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Abstract

Handheld chlorophyll meters as Soil Plant Analysis Development (SPAD) have proven to be

useful tools for rapid, no-destructive assessment of chlorophyll and nitrogen status in various

crops. This method is used to diagnose the need of nitrogen fertilization to improve the effi-

ciency of the agricultural system and to minimize nitrogen losses and deficiency. The objec-

tive of this study is to evaluate the effect of repeated conservative agriculture practices on the

SPAD readings, leaves chlorophyll concentration and Nitrogen Nutrition Index (NNI) relation-

ships in durum wheat under Mediterranean conditions. The experimental site is a part of a

long-term-experiment established in 1994 and is still on-going where three tillage manage-

ments and three nitrogen fertilizer treatments were repeated in the same plots every year.

We observed a linear relationship between the SPAD readings performed in the central and

distal portion of the leaf (R2 = 0.96). In fertilized durum wheat, we found all positive exponen-

tial relationships between SPAD readings, chlorophyll leaves concentration (R2 = 0.85) and

NNI (R2 = 0.89). In the unfertilized treatment, the SPAD has a good attitude to estimate

leaves chlorophyll concentration (R2 = 0.74) and NNI (R2 = 0.77) only in crop grow a soil with

relative high content of soil organic matter and nitrogen availability, as observed in the no

tilled plots. The results show that the SPAD can be used for a correct assessment of chloro-

phyll and nitrogen status in durum wheat but also to evaluate indirectly the content of soil

organic matter and nitrogen availability during different growth stages of the crop cycle.

Introduction

The essential goal of world agriculture is to provide sufficient amount of food to satisfy the

nutritional demand of the current population. In the next 31 years, a growth of 2.6 billion peo-

ple is estimated [1]. There is a growing demand for food that needs to be filled [2] while reduc-

ing production costs and pollution.
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The reduction of costs and pollution in cultivation systems inevitably goes by the adoption

of conservative agriculture (CA) practices concerning soil management [3] and a better man-

agement of production inputs. In fact, the reduced tillage and even the no-tillage bring benefits

to the environment in terms of reduction of soil erosion, leaching of nitrates, reduction in the

use of agricultural machinery as well as a lower emission of greenhouse gases and fuel costs

[4]. Furthermore, the low soil disturbance, with the addition of crop residues, increases the lev-

els of humidity and nutrients in the horizons of soil explored from the roots, and reduces the

mineralization rate of the organic matter [5].

These issues have been studied in the Mediterranean because winter cereals are the domi-

nant crops [6]. In the Mediterranean area, crop production can be improved with the adoption

of CA techniques [5] and with the application of the right dose of nitrogen (N), through the

site-specific application of fertilizers [7].

N deficiency leads to low shoot biomass and reduces yield, while excessive N causes disease

and a range of environmental issues [8]. Nitrogen use efficiency is a central issue and goal of

applied research in agricultural systems to assess the N uptake by crops and can be used to

apply N fertilizer avoiding pollution from mineral N input [9–11]. Fertilizer applications

should be based on precise estimates of crop N requirements [12].

The Nitrogen Nutrition Index (NNI) was developed in France for diagnosing plant N status

for range of cereals and grasses, and to adjust N fertilization [13–15]. Recent studies on durum

wheat [16] and rice [17–18] confirm important progress in the management of nitrogen fertili-

zation during the growth stages. However, NNI determination requires destructive time-con-

suming measurements of plant N content and crop biomass. Widely used methods for

determining crop nitrogen requirements require substantial time, the use of sophisticated lab-

oratory equipment, and associated costs. Time required for sample collection and analyses

may disallow timely producer response to crop nitrogen deficiencies [19].

To overcome these logistical and economic problems, it is necessary to calibrate the NNI

with other methods [16] as various types of portable diagnostic tools have been developed for

assessing the N status of a crop within the growing season, to provide farmers with decision

support based on different measurements [20]. Plant-sap nitrate concentration, leaf chloro-

phyll content and crop transmittance and reflectance are the most commonly used indicators

on which N fertilizer recommendations are based [21–22].

Since there is a close relationship between chlorophyll and nitrogen in the leaf tissue con-

tent [23], scientific studies are being directed towards chlorophyll meter, a no-destructive and

low-time consuming method [24–25]. Many studies have found a relationship between chloro-

phyll meter readings and leaves chlorophyll concentration in several cereal crops [26–28]. Fur-

thermore, a relationship between the Soil Plant Analysis Development (SPAD) readings and N

crop status [19,25,28–29] has been found to establish robust N diagnostic models based on the

optimal indicators and to assess their ranges of application [30].

However, the identification of appropriate levels of nitrogen fertilization based on the

SPAD readings obtained with the chlorophyll meter is still under study. Furthermore, it has

been shown that those relationships depend on cultivar, cultural practice and environmental

factors [19,26,29,31–32]. To our knowledge there are not information that provide for a com-

parison between conventional vs conservative systems for the parameters listed above.

The aim of this study that represents the preliminary result of the research project "Setting

of a precision farming robotic laboratory for cropping system sustainability and food safety

and security" [33] is to evaluate the effect of CA practices on the SPAD readings, leaves chloro-

phyll concentration and NNI relationship in durum wheat under Mediterranean conditions

for which no data are yet available.
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Materials and methods

Experimental site

The experimental site is located at the “Pasquale Rosati” experimental farm of the Polytechnic

University of Marche in Agugliano, Italy (43˚32’N,13˚22’E, at an altitude of 100 m above sea

level and a slope gradient of 10%), on a silty-clay soil classified as Calcaric Gleyic Cambisols

[34]. The climate of site is Mediterranean, the average rainfall is 838 mm (1998–2018 period)

(Table 1). November is the rainiest month (93 mm) while July the driest month (36 mm). The

average minimum temperature was 11.4˚C while the mean maximum temperature was

20.0˚C.

During the experimental period (November 2017 –October 2018) we observed on average a

similar trend without significant differences in terms of rainfall and temperature (max and

min).

Experimental design and crop management

The experimental site is a part of a long-term-experiment established in 1994 and is still on-

going consisting on a rainfed 2 years rotation with durum wheat (Triticum turgidum L. var.

durum, cv. Grazia, ISEA) in rotation with maize (Zea Mays L., DK440 hybrid Dekalb Mon-

santo, FAO Class 300) [35].

The crop rotation was duplicated in two adjacent fields to allow both crops to be present

each year; in this paper the results observed in durum wheat in 2018 are presented. Within

each field, three tillage (T, main plot, 1500 m2) and three nitrogen fertilizer (N, sub-plot, 500

m2) treatments were repeated in the same plots every year and arranged according to a split

plot experimental design with two replicates.

The conventional tillage (CT), that is representative of the business as usual tillage practice

in the study area, and the reduced tillage (RT) plots were ploughed along the maximum slope

every year by mouldboard (with 2 plows) at the depth of 40 cm or a chisel at a depth of 25 cm

respectively in autumn. The seedbed was prepared with double harrowing before the sowing

date.

The no tillage (NT) soil was left undisturbed except for crop residues, weed chopping, and

total herbicide spraying prior to direct seed drilling.

Soil properties in compared experimental plots are indicated in Table 2. Soil sampling was

made with a Hand Huger (mod. Suelo HA-3) after the sowing, before the first N fertilization.

From each subplot 3 samples were taken for a total of 54 soil samples analyzed.

Table 1. Monthly precipitations and mean minimum (T min) and maximum (T max) air temperatures comparison in the experimental (November 2017 – October

2018) and long-term (November 1998–October 2018) period.

Months November December January February March April May June July August September October Average or Total

Rainfall (mm)

2017–2018 124 96 29 173 143 37 95 48 57 25 19 37 883

Long-term 93 87 54 68 85 70 73 54 36 41 92 84 838
Min air T (˚C)

2017–2018 7.9 4.1 5.2 2.0 5.7 11.8 14.9 17.7 20.5 20.8 16.8 12.2 11.6

Long-term 8.7 4.4 3.2 3.8 6.6 9.7 13.7 17.8 20.2 20.2 16.1 12.9 11.4
Max air T (˚C)

2017–2018 15.7 11.9 12.8 8.3 13.3 21.5 23.7 27.8 30.8 31.0 26.9 21.6 20.4

Long-term 15.3 10.9 9.6 11.0 14.9 18.8 23.5 28.1 30.8 30.7 25.4 20.6 20.0

https://doi.org/10.1371/journal.pone.0225126.t001
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The three nitrogen fertilizer treatments N0 = 0 kg N ha-1, N1 = 90 kg N ha-1 and N2 = 180

kg N ha-1 were distributed in two rates. The N1 treatment was compliant with the agro-envi-

ronmental measures adopted within the rural development plans at local scale. The N2 treat-

ments was the business as usual N rate in the study area at the start of the experiment. The N0

treatment was chosen as a control. Dates (dd/mm/yyyy) of all agronomic practices in the three

soil managements are reported in Table 3.

Measurements

SPAD measurements. In order to avoid Soil Plant Analysis Development (SPAD) read-

ings with strong variations, we have performed the sampling during a fully-sunny day. SPAD

readings were made by using the chlorophyll meter SPAD Minolta 502 (Konica Minolta Sens-

ing 2003, Osaka, Japan). The functioning of the SPAD Minolta 502 is based on production of

light by two silicon photodiodes, with one sensitive to red light (650 nm; peak chlorophyll

absorbance) and the other sensitive to infrared radiation (940 nm; non-chlorophyll absor-

bance). Electrical currents converted from light received by the silicon photodiodes are

received by a microprocessor, which linearizes the signal and calculates a SPAD (unit less)

Table 2. Soil properties (0–20 cm layer) (± dev.st.) in compared experimental plots.

Parameters NT RT CT

Sand (g kg-1) 127 (±21) a 125 (±18) a 120 (±19) a

Silt (g kg-1) 410 (±30) a 388 (±11) a 397 (±19) a

Clay (g kg-1) 463 (±36) a 487 (±10) a 483 (±22) a

Soil organic matter (g kg-1) 25.5 (±5.9) a 17.2 (±1.0) b 12.6 (±0.9) b

Total nitrogen (g kg-1) 1.68 (±0.30) a 1.17 (±0.03) b 0.98 (±0.03) b

NT, no-tillage; RT, reduced tillage; CT, conventional tillage.
a,b values having a common letter are not significantly different at P level = 5%.

https://doi.org/10.1371/journal.pone.0225126.t002

Table 3. Agronomic management practices adopted during the experimental years 2017–2018.

Agro-technique Soil managements Date

Ploughing (40 cm) CT 02/10/2017

Chisel (25 cm) RT 04/10/2017

Weed controla NT 14/11/2017

Harrowing and seed bed preparation CT and RT 20/11/2017

P fertilizationb All 21/11/2017

Sowingc All 21/11/2017

Pest controld All 24/04/2018

N fertilizatione All 29/03/2018

All 30/04/2018

Harvest All 06/07/2018

CT, conventional tillage; RT, reduced tillage; NT, no-tillage;
a Glyphosate dose: 2.25 kg ha-1 of active ingredient;
b 70 kg P2O5 ha-1

c Seed rate: 220 kg ha-1; Row spacing: 0.17 m;
d Azoxystrobin dose: 0.16 l ha-1; Cyproconazole dose: 0.16 l ha-1

e N source: urea (46%); 50% of N distribution for each date.

https://doi.org/10.1371/journal.pone.0225126.t003
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value according to equation (Eq 1) [36]:

SPAD readings ¼ A� log
Ior
Ir

� �

� log
Iof
if

� �

þ B
� �

ð1Þ

Where:

A = constant;

B = constant;

Ior = current from red detectors with sample in place;

Ir = current from red infrared detectors with sample in place;

Iof = currents from red detectors with no sample;

If = currents from infrared detectors with no sample.

We have randomly selected three test areas for each sub-plot. At each test areas we have

chosen 10 full expanded and intact leaves on which SPAD readings were made. The readings

were taken on the central (SPAD CP) and distal portion (SPAD DP) of the leaves, at the same

time slot, around midday (11:00–13:00 a.m.). Moving from one sub-plot to the next one, we

carefully cleaning the optical sensor with an alcohol solution and we performed the calibration

activity as suggested by the SPAD Minolta 502 instruction manual. The 10 leaves for each test

area, after the SPAD readings, were cut and sealed in a plastic bag, placed in a portable refriger-

ator and transferred to the laboratory where the chlorophyll was analyzed.

Leaves chlorophyll concentration. The concentration of the leaf chlorophyll was per-

formed according with the Arnon’s method [37].

We cut the 10 fully expanded and intact leaves acquired from the previous sampling activi-

ties and we weight it (Eq 2) until we obtained about 0.1 g with a precision balance of α =

0.0001 g. The leaf pigments were extracted in 80% acetone and leaf was pulverized completely

by using the homogenizer (Bio-Gen PRO200) to obtain a completely white foliar tissue. Before

the analysis we centrifuged them for 5 minutes at 7 rpm to separate solid and liquid substance,

and then we added more solution of 80% acetone until we reached a final volume of 25 ml.

The determination of leaves chlorophyll concentration is carried out by using a spectropho-

tometer (Varian Cary 50 Scan UV-visible spectrophotometric): the absorbance’s (A) were

measured at 663 and 645 nm. Total chlorophyll contents of each sample were computed from

the equations described below, using following equation (Eq 2) [37]:

mg total chlorophyll=g tissue ¼ 20; 2� ðA645Þ þ 8; 02� ðA663Þ � V1000�W ð2Þ

Where:

A = absorbance at specific wavelengths

V = final volume of chlorophyll extract

W = fresh weigh of tissue extracted.

Nitrogen crop status determination. Total nitrogen was determined on the epigeal por-

tion of fresh plants by automated combustion analysis Dumas method [38–39] in an oxygen-

enriched atmosphere at a high temperature in order to ensure complete combustion of the

whole sample. The fresh plants sampled were taken on three different test areas at each sub-

plot in a 1 m long-row and oven-dried at 80˚C for 48 h. We have ground to pass a 0.5 mm, and

before we analyzed for total nitrogen, we weighed the dry biomass. Total nitrogen was deter-

mined by using EA 1110 LECO CHNS-0 analyzer (Leco Corporation, St. Joseph, MI).

Starting from the total nitrogen results, the Nitrogen Nutrition Index (NNI) was calculated

by dividing actual nitrogen concentration (Dumas method) by the critical nitrogen concentra-

tion using the wheat dilution curve [14,19]. To calculate the NNI we used the following

Nitrogen and chlorophyll determination in durum wheat: Preliminary results

PLOS ONE | https://doi.org/10.1371/journal.pone.0225126 November 14, 2019 5 / 16

https://doi.org/10.1371/journal.pone.0225126


equations (Eqs 3 and 4):

NNI ¼
%N
NC

ð3Þ

NC ¼ a� DM� b ð4Þ

Where:

% N = actual N concentration

Nc = critical N concentration

a = 5.35

DM = dry matter (g)

b = 0.442

All described measurements were performed at tillering stage (Zadoks Scale, ZS22) [40]

(before the 1st N fertilization), stem elongation (ZS35) (between the N fertilizations) and

anthesis (ZS60) (after the 2nd N fertilization) to evaluate crop development in relation to the

nitrogen fertilization. At crop maturity (ZS92) we measured the total biomass yield (g m-2)

expressed on a dry matter content basis using plants sampled on three test areas at each sub-

plot in a 1 m long-row and oven-dried at 105˚C for 48 h. In addition, on the same samples, we

determine the Harvest Index (H.I.) (Eq 5), using a laboratory thresher to separate the grain

from the biomass.

H:I: ðHarvest IndexÞ ¼
Grain yield ðgÞ

Total Biomass ðgÞ
ð5Þ

Statistical analysis

All statistical analysis was performed with the R Statistical software. Before to do any statistical

analysis, we performed a normality test (Shapiro-Wilk W test) to evaluate the data distribution.

When data were normally distributed a one-way ANOVA was applied followed by a Tukey

post-hoc analysis. When data were not normally distributed the Kruskal-Wallis test was used

followed by a post-hoc analysis Dunn (P level = 5%). Regression analysis (P level = 0.1%) was

used to evaluate the relationship between SPAD readings, leaves chlorophyll concentration

and NNI. The coefficient of determination (R2) and relative root mean square errors (RMSE)

were used to evaluate the ability of the SPAD Minolta 502 to estimate the dependent variables.

Results

SPAD readings

The relationship between SPAD readings on the central (SPAD CP) and distal portion (SPAD

DP) of the leaves that we observed is linear, with a coefficient of determination (R2) of 0.96

and a Root Mean Square Error (RMSE) of 2.30 (Fig 1).

On all data, the relationship between SPAD CP and SPAD DP was the following (Eq 6):

SPADCP ¼ 1:0033 � SPADDPþ 0:1566 ð6Þ

As illustrated in Fig 1, the equation underlines that SPAD DP readings were generally lower

than SPAD CP readings.
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SPAD readings and leaves chlorophyll concentration

We found a positive and significant exponential relationship between SPAD readings and

leaves chlorophyll concentration for the factorial combinations NTxN0 (R2 = 0.74); no signifi-

cant relationship where found for both factorial combination RTxN0 (R2 = 0.08) and CTxN0

(R2 = 0.05) with, in the latter case, a negative trend (CTxN0: y = 1.6783e-0.007x) (Fig 2).

Fig 1. Relationship between SPAD readings observed on the central (SPAD CP) and distal portion (SPAD DP) in

durum wheat during the season 2017–2018. ���: Significant at P level = 0.1%, RMSE, root mean square error.

https://doi.org/10.1371/journal.pone.0225126.g001

Fig 2. Relationship between leaves chlorophyll a+b concentration (mg/g) and SPAD readings in durum wheat during the season 2017–2018

under unfertilized treatment (N0, unfertilized treatment). NT, no tillage; RT, reduced tillage; CT, conventional tillage. ���: Significant at P

level = 0.1%, RMSE, root mean square error.

https://doi.org/10.1371/journal.pone.0225126.g002
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By considering the SPAD readings and the leaves chlorophyll concentration, we found a

significant difference between the factorial combinations NTxN0 compared to CTxN0. The

factorial combination RTxN0 was not significantly different than CTxN0 for both destructive

methods, while comparing RTxN0 and NTxN0 we have found only a significant difference on

the SPAD readings (Table 4)

We observed positive and significant exponential relationships between the SPAD readings

and leaves chlorophyll concentration under the two fertilized treatments (N1 and N2) regard-

less of soil management with an average R2 values of 0.85 and an average RSME of 0.50

approximately. The value of R2 change between the soil managements taking the two fertilized

treatments individually (Figs 3 and 4).

Table 4. SPAD readings (± dev.st.) and leaves chlorophyll a+b concentration (mg/g) (± dev.st.) observed under unfertilized treatment in the different soil manage-

ments on the season 2017–2018.

Soil management Nitrogen input SPAD readings Chorophyll a+b concentration (mg/g)

NT N0 32.89 (±4.88) a 2.00 (±0.71) a

RT N0 24.30 (±5.29) b 1.72 (±0.33) ab

CT N0 20.90 (±6.05) b 1.47 (±0.27) b

Mean 26.03 (±7.37) 1.73 (±0.52)

NT, no tillage; RT, reduced tillage; CT, conventional tillage; N0, unfertilized treatment.
a,ab,b values having a common letter are not significantly different at P level = 5%.

https://doi.org/10.1371/journal.pone.0225126.t004

Fig 3. Relationship between leaves chlorophyll a+b concentration (mg/g) and SPAD readings in durum wheat during season 2017–

2018 under N1 condition (N1, 90 kg N ha-1). NT, no tillage; RT, reduced tillage; CT, conventional tillage. ���: Significant at P level = 0.1%,

RMSE, root mean square error.

https://doi.org/10.1371/journal.pone.0225126.g003
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By evaluating absolute values of SPAD readings and leaves chlorophyll concentration, we

did not find a significant difference between the soil management under the two fertilized

treatments (Table 5).

SPAD readings, Nitrogen Nutrition Index and total biomass yield

We observed a positive and significant exponential relationship between SPAD readings and

NNI for the factorial combinations NTxN0 (R2 = 0.77); no significant relationship were found

Fig 4. Relationship between leaves chlorophyll a+b concentration (mg/g) and SPAD readings in durum wheat during the season 2017–

2018 under N2 condition (N2, 180 kg N ha-1). NT, no tillage; RT, reduced tillage; CT, conventional tillage. ���: Significant at P

level = 0.1%, RMSE, root mean square error.

https://doi.org/10.1371/journal.pone.0225126.g004

Table 5. SPAD readings (± dev.st.) and leaves chlorophyll a+b concentration (mg/g) (± dev.st.) observed under N1 and N2 fertilized treatments in the different soil

managements on the season 2017–2018.

Soil management Nitrogen input SPAD readings Chorophyll a+b concentration (mg/g)

NT N1 39.45 (±9.62) a 2.38 (±1.00) a

RT N1 39.75 (±9.42) a 2.40 (±0.88) a

CT N1 41.23 (±9.06) a 2.56 (±0.89) a

Mean 40.15 (±9.23) 2.45 (±0.91)

NT N2 43.33 (±10.85) a 2.53 (±1.11) a

RT N2 46.02 (±12.36) a 3.12 (±1.39) a

CT N2 43.58 (±9.99) a 2.89 (±1.35) a

Mean 44.31 (±10.97) 2.85 (±1.29)

NT, no tillage; RT, reduced tillage; CT, conventional tillage; N1, 90 kg N ha-1; N2, 180 kg N ha-1.
a value having a common letter are not significantly different at P level = 5%.

https://doi.org/10.1371/journal.pone.0225126.t005
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for both factorial combination RTxN0 (R2 = 0.01) and CTxN0 (R2 = 0.35) also highlighting a

negative relationship (RTxN0: y = 0.3095e-0.001x; CTxN0; y = 0.4206e-0.021x) (Fig 5).

By analyzing the NNI values, we found a significant difference between the factorial combi-

nations NTxN0 compared to CTxN0 (Table 6). The factorial combination RTxN0 was not sig-

nificantly different from the factorial combination CTxN0 not from the NTxN0. The same

dynamic was observed by analyzing the total biomass yield and the harvest index.

We have found positive and significant exponential relationships between SPAD readings

and NNI under the two fertilized treatments (N1 and N2) regardless of soil management with

an average R2 values of 0.89 and an average RSME of around 0.18. The values of R2 change

between the soils managements when taking the two fertilized treatments individually (Figs 6

and 7).

By evaluating absolute values of SPAD readings and leaves chlorophyll concentration, we

did not find a significant difference between the soil management under the two fertilized

treatments (Table 7). This find is confirmed also by analyzing the total biomass yield and the

harvest index.

Discussions

We observed a significant linear relationship between both SPAD readings (SPAD CP and

DP) of the durum wheat leaves (Fig 1), as reported on Triticum aestivum L. [31]. This result

allows us to simplify and reduce the readings to only one portion of the leaf, and it suggest us

to perform an average between the two different readings, and use the average as a single data.

There is no fixed rule accepted by the scientific community to describe the relationship

between SPAD readings, leaves chlorophyll concentration and NNI in durum wheat

Fig 5. Relationship between Nitrogen Nutrition Index (NNI) and SPAD readings in durum wheat during the season 2017–2018 under

unfertilized treatment (N0, unfertilized treatment). NT, no tillage; RT, reduced tillage; CT, conventional tillage. ���: Significant at P level = 0.1%,

RMSE, root mean square error.

https://doi.org/10.1371/journal.pone.0225126.g005
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[19,29,41–42]. The close relationship between SPAD readings, leaf chlorophyll concentration

and NNI, seem to be similar with the positive exponential relationship observed in winter

wheat (Triticum aestivum L.) [31] or in coffee [43].

Under unfertilized treatment, NT showed a positive and exponential relationship between

SPAD readings, leaves chlorophyll concentration and NNI, whit an R2 value of 0.77. Also,

regarding the total biomass yield and the harvest index, the NT system showed significant

effect compared to CT and RT in the unfertilized treatment as observed by [44] in a meta-anal-

ysis to assess and summarize the effects of NT on crop yields in different eco-regions of China.

This dynamic is probably due to the greater availability of nitrogen (1.68 vs 1.17 vs 0.98 g

kg-1 of total nitrogen respectively in the 0–20 cm soil layer for NT, RT, CT) deriving from the

higher rate of mineralization of soil organic matter presents in the NT system compared to RT

Table 6. Nitrogen Nutrition Index (NNI), total biomass yield and Harvest Index (HI) values observed (± dev.st.) under unfertilized treatment in the different soil

managements on the season 2017–2018.

Soil management Nitrogen input NNI Total biomass yield

(g/m2)

HI

NT N0 0.39 (±0.16) a 686.28 (±42.75) a 0.37 (±0.01) a

RT N0 0.31 (±0.07) ab 452.91 (±64.60) b 0.30 (±0.01) b

CT N0 0.28 (±0.07) b 421.00 (±72.98) b 0.31 (±0.01) b

Mean 0.32 (±0.12) 520.06 (±134.68) 0.32 (±0.03)

NT, no tillage; RT, reduced tillage; CT, conventional tillage; N0, unfertilized treatment.
a,ab,b values having a common letter are not significantly different at P level = 5%.

https://doi.org/10.1371/journal.pone.0225126.t006

Fig 6. Relationship between Nitrogen Nutrition Index (NNI) and SPAD readings in durum wheat during the season 2017–2018 under N1

condition (N1, 90 kg N ha-1). NT, no tillage; RT, reduced tillage; CT, conventional tillage. ���: Significant at P level = 0.1%, RMSE, root mean

square error.

https://doi.org/10.1371/journal.pone.0225126.g006
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and CT (25.5 vs 17.2 vs 12.6 g kg-1 of soil organic matter in the 0–20 cm soil layer respectively)

(Table 2) as a consequence of the repeated no tillage adoption [45–46].

The increased availability of nitrogen that characterized the factorial combination NTxN0

has ensured a higher concentration of chlorophyll in the foliar tissues [36,47], which determine

a greenness increase of the leaf [48–49]. These dynamics confirm the important role that no

tillage plays in the increase of soil organic matter [50–51].

Fig 7. Relationship between Nitrogen Nutrition Index (NNI) and SPAD readings in durum wheat during the season 2017–2018 under N2

condition (N2, 180 kg N ha-1). NT, no tillage; RT, reduced tillage; CT, conventional tillage. ���: Significant at P level = 0.1%, RMSE, root mean

square error.

https://doi.org/10.1371/journal.pone.0225126.g007

Table 7. Nitrogen Nutrition Index (NNI), total biomass yield and Harvest Index (HI) values observed (± dev.st.) under N1 and N2 fertilized treatments in the differ-

ent soil managements on the season 2017–2018.

Soil management Nitrogen input NNI Total biomass yield

(g/m2)

HI

NT N1 0.69 (±0.41) a 959.22 (±61.80) a 0.30 (±0.01) a

RT N1 0.64 (±0.30) a 918.50 (±140.63) a 0.32 (±0.01) a

CT N1 0.59 (±0.30) a 865.81 (±92.02) a 0.31 (±0.01) a

Mean 0.64 (±0.33) 914.51 (±104.78) 0.31 (±0.01)

NT N2 0.83 (±0.48) a 1226.23 (±110.94) a 0.35 (±0.03) a

RT N2 0.97 (±0.52) a 1287.05 (±246.15) a 0.32 (±0.02) a

CT N2 0.80 (±0.45) a 1312.06 (±361.38) a 0.34 (±0.02) a

Mean 0.87 (±0.48) 1275.11 (±247.44) 0.33 (±0.03)

NT, no tillage; RT, reduced tillage; CT, conventional tillage; N1, 90 kg N ha-1; N2, 180 kg N ha-1.
a value having a common letter are not significantly different at P level = 5%.

https://doi.org/10.1371/journal.pone.0225126.t007
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Under unfertilized treatment for RT and CT soil managements, there is no significant rela-

tionship between the SPAD readings and both destructive methods. This is probably due to

the reduced level of soil organic matter [4–5,52–53] that allows a lower nitrogen availability in

the CT and RT systems tillage [48–49].

The positive and significant exponential relationships between SPAD readings, leaves chlo-

rophyll concentration and NNI in both fertilized treatments (N1 and N2) were significant on

each compared soil managements. This confirms that the release of the nitrogen in the soil and

the nitrogen supplied with fertilization are the key drivers for the SPAD accuracy to estimate

the leaves chlorophyll concentration and NNI [31]. For both fertilized treatments (N1 and

N2), as previously observed by [35] and [46], the total biomass yield and the HI didn’t show

any significant difference between both compared soil managements, this confirms that the

effect due to the mineralization of the organic matter that emerged in the NT-N0, is reduced

by the nitrogen fertilization.

The R2 values don’t change much between the soil managements in both fertilized treat-

ments (0.89 on average), this can be explained by the ability to flatten the differences on nitro-

gen availability in the compared soil management due to nitrogen fertilization [54].

Conclusions

The Soil Plant Analysis Development (SPAD Minolta 502) is an excellent instrument to esti-

mate the leaves chlorophyll concentration and Nitrogen Nutrition Index. We have given fur-

ther information to potential users to make these SPAD readings feasible and compatible with

their practices. We showed those readings on the distal (SPAD DP) and central portion (SPAD

CP) are highly, and linear correlated, which would permit the users to restrict their measure-

ments to one portion of the leaves.

From what reported in the literature, SPAD Minolta 502 is able to accurately estimate the

leaves chlorophyll concentration and the nitrogen crop status (NNI) when the nitrogen doses

have been provided to the crop, but also under unfertilized treatment when used for crop

grown on soil with a relative high content of organic matter and nitrogen availability as conse-

quence of continuous NT adoption.

So potential users of the SPAD Minolta 502, in order to be able to make accurate estimates

of the nutritional status of the durum wheat, in addition to the calibration activities for envi-

ronmental factors, cultivars factors and agronomic practices, shall take into account the

endowment of organic matter mineralization and consequently the nitrogen availability.
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