA examination generates a
numerical result. The radiologist, like the clinical pathol-
ogist, must be knowledgeable about the processes by which
that number is obtained and must ensure that meticulous
technique is used [1]. Additionally, the radiologist must be
knowledgeable about the statistical limitations and uses of
a numerical result. For example, he or she must be familiar
with the precision and accuracy of the technique and be
able to consult regarding the least significant change and be
able to suggest appropriate follow-up intervals [2]. The
radiologist must also interpret the study in terms of the
relevant patient factors that influence the numeric result.
These factors include gender, ethnicity, height, weight,
body composition, and physiologic maturity, and they
might be incorporated in the interpretation of the study.
Therefore, the result of a DXA examination is both a
number and a diagnosis, and radiologists should be expert
in understanding and reporting both aspects in the DXA
report. The diagnosis of osteoporosis should not be made
on DXA results alone but should take into account other
patient factors. Additionally, the radiologist needs to be
aware of the limitations of DXA in children [3]: there are
difficulties in scan interpretation because DXA 1is an areal
rather than a volumetric density measurement; the growing
skeleton has an impact on follow-up measurements; there
is a lack of consensus regarding the patient demographic
and physiologic factors that should be incorporated into
normative databases; and there is yet to be determined a
prognostic value of pediatric DXA with regard to fracture
risk or peak bone mineral density (BMD) [4].
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Areal vs. volumetric bone mineral density

As in all radiologic studies, DXA relies on the differential
absorption of X-rays to differentiate tissues of different
radiographic density. In addition, DXA can quantify (in
grams) the bone mineral content (BMC) at various body
sites. By selecting regions of interest, a bone area (BA) is
selected with units of centimeters squared. (The abbrevia-
tion BA for bone area should not be mistaken for bone
age.) BMD is measured directly for each pixel in the region
of interest (ROI) by comparing the X-ray attenuation of
that pixel to a reference standard. It has units of grams per
centimeter squared. This value is multiplied by the pixel’s
area to derive the BMC of that pixel with units of grams.
The areas of all the pixels in the ROI are summed to give
BA. Thus, BMD = BMC/BA.

Unlike other density measurements, the DXA-derived
BMD is based on the two-dimensional projected area of a
three-dimensional structure. The third dimension, depth,
cannot be accounted for directly because it is in the same
direction as the X-ray beam. Therefore, DXA-derived
BMD is an areal (aBMD) rather than a true volumetric
(vBMD) density. Because the third dimension is unac-
counted for, problems with DXA-derived BMD can arise
[5]. Specifically, smaller bones will be found to have lower
aBMD than larger bones, even when the vBMD is the same
(Fig. 1). For material of the same true density, a larger cube
will be stronger than a smaller cube. Thus, in giving a lower
aBMD for smaller bones when compared to larger bones
with the same vBMD, an aBMD might give a more accurate
indication of bone strength relative to size than a vBMD.
Additionally, unlike adult patients in whom the bone
volume does not change over time, a child’s bones grow
over time and the growth of individual bones is not uniform
in three dimensions. Thus, errors resulting from areal
measurements of BMD might be introduced with DXA and
can make comparison of follow-up and baseline studies
more challenging to interpret in pediatric patients [4].
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Fig. 1 For two bones of known BMD=1g/cm?, the DXA-derived
areal BMD will be higher in the larger bone because of the lack of
accounting for the true volume of the measured bone. It should be
noted that the larger cube will be stronger than the smaller cube
(adapted from Carter et al. [5], with permission)

Technical aspects of DXA performance

Patient positioning and ROI selection as performed by the
technologist require precision [6] and evaluation by the
radiologist for each study. The lumbar spine should be
straight and centered in the image, with visualization of the
last rib pair and the upper sacrum. Artifacts, including
enteric tubes, orthopedic hardware, and jewelry, should be
excluded from the image, if possible. Vertebral segments
with overlying artifacts should be excluded from BMD
analysis. The ROIs are generated automatically using edge-
detection software and are selected for the L1 to L4
vertebral bodies. These regions should include the entire
vertebral body with a minimum of adjacent soft tissue
(Fig. 2). For evaluation of the hip, the femoral shaft should
be parallel to the long axis of the image with only a small
amount of the lesser trochanter visualized. When using the
manufacturer’s provided positioning device, there should
be no overlap of the trochanters and the femoral neck or
acetabulum. The ROIs include the femoral neck, trochan-
ter, intertrochanteric, and total hip, (Fig. 2). The region of
lowest femoral neck BMD, known as Ward’s triangle, is
not used in pediatric DXA analysis, and, often, use of the
total hip measurement is favored over the other subgroups
in clinical practice because of its higher precision than the
subgroups. Whole-body scanning provides total body
BMC and BMD but also allows for subregions with
appropriately drawn ROIs (Fig. 2). Because of the
normally low BMD in young children, software analysis
is modified for children to improve edge detection of
lower-density bone. Such algorithms have been validated
in healthy, obese, and chronically ill children for the
assessment of lumbar BMD [7]. The adult algorithm
significantly overestimates lumbar BMD when compared
to the pediatric low-density algorithm (Table 1), because
lower-density bone pixels will be excluded using the adult
algorithm [8, 9]. It is suggested that normative pediatric
data be collected using the low-density analysis routinely
in children, thus allowing meaningful comparisons of
patient data to normal data, and that the DXA report
indicate which algorithm (adult or pediatric) was used [3].

The sites selected for BMD analysis should provide a
robust evaluation of the patient bone density status. If
technically feasible, the pediatric DXA examination should
measure lumbar spine and total body BMD [3]. The
manufacturers’ normative data for the hip in preadolescents
are limited, and evaluation of the hip is not recommended
in these young children. There are normative DXA data for
the adolescent hip, especially in girls [10], and for these
patients this site might be a useful addition to the standard
examination. When evaluating group data of normal
children, there is usually close correlation of BMD between
the lumbar spine and hip [11]. For individuals, when the
DXA results deviate from normal, there is less concordance
between these two sites. For example, if the hip Z- score is
between +1 and —1, the lumbar Z-score will vary an
average of less than 0.5 SD from the hip score. As the hip
Z-score decreases to —3, the lumbar score varies on average
1.7 SD from the hip Z-score. For example, immobilized or
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Fig. 2 DXA images. a AP image of the lumbar spine shows
regions of interest from L1 to L4. The bone area and mineral
content are used to derive the bone mineral density at each level.
The areal density is based on the bone area; the depth dimension is
not directly assessed with DXA. Note transitional lumbosacral

paraplegic children might have preserved lumbar BMD but
low hip BMD. If evaluation of the spine and hip is not
feasible because of extensive orthopedic hardware or
patient positioning issues, DXA of the forearm can be
performed. However, there are few normative data for
pediatric forearm studies, and the value obtained might be
useful only when compared to subsequent studies. Because
of its reproducibility and lack of areal density-related

vertebral body. b AP image of the lumbar spine shows regions of
interest from L1 to L4. AP DXA image of the left hip shows regions
of interest of the femoral neck, greater trochanter, and total hip. ¢
Total body scan with sub-regions of interests for trunk, extremities,
and head

errors, the total body BMC is preferred for the assessment
of bone status by some clinicians and researchers [12].
The DXA lumbar ROI will not include the thoracic spine.
However, the identification of a thoracic body compression
deformity in patients with osteoporosis has significant
prognostic value, indicating a higher risk of subsequent
vertebral compression fractures. Evaluation of thoracic and
lumbar vertebral bodies can be achieved with modern DXA
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scanners (Fig. 3) and can identify thoracic compression
fractures that would have been otherwise undiagnosed.
Makitie et al. [13] found compressive thoracic deformities in
11 of 32 children suspected of having secondary osteopo-
rosis who were studied with DXA. Of these 11 children, 8
had normal lumbar DXA, and the demonstration of a
thoracic compressive deformity was thought to be an
important diagnostic and prognostic finding. The addition
of vertebral morphologic assessment might be an important
adjunct in the diagnosis of pediatric osteoporosis.

DXA requires remarkably low radiation doses. Using
manufacturers’ data, the effective dose for lumbar spine
and whole-body DXA is reported to be 1—5 uSv [14]. This
is less than the dose of a standard PA chest radiograph.
Scanning times are now less than 2 min for the spine, hip or
forearm, and less than 3 min for the total body.

Accuracy, precision, and least significant change

DXA provides both accurate and precise bone mineral data.
Accuracy refers to how close a measured value is to the true
value as determined by a gold-standard technique. For
BMC, the gold standard is the laboratory assessment of
ashed bones, and DXA measurements of BMC are within
7-9% of ashed bone measurements [15, 16]. Precision is a
measure of reproducibility of a measurement and can be
expressed in terms of coefficients of variation (%CV). Both
short- and long-term precision are important in performing
DXA examinations. Short-term precision reflects both the
imprecision of the equipment (manufacturers report this to
be less than 1%) and the imprecision resulting from
variation in patient positioning and motion effects (typical
values are less than 2-3% for the spine, up to 5% for the
hip, and 1-2% for the whole body) [14, 17, 18]. This
component varies with each technologist and should be
calculated with a repeated measures procedure [2]. Long-
term precision is a measure of machine drift. It is normally

well below 1%, and the radiologist should review the daily
quality control scans of phantoms graphed over a period of
weeks in order to detect this [15].

Because the DXA result is a number, the radiologist
must be aware that the magnitude of change required to be
statistically significant varies with the precision of the
measurement technique. This is expressed in terms of the
least significant change (LSC), and is equal to 2.8x%CV
for the 95% confidence limit [2]. If the %CV was 1.5, then
a change from the baseline measurement of 4.2% would be
required for it to be considered statistically significant. The
LSC can also be used to suggest the timing of follow-up
measurements, i.e. if the LSC is 4.2% and the expected
annual rate of change in the BMC or BMD is 2%, a follow-
up study before 2 years would likely result in a value not
statistically significantly different from the baseline. The
annual rates of change in BMC and BMD vary consider-
ably during childhood, with dramatic acceleration of bone
accrual during the early pubertal years [19-21], especially
in females [22]. The annual rates of change for early-stage
and late-stage adolescents are approximately 25% and 10%
for BMC and 10% and 3% for BMD [23]. For most
pediatric conditions, follow-up examinations are obtained
between 6 and 12 months.

DXA in newborns

DXA has been used to evaluate bone mineralization in
newborns and young infants since its inception as a clinical
tool, and numerous investigators have established its
precision and accuracy [24-28]. The technique has a high
degree of accuracy, even in preterm low-birth-weight
neonates, with a slight underestimation of BMC of
approximately 7% [26, 28]. The high precision of DXA
has been shown in neonates with %CV of 2.4% [25] for
measurements of the lumbar spine and of the total body
BMC when assessed in piglets [26]. The absorbed dose is

Table 1 Effect of pediatric vs. adult software analysis on bone areg and BMC results. Total body DXA from a 13-year-old gatlent processed
using pediatric and adult software. Note decreased BA (1315 cm ) and BMC (1149 g) but increased BMD (0.874 g/cm®) with the adult
technique. Low-density portions of the bone are 1ncluded using the pediatric technique and thus a larger BA (1810 cm®) with a greater BMC
(1375 g) are obtained but the BMD (0.759 g/cm?) is lower because of the inclusion of low-density bone pixels

Region Pediatric Adult
BA (cm?) BMC (g) BMD (g/cm?) BA (cm?) BMC (g) BMD (g/cm?)

Left arm 201 93 0.465 114 71 0.622
Right arm 196 97 0.497 116 76 0.655
Left ribs 79 40 0.507 75 39 0.511
Right ribs 98 51 0.525 92 48 0.525
Thoracic spine 85 48 0.569 83 48 0.524
Lumbar spine 49 28 0.50 33 20 0.599
Pelvis 179 136 0.760 115 95 0.829
Left leg 353 269 0.76 228 199 0.873
Right leg 338 245 0.724 226 187 0.829
Subtotal 1577 1008 0.639 1081 782 0.723
Head 233 367 1.572 233 367 1.572
Total 1810 1375 0.759 1315 1149 0.874




Fig. 3 Lateral thoracic and lumbar spine image from DXA study for
vertebral morphology. Note compressive deformities at T-7 and T-9,
and a Schmorl’s node at L1, with otherwise normal vertebral
morphology of the lumbar spine

extremely low, and most neonates and infants can be
imaged with gentle immobilization without the need for
sedation.

Normative data for neonates indicate a very close
relationship of total body BMC and BA with weight;
height is also strongly correlated with BMC in the newborn
[25]. Koo et al. [29] found weight and, to a lesser extent,
body length but not gender or race to predict total body
BMC, BA and BMD in newborns. Additionally, body mass
was more closely correlated with BMC and BA than BMD.
This may be because of DXA-derived BMD is areal rather
than volumetric. Last, the proportional contribution to total
body BMC from each subregion (head, trunk, and upper
and lower extremities) is maintained across gestational

25

ages (27-42 weeks) and birth weights (1-4 kg) with only
slight variation [29].

Indications for pediatric DXA

Despite many potential uses of DXA, there has been
relatively little written regarding the indications for DXA
in children. The International Society for Clinical Densi-
tometry has suggested that any child being treated or
considered for treatment of osteoporosis should undergo a
DXA examination [3]. The National Osteoporosis Foun-
dation lists the following indications for DXA in children:
systemic long-term steroids, chronic inflammatory condi-
tions, hypogonadism, prolonged immobilization, osteogen-
esis imperfecta, idiopathic juvenile osteoporosis, recurrent
low trauma fractures, and apparent osteopenia on radio-
graphs [14]. It is important to note that DXA would be
inappropriate for skeletal pain, chronic disease and
traumatic fractures without any of the additional risk
factors listed above [14]. The National Institutes of Health
recommend a baseline DXA examination for patients for
whom systemic corticosteroids will be used for more than
2 months or who are at significant risk of osteoporotic
fracture [30]. These guidelines are also suggested by the
American College of Rheumatology [31]. The American
College of Radiology has listed DXA of the lumbar spine
and hip as highly appropriate for pediatric patients with a
significant risk factor for osteoporosis [32]. Recommenda-
tions from other subspecialty societies have been slow in
coming. Neither the Society for Pediatric Radiology nor the
American Academy of Pediatrics has made recommenda-
tions regarding pediatric DXA.

Pediatric DXA interpretation

As with other laboratory tests, the numeric value reported is
meaningless without comparison to the appropriate normal
controls. After comparison is made, the reported value is
given as a percentile or a standard deviation score, the Z-
score. A Z-score of zero is equivalent to the mean, and Z-
scores of —1 and +1.5 are equivalent to values one standard
deviation below and 1.5 standard deviations above the
mean, respectively. The T-score (comparison of the current
Z-score with peak adult BMD) is used in adult interpre-
tation of DXA but should not be included in the pediatric
DXA report [3]. Because the T-score is a measure of bone
density loss since early adulthood, its use in children whose
BMD has yet to peak will always yield a low result.
Because the World Health Organization’s DXA-based
definitions of osteopenia and osteoporosis are in terms of
T-scores, T<—1.0 and T<-2.5, respectively [3], a different
terminology is needed for pediatric patients. It is
recommended that the phrase “low bone density” be used
in DXA reports [3]. Some clinicians and researchers use the
terms osteopenia and osteoporosis in children when Z-
scores are less than —1.0 and —2.5, respectively. It is
important to note that the diagnosis of osteoporosis should
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not be made on DXA results alone but should take into
account other patient factors.

Much of the research in pediatric DXA has focused on
determining which factors most influence BMD and should
be accounted for in the development of normative pediatric
datasets. The factors age, gender, ethnicity, and physiologic
maturity level have been extensively studied and are
included in most current normative datasets provided by
the major DXA manufacturers. Some of the earliest reports
indicate the influence of age on BMD values, and several
authors have presented normal data accounting for age [10,
19-21, 33]. The effect that age has on BMD is largely
related to the increase in frame size that occurs with
increasing chronologic age. Increasing height and weight
strongly correlate with increasing BMC and BMD. The
changes in height and weight are most pronounced during
the pubertal growth spurt. BMD increases rapidly during
early puberty [21, 34], but because the age of pubertal onset
is quite variable, physiologic maturity has a stronger
influence on BMD than age. Several authors have included
Tanner stage or gynecologic age as a primary factor in their
normative datasets [21, 34-37]. Weight is an important
factor influencing BMD for multiple reasons [4, 19, 20, 32,
38, 39] and has been included in normal datasets [10, 34].
Ethnicity has been determined to be important in the
analysis of BMD results, with black children showing
significantly higher BMD values than non-black children
[10, 20, 36, 39—41]. Multiple factors are thought to account
for this, including increased cross-sectional area in the axial
skeleton and thicker trabecula in cancellous bone [36].
Lifestyle and anthropometric factors might also play a role
[42].

There are numerous published pediatric normative
datasets, many of which are summarized in Table 2.
These datasets have been developed using a variety of
scanners and processing software and are based on various
combinations of demographic and physiologic patient
variables. Rather than simplifying pediatric DXA interpre-
tation, the sheer number of available normal databases has
made DXA interpretation complex, confusing, and at times
erroneous [43]. To report the numeric result generated from
the manufacturer’s automated processing without consid-
eration of factors specific to the patient being studied is
unacceptable. This often will lead to misdiagnoses and can
result in inappropriate therapy [44]. In fact, the diagnosis of
osteoporosis in a child based on a DXA result is often a
misinterpretation of the scan data. Gafni and Baron [45]
found this to be the case in more than half of the pediatric
patients referred to them with the diagnosis of osteoporosis.
The most common causes for misdiagnosis were the use of
T-scores, inappropriate normative datasets, inadequate
ROIs, and inattention to short stature.

As with any other radiologic study, a methodical
evaluation of the results should be undertaken in order to
minimize the risk of misdiagnosis. The radiologist needs to
review all input data, including patient age, gender,
ethnicity, weight, height, and Tanner stage (if provided).
Patient positioning should be evaluated, and the ROIs need
to be analyzed for artifact and appropriateness. Comparison

should be made with previous studies to ensure consistency
of positioning and ROI selection. In addition, changes in
patient height, weight, and Tanner stage should be noted.
After these steps have been taken, interpretation of the
numeric result is performed. An appropriate database for
comparison purposes is selected. Ideally, this is based on
data generated locally using the same equipment and
technologists, but this is rarely possible. Normative data
provided by the DXA manufacturers can be used, but
historically these datasets do not include the parameters
currently thought to be most important for interpretation.
At a minimum, patient body size (height and weight) and
physiologic maturity (Tanner stage, gynecologic or bone
age) should be factors included in the normative dataset.
Ethnicity and gender are also frequently included in the
generation of normative data and are generally thought to
affect BMD significantly. Table 2 summarizes a large
number of normal databases that can be used to best match
the patient scan to be analyzed.

More complex and scientifically rigorous analyses of the
BMD result have been suggested. Molgaard et al. [46]
described a three-step analysis of BMD. Bone length is
categorized as short or long by assessing the patient’s
height for age. Height is highly correlated with BMC [12]
and thus needs to be accounted for, especially when BMD
Z-score is abnormal (Z=+2). Bone width is categorized as
thin or thick by assessing BMC for height. Last, bone
mineralization is categorized with assessment of BMC for
BA. The first step takes into account height because of its
profound effect on BMC; taller children will have a higher
bone content. However, bone width is also important in
determining bone content, thus the second step accounts
for this. The last step is often the only step performed by
many radiologists with reporting of BMC for BA which, by
definition, is BMD. Height for age can be assessed using
standard growth charts corrected for age, gender, and
ethnicity. Percentile rankings can be easily converted to a
Z-score [47]. Bone area for height tables are available for
select groups, but normative data for all pediatric patients
need to be developed. Using this three-step analysis,
Molgaard and Michaelsen [48] found that the causes for
low BMC might be various combinations of factors such as
short stature and thin bones, as in children with cystic
fibrosis, or short stature and reduced mineralization, as in
children with milk allergy. BMC might be normal despite
short stature in the presence of wide bones, as in children
with previously treated leukemia.

In summary, an abnormal BMD Z-score should lead to
evaluation of confounding patient factors that influence
BMD, including height, weight, and physiologic maturity,
before a diagnosis of low bone density is made. Until the
manufacturers’ databases sufficiently account for the
physiologic factors that most impact BMD results,
normative data derived locally or from the medical
literature should be used in pediatric DXA interpretation.
The report should include the DXA equipment and
software algorithm used (pediatric or adult, low bone
density or standard), the source of the normative reference
data, the Z-score (not the T-score), and an impression
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Table 2 Normative pediatric DXA databases (C/B/H/A/O Caucasian/black/Hispanic/Asian/other, GA gestational age, (L) longitudinal study,

SA surface area)

Reference Year Scanner  No. of  Age range Ethnicity Input Output
patients (C/B/H/A/O)
(M/F)
25 1992 Hologic  29/28 Newborn GA + weight +  Lumbar BMD and BMC
1000 PB height + SA
25 1992 Hologic 22 total 1-24 GA + weight +  Lumbar BMD and BMC
1000 PB months height + SA
29 1996 Hologic 82/68 GA 27— Weight Total BMD, BMC and BA
1000 PB 42 weeks
35 1991 Hologic 84/134  2-17 162/56/0/0/0 Weight + Tanner Lumbar BMD
1000 PB years stage
56 1990 Lunar 184 total 5-11 Weight Lumbar BMD
DP-3 years
57 1993 Norland  86/68 5-18 Gender + Tanner Total BMC and % fat
XR-26 years stage
46 1997 Hologic 142/201 4-19 343/0/0/0/0 Gender + Tanner Total BMD, BMC and BA
1000 PB years (L) stage
58, 59 2002 Lunar 188/256 4-20 444/0/0/0/0 Gender + age Lumbar BMD and apparent BMD or total
DPXL/ years (L) BMC, % fat and lean body mass
PED
Gender + Tanner Lumbar BMD and apparent BMD or total BMD
stage and BMC
62 2002 Hologic 107/124 5-22 226/0/0/3/2 Gender + age Total BMC and BA
4500 FB years
Gender + height Total BA
Gender + total Total BMD
BMC
61 2005 Hologic up to 3-20 Gender + age Lumbar, total hip and total BMD
4500 FB 1948 years
21 1991 Hologic 109/98  9-18 207/0/0/0/0 Gender + Tanner Lumbar BMC, BA and BMD, femoral neck BMD
1000 PB years stage or age
22, 33 1996 Hologic 110/124 8-17 220/0/0/0/0 Gender + age Lumbar and total BMC and BMD
2000 FB years (L)
Femoral neck BMC and BMD
40° 1999 Hologic 193/230 9-25 103/114/103/103 Gender + age + Lumbar, femoral neck, and total hip BMD and
1000 PB years (L) ethnicity BMAD
Total BMD and BMC/Ht
10 2004 Hologic 0/422 12-18 153/264/0/0/5  Age + weight + Lumbar and femoral neck BMD, femoral neck
4500 FB years ethnicity apparent BMD
60° 2001 Hologic 0/151 9-14 151/0/0/0/0 Breast stage + age Lumbar, femoral neck, trochanter and forearm
2000 PB years (L) BMC and BMD
54 2003 Lunar 210/249 3-30 459/0/0/0/0 Gender + height  Total lean body mass and total BMC/lean body
DPX PB years or age mass

*Further data available at http://www.stat-class.stanford.edu/pediatric-bones
Further data available at http:/www.becm.edu/bodycomplab

giving a clinical context for the result. The diagnosis of
“low bone density” does not rest solely on the DXA
numeric result, and the report should indicate which patient
factors were incorporated into the final impression. A
specimen DXA report and the examination protocol from
Columbus Children’s Hospital are given in Appendix.

Bone growth over time and changes in BMD

As mentioned previously, bone size affects the DXA
aBMD result. Changes in bone size over time, as occur in
normal pediatric development, confound DXA interpreta-
tion. This is one of the major limitations in the use of
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pediatric DXA. On both follow-up studies, when the
child’s data are compared to prior results, as well as when
the child’s DXA values are compared to normative values,
the effect of bone size needs to be accounted for. These
problems could be avoided, at least in part, if a true
volumetric BMD were available with DXA. As this is not
possible with current DXA technology, investigators have
attempted to account for the effect of bone volume on the
DXA result and minimize the effect the growing skeleton
has on the BMD value [49]. Katzman et al. [50] estimated
the volume of the lumbar vertebral bodies, assuming it to
be a cube, using this formula: apparent lumbar BMD
(BMAD) = BMC/BA'~. Kroger et al. [51] suggested a
volumetric correction based on the assumption that the
vertebral body is a cylinder using this formula: BMAD=
(BMC)(4/[rt{bone width}]). This correction can also be
applied to the femoral shaft and neck [52]. These
corrections do not fully account for changes over time in
lumbar BMD but do eliminate age and height dependence
of BMD at the hip. A different approach has been to not
evaluate BMD at all, but to measure BMC only, because it
is determined with greater accuracy and precision than
BMD [53]. In an effort to incorporate the fundamental
relationship between the mechanical stress a bone
experiences through muscle action and its mineral content,
Hogler et al. [54] and Crabtree et al. [55] used DXA to
assess BMC and proposed algorithms that focus on the
evaluation of lean total body mass (LTM) with respect to
height and BMC. They found LTM explains greater than
95% of the variation in total body BMC in boys and girls.
By incorporating LTM/height and height/age into the DXA
interpretation, patients could be grouped as being normal or
having a primary, secondary or mixed bone defect. For
example, the diagnosis of low BMD for age might be a
result of smaller bones and not osteopenia. Hogler et al.
[54] found children with growth hormone deficiency to be
short for their age (low height/age ratio) but to have a
normal amount of bone adaptation (BMC) for the muscle
force (LTM). The BMC/LTM ratio for these children is
normal. In contrast, children with anorexia nervosa with
normal height had low LTM and also low BMC/LTM
ratios. Their low BMD for age was a result of decreased
muscle loading on bone (a secondary bone defect with low
LTM/height) and decreased mineralization for the level of
muscle loading present (a primary defect with low BMC/
LTM). This indicated that a mixed defect caused their low
BMD for their age.

In summary, smaller bones will have lower aBMD than
larger bones as measured with DXA, even when the vBMD
is the same because of limitations of the areal bone density
technique. Attempts to correct for or to circumvent this
limitation have been proposed and show promise in
improving DXA interpretation and our understanding of
bone physiology.

Clinical case studies

The following case studies are examples of common
clinical indications for DXA in pediatrics and illustrate the
principles used at Columbus Children’s Hospital in DXA
interpretation.

Patient 1 was a 4-year-old white female with nutritional
rickets and multiple fractures following minimal trauma.
She presented for a baseline study and was Tanner stage 1
and weighed 19 kg. Her lumbar BMD was 0.399 g/cm?.
Using our normal database that corrects for Tanner stage
and weight [35], the patient’s lumbar BMD was far below
the first percentile (Z-score was much less than —2.3). The
manufacturer’s database (which is based in part on the data
from reference 35) yielded a Z-score of —2.1. The total
body BMC was 543 g with a Z-score of —2.3 [43]. The
patient was reported as having markedly reduced lumbar
bone density and reduced total body BMC.

Patient 2 was a 13-year-old black female with lupus. On
baseline DXA the lumbar BMD was 0.719 g/cm?, equiv-
alent to a Z-score of 1.6 using our local database and was
considered to be a high normal value for a 33-kg and
Tanner stage 1 patient. The total body BMC was 1280 g,
equivalent to a Z-score of 1.5 [43], and was also thought to
be a high normal value. During the next 15 months, she
was treated with corticosteroids and gained 15 kg and
progressed to Tanner stage 2. On follow-up DXA the
lumbar BMD was 0.723 g/cm?. This value corresponds to
the 25th percentile and a Z-score of —0.67 [35]. Thus, she
had a slight decrease in her lumbar BMD value at a time
when rapid bone mineral accrual would be expected [21].
This was made evident by the rather marked decrease in her
Z-score, from 1.5 to —0.67. Her total body BMC was
unchanged, but the Z-scores also decreased substantially.

Patient 3 was a 16-year-old white female with Turner
syndrome and of small stature (150 cm, first percentile, Z-
score —2.3). Her lumbar BMD was 0.641 g/cm?, equivalent
to the eighth percentile (Z-score —1.3) for Tanner stage 3
and weight 50 kg [43]. It should be noted that the
manufacturer’s normal database yielded a lumbar BMD Z-
score of —3.0, but it did not take into account height or
weight. The low lumbar BMD Z-score was likely a result of
the patient’s short stature (low height Z-score). The weight
correction in our normal database partially accounted for
her short stature and gave a more meaningful interpretation
of the numeric DXA result. This patient’s bone age was
13 years (Z-score —2.3), and using this rather than her
chronologic age (16 years) with the manufacturer’s normal
database would result in a Z-score of —1.0. This value
would better reflect the patient’s actual bone status.
Because our database corrects for weight and Tanner
stage, each patient is weighed and has a Tanner stage
determination made by the referring clinician prior to the
DXA study. Thus, we do not use the patient’s bone age in
DXA interpretation.



Final recommendations

Pediatric radiologists need to assume a more prominent
role in DXA performance, interpretation and research.
They require expertise with DXA as a laboratory proce-
dure, a numeric result, and a clinical diagnostic examina-
tion. The radiologist must be a “clinical pathologist”
closely supervising the acquisition of the DXA study with
assessment of quality control data as well as the clinical
images. The radiologist must be a “statistician” under-
standing the principles of least significant change and the
relationship of standard deviation scores and percentile
rankings. The radiologist must also be a “bone specialist”
providing a meaningful context for DXA, translating the
numeric value to a clinically useful result. As always,
pediatric radiologists must be children’s health advocates
by ensuring the appropriate clinical use of DXA as well as
actively participating in research efforts.

Appendix
Columbus Children’s Hospital DXA examination

The typical scan includes the lumbar spine and total body
for all patients. For children younger than 12 years, the hip
is not scanned because of a lack of well-controlled norms.
The manufacturer’s provided normative database extends
down to 4 years of age. However, by correcting only for
age, gender and ethnicity, it does not adequately account
for patient factors for our clinicians. For patients with an
increased risk of vertebral compression fracture, such as
those with osteogenesis imperfecta, a vertebral morpholog-
ic assessment is performed with the lateral scanogram. The
normative data used for comparison are from references 32
(lumbar spine), 10 (female adolescent hip) and 43 (total
body BMC). For children weighing less than 10 kg,
reference 25 is used for the lumbar spine comparison.
Results are given in terms of percentiles [10, 32] and can be
converted to Z-scores [47].

The final impression indicates whether the sites mea-
sured have normal BMD or whether the values are greater
than two standard deviations from the mean compared to
the appropriate database and corrected for relevant patient
factors. If the results are greater than two standard
deviations below the mean, the phrase “low bone density”
is used. Comparison with previous studies is made, and
changes greater than 5% are reported as significant. (A
previous repeated measures study for the lumbar spine and
hip at Columbus Children’s Hospital found a standard error
of measurement of less than 1% for the lumbar spine and
2% for the total hip.)

Sample DXA report
Utilizing the Hologic Delphi technique and pediatric

software analysis, regions of interests were drawn about
L1-L4, the total left hip, and the total body. The patient is
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Tanner stage and weighs _ kg. The bone mineral density
of the lumbar spine is _ g/cm?. Utilizing the locally derived
database that accounts for Tanner stage and weight, the
patient’s value corresponds to the _th percentile.

The bone mineral density of the total left hip is _ g/cm?.
(The following sentence is inserted for female patients
Tanner IV or V: Utilizing normative data from the literature
that accounts for weight, age and ethnicity, the patient’s
value corresponds to the _th percentile.)

The total body bone mineral contentis _ g. This is
(insert one of the following: near the mean, above or below
the mean but within normal limits, or greater than two
standard deviations above or below the mean) when
compared to normative data from the literature.

The patient has % body fat.
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