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The growing need to address current energy and environmental problems has sparked an
interest in developing improved biological methods to produce liquid fuels from renewable
sources. While microbial ethanol production is well established, higher-chain alcohols pos-
sess chemical properties that are more similar to gasoline. Unfortunately, these alcohols
(except 1-butanol) are not produced efficiently in natural microorganisms, and thus eco-
nomical production in industrial volumes remains a challenge. Synthetic biology, however,
offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase
titers and productivity of these advanced biofuels. This review concentrates on recent
developments in synthetic biology to produce higher-chain alcohols as viable renewable
replacements for traditional fuel.
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INTRODUCTION
Depletion of finite liquid fuels is on the horizon, and the grow-
ing concern with current energy and environmental problems has
ignited an interest in the production of liquid biofuels (Herrera,
2006; Zinoviev et al., 2010; Fairley, 2011). In 2010, petroleum con-
sumption in the United States was about 36 quadrillion BTU, in
which 70% consumed was imported (Fichman, 2011). To help
increase independence from petroleum-derived fuels as well as
its foreign importation, endeavors to develop and improve bio-
logical methods to produce renewable liquid fuels are in play
(Stephanopoulos, 2007; Fortman et al., 2008; Lee et al., 2008;
Sheehan, 2009). Ethanol ranks as the most prominent biofuel
to date, reaching a production high of 13.2 billion gallons in
2010 (more than eight times produced a decade ago; Fich-
man, 2011). Despite its well-developed production and wide
use, notably as a gasoline additive and as a high-percentage E85
blend, it falls short of being the ideal “drop-in” fuel to replace
gasoline. Ethanol is hygroscopic, making it incompatible with
current gasoline infrastructure. Moreover, ethanol is only 65%
as energy dense as gasoline (20.8 versus 32.0 MJ/L, respectively;
Li et al., 2010b). Higher-chain alcohols, on the other hand, are
not hygroscopic, and provide energy densities that are more com-
parable to gasoline, and thus help to mitigate the problems that
ethanol arises.

Unlike ethanol, higher-chain alcohols (except 1-butanol pro-
duced naturally by the Clostridium species; Jones and Woods,
1986) are neither produced efficiently in nature nor in effi-
cient quantities, and so increased efforts are being made
to use microorganisms to cost-effectively produce them from
biomass as well as in industrial volumes. Much energy has
been put into using metabolic engineering to improve natu-
ral producers of these alcohols in the past, but without success
in reaching desired industrial-relevant titers and productivity
(Lutke-Eversloh and Bahl, 2011). Part of this difficulty stems
from a lack of tools and techniques for genetic modification,

slow growth, and complex physiology of the natural producer
(Ezeji et al., 2007). User-friendly hosts such as Escherichia coli
and Saccharomyces cerevisiae, however, come with a wide range
of tools and techniques, are faster growing, and possess a more
simple physiology. With these helping hands, many efforts have
been put into developing higher-chain alcohol production in
non-native hosts.

Outside the advantageous inherent properties of using a well-
characterized host and the ease in which metabolic engineering
can help optimize pathways and maintain cell fitness, synthetic
biology is a relatively nascent practice being used to aid in the
development of higher-chain alcohol producers (Agapakis and
Silver, 2009; Khalil and Collins, 2010). Synthetic biology pro-
vides the ability to piece together biological components from
several different origins in order to redesign a natural or con-
struct a novel pathway that the host uses to synthesize a valuable
chemical (Keasling, 2008; Connor and Atsumi, 2010). In conjunc-
tion with metabolic engineering, development of a more efficient
production platform in a non-native but user-friendly host for
a desired chemical is made possible (Alper and Stephanopoulos,
2009). This review will concentrate on recent progress in using
synthetic biology to engineer user-friendly microbes that produce
C3–C10 alcohols.

CoA-DEPENDENT PATHWAYS
Natural production of 1-butanol occurs in the acetone–butanol–
ethanol (ABE) pathway of the Clostridium species (Gheshlaghi
et al., 2009), where starch and simple sugars are fermented into
a mixture of solvents, including acetone, lactate, and acetoin.
In this pathway, two acetyl-CoA molecules are converted to
butyryl-CoA in four enzymatic steps using acetyl-CoA acetyl-
transferase, 3-hydroxybutyryl-CoA dehydrogenase, crotonase,
and butyryl-CoA dehydrogenase (Bennett and Rudolph, 1995).
From here, 1-butanol can be produced using a dual-function
butyraldehyde/butanol dehydrogenase (Atsumi et al., 2008a).
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Since natural alcohol producers like the Clostridium species
have been difficult to engineer for 1-butanol production, great
strides have been made to transfer and improve this traditional
fermentation pathway in non-natural producers like E. coli and
S. cerevisiae. For example, E. coli, a Gram-negative bacterium,
has a long history of being studied and exploited as a model
host, due to its rapid growth rate, relatively simple physiology
and nutritional needs, as well as ease of cultivation and manipula-
tion. Furthermore, elucidation and characterization of its genetics,
physiology, and biochemistry has led to the development of a
wide selection of genetic tools for manipulating cell behavior and
function.

In general, overexpression of either native or heterologous
genes involves construction of plasmids that fuse multiple genes
transcriptionally. Overexpression of genes may also be inte-
grated into the genomic DNA (gDNA) of a microorganism using
homologous recombination via a plasmid containing the gene
of interest and a selectable marker. This approach is used to
engineer cyanobacteria such as Synechococcus elongatus (Golden
et al., 1987). Furthermore, in order to gain control of expression
levels, there are various promoters, both native and engineered
(Gronenborn, 1976; Brosius et al., 1985; Studier and Moffat, 1986;
Elvin et al., 1990; Mumberg et al., 1994; Lutz, 1997; Haldimann
et al., 1998; Pátek et al., 2003), available to choose from. While
heterologous gene expression – due to various factors like protein
misfolding and aggregation (Thomas et al., 1997; Vabulas et al.,
2010) – is not always successful, progress has been made to mech-
anistically understand why these processes can occur (Georgiou
and Valax, 1996; Baneyx and Mujacic, 2004; Ami et al., 2009).
As a result, several approaches have been developed to circumvent
these types of pitfalls and increase the likelihood that heterologous
expression is successful (Baneyx and Mujacic, 2004).

To minimize costs for industrial scale production, it is ideal that
production can be done in minimum growth media rather than
rich media. More often than not, however, rich media are used
in order to maximize cell density and optimize cell condition for
production in laboratory scale production (Tartoff and Hobbs,
1987; Amberg et al., 2005). Measurement of alcohols and other
metabolites can be monitored using various chromatographic
methods, typically gas chromatography–mass spectrometry (GC–
MS), gas chromatography–flame ionization detector (GC–FID),
and high-performance liquid chromatography (HPLC).

The following describes research to increase the titers of
1-butanol, isopropanol, and 1-hexanol in user-friendly hosts, as
well as the utilization and engineering of the CoA-dependent
pathway (Figure 1) to shunt production toward non-natural
higher-chain alcohols.

1-BUTANOL PRODUCTION
In order to demonstrate the feasibility of this strategy, Atsumi
et al. (2008a) transferred the 1-butanol pathway of Clostridium
acetobutylicum into E. coli. Use of 1-butanol as an additive or
replacement for gasoline has been growing in popularity due to
its hygroscopicity and comparable energy density (29.2 MJ/L)
to gasoline. For production through the Clostridium pathway,
one 1-butanol molecule is produced per molecule of glucose and
four NADH. The strain containing essential genes for 1-butanol

production (thl, hbd, crt, bcd, etfAB, and adhE2) were cloned
and expressed using a two-plasmid system, where thl and adhE2
were overexpressed under control of the IPTG-inducible PLlacO1

promoter (Lutz, 1997) in a colE (Kahn et al., 1979) origin plas-
mid, while crt, bcd, etfAB, and hbd were overexpressed under
control of the PLlacO1 promoter in a p15A (Chang and Cohen,
1978) replication origin plasmid. This two-plasmid expression
strain produced 13.9 mg/L 1-butanol in 40 h under anaerobic
conditions. Elevating oxygen levels increased production in this
strain, although these enzymes are from a strict anaerobe. To
further improve production, genes responsible for production of
metabolic byproducts in the E. coli genome were deleted. Namely,
�ldhA, �frdBC, and �adhE knockouts were introduced in order
to reduce lactate, ethanol, and succinate. Furthermore, pta (encod-
ing phosphotransacetylase) was deleted to decrease amount of
acetate produced. The fnr gene, encoding the regulator Fnr that
deactivates the pyruvate dehydrogenase complex under anaerobic
conditions, was deleted as well. The resulting strain boosted 1-
butanol production to 373 mg/L. Finally, this strain, when grown
in Terrific Broth (TB)-enriched, glycerol-supplemented media
(Tartoff and Hobbs, 1987), increased 1-butanol titer to 552 mg/L.

A promising strategy to tweak alcohol production further in
non-native hosts is to consider the various driving forces that
are modified as a consequence to manipulating a host, and mak-
ing efforts to alleviate negative affects in a resulting strain. When
altering a native pathway, many factors such as growth and gene
expression have the potential to be compromised, which can
diminish cell fitness and create bottlenecks in the engineered sys-
tem that prevent high titers of a desired product (Fischer et al.,
2008). A recurring problem that must be tackled is the ubiquitous
occurrence of reversible reactions in metabolic pathways that slow
the optimal production of important intermediates essential for
propelling a series of steps.

Bond-Watts et al. (2011) explored the chemical nature of
enzymes to drive equilibria forward in the design of a 1-butanol
platform in E. coli. First, in an E. coli strain containing phaA,
phaB, and crt in a p15A origin (Chang and Cohen, 1978) plasmid,
and ccr and adhE2 in a colE origin (Kahn et al., 1979) plasmid
(both under control of the IPTG-inducible Ptrc promoter; Brosius
et al., 1985), only 95 mg/L 1-butanol was produced after 6 days in
TB supplemented with glucose. To push the equilibrium between
crotonyl-CoA and butyryl-CoA forward, ter, encoding an NADH-
dependent crotonyl-CoA reductase from Treponema denticola,
replaced ccr. This gene replacement led to a 3.5-fold increase in
titer (340 mg/L) after 3 days. Upon further investigation for addi-
tional bottlenecks, enzymes that generate stereo-specific products
were found and tested. After replacing phaB with hbd, encod-
ing NADH-dependent (S)-3-hydroxybutyryl-CoA dehydrogenase
from C. acetobutylicum, and crt with phaJ, encoding an R-specific
enoyl-CoA hydratase from Aeromonas caviae, production rose
to 2.95 g/L. Finally, balance of reducing equivalents was taken
into consideration. While four NADH molecules needed to make
one molecule 1-butanol, glycolysis only produces two NADH
per glucose molecule. To increase availability and direct con-
sumption of acetyl-CoA and NADH toward alcohol production
and away from lactate and acetate formation, aceEF-lpd, encod-
ing the pyruvate dehydrogenase complex, was overexpressed.
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FIGURE 1 | Metabolic representation of CoA-dependent pathways

for biofuel production. G3P, glyceraldehyde-3-phosphate; 3PG,
3-phosphoglycerate; ACoAAT, acetyl-CoA acetyltransferase; BktB,
2-ketothiolase; Hbd, 3-hydroxybutyryl-CoA; Crt, crotonase; Bcd,
butyryl-CoA dehydrogenase; Etf, electron transfer flavoprotein; ACoAT,

acetoacetyl-CoA transferase; ADC, acetoacetate decarboxylase; AdhE2,
aldehyde/alcohol dehydrogenase; SADH, primary–secondary alcohol
dehydrogenase. Reversal of β-oxidation to make n-alcohols (in the
presence of a non-fatty acid carbon source) is indicated in
brackets.

This enhancement provided the additional two NADH molecules
needed to synthesize 1-butanol, and improved production lev-
els to a final titer of 4.65 g/L at 28% the theoretical max from
glucose.

Using a similar premise to improve the CoA-dependent path-
way in E. coli, Shen et al. (2011) utilized a number of driving
forces to generate 1-butanol in industrial-relevant quantities. In
this study, atoB (E. coli), adhE2 (C. acetobutylicum), crt (C. ace-
tobutylicum), hbd (C. acetobutylicum), and ter (T. denticola; used
to replace the oxygen-sensitive, NADPH-dependent Bcd–EtfAB
complex) genes were overexpressed in an E. coli �adhE �ldhA
�frd strain (JC166), which cannot grow without an additional
NADH-consuming pathway. In this two-plasmid system, atoB,
adhE2, crt, and hbd were overexpressed in a plasmid under control
of the PLlacO1 promoter (Lutz, 1997) with a colE (Kahn et al.,
1979) origin, while ter was overexpressed in a plasmid under
PLlacO1 control with a colA origin (Zverev and Khmel, 1985).
This strain anaerobically produced 1.8 g/L after 24 h in TB sup-
plemented with glucose. Catalysis by Ter to convert crotonyl-CoA

to butyryl-CoA was found irreversible in the presence of excess
butyryl-CoA and NAD+ by in vitro enzyme assays. Furthermore,
Bcd–EtfAB replacement by NADH-dependent Ter successfully
restored anaerobic growth of JC166. Next, fdh, encoding a for-
mate dehydrogenase from Candida boidinii, was overexpressed
to reduce excess pyruvate. Without overexpression of fdh in the
1-butanol pathway, pyruvate serves as a sink for excess carbon
flux and piles up in the cell. On the contrary, when fdh is over-
expressed, formate is oxidized into CO2 and NADH to promote
accumulation of the additional two NADH equivalents needed for
1-butanol production. Moreover, pta, which would have encoded
a phosphate acetyltransferase, was deleted in order to build up
acetyl-CoA and decrease acetate formation. As a result, 1-butanol
production rose to 15 g/L after 3 days at 88% theoretical max-
imum yield. Lastly, anaerobic, pH-controlled fermentation was
performed, in conjunction with continuous gas stripping, using
a 1 L stirred-tank bioreactor. Final measurements indicated that
1-butanol levels shot up to 30 g/L after 7 days (∼70% theoretical
maximum).
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Escherichia coli is not the only user-friendly host available to
for 1-butanol production. The robust yeast, S. cerevisiae, has been
a prominent host for industrial ethanol production as well as the
non-native production of a variety of valuable chemicals. It is well-
characterized, has a wide range of genetic tools for manipulation,
its fermentation is relatively cheap, and its mass production and
downstream processing is well-developed. Especially, S. cerevisiae
has a vast history of being used for the production of ethanol
for beer and wine from sugars. Like for E. coli, synthetic biology
has contributed to the improvement of engineered processes in
S. cerevisiae (Krivoruchko et al., 2011).

Steen et al. (2008) chose S. cerevisiae as the host for 1-butanol
production, in which clostridial enzymes were substituted with
isozymes from various other species. From an initial group of
strains to elucidate a thiolase with the best activity [phaA (Ralsto-
nia eutropha), atoB (E. coli), or ERG10 (S cerevisiae)], the highest
producer (BY4747) containing phaA and phaB (R. eutropha),
ccr (Streptomyces collinus), and crt and adhE2 (C. beijerinckii),
under control of either the GAL1 or GAL10 galactose-dependent
promoters in 2 μ origin (Huberman et al., 1987) plasmids, gen-
erated 1 mg/L 1-butanol. To improve upon this initial strain, an
NADH-dependent hydroxybutyryl-CoA dehydrogenase, encoded
by Hbd, replaced an NADPH-dependent enzyme, encoded by
PhaB. The strain including ERG10 (encoding a native thio-
lase) and hbd resulted in 2.5 mg/L production in synthetic
defined (SD) media (Amberg et al., 2005) supplemented with
galactose.

In an interest to compare production in various hosts, Nielsen
et al. (2009) reconstructed and engineered the 1-butanol path-
way of C. acetobutylicum into Gram-negative Pseudomonas putida
and Gram-positive Bacillus subtilis. P. putida and B. subtilis were
chosen as hosts for this biosynthetic pathway due to higher 1-
butanol tolerance relative to E coli (de Bont, 1998). P. putida
has been exploited for bioremediation of soil, and possesses a
versatile metabolism, an ability to thrive in extreme environ-
mental conditions, simple nutritional requirements, and rapid
growth rate (Dos Santos et al., 2004). The P. putida strain was
cultured in TB under control of the IPTG-inducible T7lac pro-
moter (Studier and Moffat, 1986) and produced 50 mg/L with
glucose, and 122 mg/L with glycerol. Results also indicated that
the Bcd–EtfAB complex of C. acetobutylicum was active in the
obligate aerobe. B. subtilis, on the other hand, has been extensively
studied as a model Gram-positive bacterium, and can live in sev-
eral different environments, including soil, animal gastrointestinal
tracts, and plant roots. Moreover, it possesses the distinct ability to
become competent for transformation naturally (Earl et al., 2008).
B. subtilis genes amyE (encoding an α-amylase), thrC (encoding a
threonine synthase), and pyrD (encoding a dihydroorotate dehy-
drogenase) were deleted from the genome using double-crossover
homologous recombination. The B. subtilis �amyE �thrC
�pyrD strain was cultured in TB under control of the IPTG-
inducible promoter (Studier and Moffat, 1986), and produced
23 mg/L with glucose, and 24 mg/L in glycerol under anaerobic
conditions.

Production of higher-chain alcohols using bacteria that directly
utilize CO2 and sunlight is another approach being explored.
In addition, if an efficient production platform is successfully

designed, then production of higher-chain alcohols directly from
sunlight would give a higher-value advantage. One photosynthetic
organism with a growing genetic toolbox, elucidated genome
sequences, and relatively fast growth rate is known as cyanobacte-
ria (Ruffing, 2011), and its capabilities have already been tapped
to produce a range of different fuels and chemicals (Machado
and Atsumi, 2012). In cyanobacterial systems, sunlight is uti-
lized to fix carbon in the Calvin–Benson–Bassham cycle and
produce intermediates that enter and are consumed in glycoly-
sis. Thus, the need to grow and convert biomass into sugars is
bypassed.

Lan and Liao (2011) introduced a 1-butanol pathway into
S. elongatus PCC 7924 by integrating atoB (E. coli) and adhE2
(C. acetobutylicum), under Ptrc control (Brosius et al., 1985),
into neutral site I (NSI; Bustos and Golden, 1992), and then
integrating hbd, crt (C. acetobutylicum), and ter (T. denticola),
under PLlacO1 control (Lutz, 1997), into neutral site II (NSII;
Andersson et al., 2000) on the genome (Lan and Liao, 2011).
In this strain, 3.04 mg/L 1-butanol accumulated after 7 days.
In an improved strain containing gene rearrangement where
a His-tagged ter was integrated, under Ptrc control, into NSI,
and atoB, adhE2, hbd, and crt genes were integrated, under
PLlacO1 control, into NSII, 13.16 mg/L 1-butanol was produced.
Cultures in screw-capped flasks and air-bubbling cultures, how-
ever, did not produce 1-butanol. To determine whether light or
oxygen halted 1-butanol production, various culturing condi-
tions (i.e., oxic/anoxic, light/dark) in BG-11 media supplemented
with NaHCO3 was tested. Delving further into oxygen effects,
photosystem II was inhibited with 3-(3,4-dichlorophenyl)-1,1-
dimethylurea (DCMU; Komenda et al., 2000), in order to prevent
generation of oxygen under light. Between 2.5 and 5.5 mg/L 1-
butanol was produced under continuous light and addition of
varying concentrations of DCMU, indicating that elimination
of oxygen is key for 1-butanol production in S. elongatus. Fur-
thermore, experiments to test AdhE2 activity in oxic and anoxic
conditions showed similar activities in both conditions, suggest-
ing that low AdhE2 activity may not be related to the anoxic
requirement for 1-butanol production. The best strain produced
14.5 mg/L 1-butanol in 7 days while decreasing in cell density
(OD730 from 3.9 to 2.4) when incubated in dark anoxic conditions.

ISOPROPANOL PRODUCTION
Isopropanol production using the CoA-dependent pathway has
also been explored. Even though isopropanol has an energy density
of only 23.9 MJ/L, it has a lower hygroscopicity relative to ethanol.
With these properties, isopropanol may be used as a gasoline or
diesel additive.

Hanai et al. (2007) constructed the isopropanol pathway in
E. coli, modeling it after the one in C. beijerinckii that con-
verts acetyl-CoA via acetone into isopropanol. First, an acetyl-
CoA acetyltransferase condenses two acetyl-CoA molecules into
acetoacetyl-CoA. Next, an acetoacetyl-CoA transferase is used to
form acetoacetate. Then, an acetoacetate decarboxylase is used to
produce acetone and CO2. Finally, a secondary alcohol dehydroge-
nase (ADH) reduces acetone into isopropanol. Five combinations
of the following genes were overexpressed for production under
control of the PLlacO1 promoter (Lutz, 1997): atoB (E. coli) or
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thl (C. acetobultylicum), ctfAB (C. acetobutylicum) or atoAD
(E. coli), adc (C. acetobutylicum), and adh (C. beijerinckii or
Thermoanaerobacter brockii). All strains [except one where over-
expression of an adh (T. brockii), encoding a primary–secondary
alcohol (SADH), produced 1.1 g/L acetone] produced compa-
rable isopropanol titers, ranging between 2.1 and 2.7 g/L, with
minute quantities of acetone and ethanol. The strain that pro-
duced 2.7 g/L isopropanol overexpressed adh in a p15A origin
(Chang and Cohen, 1978) plasmid, while thl, atoAD, and adc
were overexpressed in a colE origin (Kahn et al., 1979) plasmid.
Crude extract assays measured an SADH (C. beijerinckii) activity
nearly 13 times higher than that of T. brockii, thus explaining the
stark difference in isopropanol to acetone ratio. Further experi-
ments in SD-8 media (Luli and Strohl, 1990), with varied starting
amounts of glucose concentration resulted in isopropanol pro-
duction peaking at 4.9 g/L after 30.5 h. Furthermore, maximum
productivity was reported to be 0.41 g/L/h between 3 and 9.5 h at
43.5% theoretical yield.

Inokuma et al. (2010) further improved isopropanol produc-
tion in E. coli by optimizing culture and media conditions, as well
as using gas stripping for product recovery. First, pH-maintained,
intermittent-fed fermentation in SD-8 media (Luli and Strohl,
1990) supplemented with glucose resulted in 40.1 g/L isopropanol
after 60 h at 73.2% theoretical yield, and a production rate of
0.74 g/L/h between 6 and 60 h. To further increase titer, iso-
propanol was recovered using a gas-stripping system, where an
optimized amount of air was bubbled through the culture in order
to remove, transfer, and collect isopropanol and other volatile
compounds into two collection bottles. By fusing fed-batch fer-
mentation to the gas-stripping setup, isopropanol concentration
increased to 79.6 g/L after 144 h, with a concentration of 19.8 g/L
in the culture flask. However, cell density and production rate
decreased over time. To alleviate this decrease, concentrated media
was intermittently added in order to keep a fresh stock of nutri-
ents available for consumption. Using this approach, titers reached
143 g/L after 240 h at 67.4% maximum theoretical yield, and
demonstrated the potential for industrial fermentative production
of isopropanol.

1-HEXANOL PRODUCTION
Dekishima et al. (2011) expanded the 1-butanol pathway in E.
coli in order to produce 1-hexanol. The pathway constructed
by Shen et al. (2011) was used as the starting point, where atoB
(E. coli), adhE2 (C. acetobutylicum), hbd (C. acetobutylicum), and
crt (C. acetobutylicum) were overexpressed in a plasmid under
control of the PLlacO1 promoter (Lutz, 1997) with a colE origin
(Kahn et al., 1979) of replication, and ter [Eg-ter (Euglena gracilis)
or Td-ter (T. denticola)] was overexpressed in a plasmid under con-
trol of the PLlacO1 promoter and colA origin (Zverev and Khmel,
1985) to convert two molecules of acetyl-CoA into butyryl-CoA.
Finally, butyryl-CoA is subsequently reduced by AdhE2 (C. aceto-
butylicum) into 1-butanol. In order to extend the potential alcohol
by two carbons, bktB (R. eutropha; encodes a 2-ketothiolase) was
overexpressed in a plasmid under control of the PLlacO1 promoter
and colA origin to add an acetyl group to butyryl-CoA to generate
3-keto-hexanoyl-CoA. Similar to synthesis of 1-butanol, 3-keto-
hexanoyl-CoA can then be converted to 1-hexanol using the same

enzymes used to convert acetoacetyl-CoA. First, Hbd converts 3-
keto-hexanoyl-CoA into 3-hydroxyhexanoyl-CoA, allowing Crt to
catalyze the generation of hexenoyl-CoA. Next, Ter is used to make
hexanoyl-CoA. Finally, alcohol/aldehyde dehydrogenase AdhE2
cleaves the CoA group from hexanoyl-CoA and reduces it into 1-
hexanol in two steps. An E. coli �adhE �ldhA �frdBC strain was
used to increase the NADH available to drive the pathway forward.
In this strain where only one of the trans-enoyl-CoA reductases,
Td-ter, was overexpressed, there was no 1-hexanol detected, but
when both Td-ter and Eg-ter were co-expressed, 23 mg/L 1-
hexanol after 68 h was produced in TB supplemented with glucose.
To further attempt to increase titer, a strain containing �adhE
�ldhA �frdBC �pta knockouts was first constructed. 1-Hexanol
titer using this strain was 27 mg/L after 68 h. Then, fdh was over-
expressed in a plasmid under control of the PLlacO1 promoter
and pSC101* origin (Stoker et al., 1982) in this knockout strain
in order to increase the amount of NADH. In a pH-maintained,
anaerobic production where the culture was replenished with fresh
TB media every 24 h, production of 1-hexanol at 48 h increased to
47 mg/L. Although 1-hexanol concentrations did not reach those
of 1-butanol in this system, further improvements to increase
enzymatic activity toward C6 relative to C4 intermediates can
be done.

C5–C10 ALCOHOL PRODUCTION VIA β-OXIDATION
PATHWAY
In contrast to constructing a 1-butanol pathway by overexpress-
ing genes from C. acetobutylicum, Gulevich et al. (2012) proposed
the use of the native aerobic fatty acid β-oxidation cycle com-
monly found in bacteria and yeast. Normally, these species use
this cycle to break down (Cn+2)-acyl-CoA molecules into acetyl-
CoA and (Cn)-acetyl CoA molecules using four genes (Fujita et al.,
2007). Since metabolic pathways are essentially reversible, how-
ever, 1-butanol could be made after one turn of this cycle (with
chain elongation occurring by addition of acetyl-CoA to another
thioester). That is, an acetyl-CoA C-acetyltransferase would
first condense two acetyl-CoA molecules into acetoacetyl-CoA.
Next, a 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase
would reduce the β-keto acid into 3-hydroxybutyryl-CoA, and
subsequently to crotonyl-CoA. Then, crotonyl-CoA would be
hydrogenated to a butyryl-CoA, where a native CoA-dependent
alcohol/aldehyde dehydrogenase would then convert it into 1-
butyraldehyde then 1-butanol in two steps. In an E. coli strain
containing one chromosomal copy of each gene needed for 1-
butanol synthesis (atoB, fadA, fadB, fadE, and adhE), an artificial
genetic element, Ptrc-ideal-4-SDϕ10 (containing a strong LacI-
dependent promoter as well as a strong ribosome binding site
from phage T7), replaced the native regulatory regions of each of
the genes in the proposed pathway. When production was tested
in semi-aerobic conditions in M9 media (Miller, 1992) containing
glucose and glycerol or LB-containing glucose, 334 and 897 mg/L
of 1-butanol was produced, respectively. In addition, 1-butanol
in LB was higher, but amount of ethanol produced was the same,
and the amount of acetic acid synthesized was lower. On the other
hand, in comparison to semi-aerobic conditions, titer was lower
in LB (674 mg/L), but higher in M9 media (615 mg/L) under
anaerobic conditions.
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Dellomonaco et al. (2011) also demonstrated reversal of the
β-oxidation cycle to generate higher-chain alcohols and other
chemicals. In the presence of a non-fatty acid carbon source,
constitutive expression of the fad–ato regulon reversed the beta
oxidation cycle (Dellomonaco et al., 2010). To increase efficiency,
repressive regulation of the beta oxidation cycle in the presence of
glucose was avoided by using a cAMP-independent mutant (crp*)
to replace the native crp gene, and by deleting the arcA gene in order
to eliminate any β-oxidation-encoding operon repression by ArcA
(aerobic respiratory control A). In a strain containing these ini-
tial genomic modifications in pSC101* origin (Stoker et al., 1982)
plasmids under the control of the PLtetO1 promoter, production of
1-butanol was achieved by overexpression of native fucO, encod-
ing a L-1,2-propanediol oxidoreductase, and yqeF, encoding an
acyl transferase, as well as deletion of the following genes involved
in competing pathways: adhE (lactate, ethanol, succinate), pta
(acetate), and frdA (succinate), eutE and yqhD (ethanol). Produc-
tion in M9 media supplemented with glucose synthesized 2.2 g/L
1-butanol after 24 h at a 28% theoretical yield. When produc-
tion moved to a bioreactor, however, titer rose to 14 g/L after
36 h at 33% theoretical maximum and a rate of 2 g 1-butanol/g
cell dry weight/h. In this pathway, many CoA-thioester interme-
diates produced could also be converted to the corresponding
alcohols and carboxylic acids. By simultaneously overexpressing
tesA or tesB encoding a thioesterase and yqeF encoding an acyl-
transferase, and deleting of both fadB encoding an acetyl-CoA
C-acetyltransferase and ydiO encoding an acyl-CoA dehydroge-
nase, 150–500 mg/L amounts of various carboxylic acids were
produced. Production of longer even-chain n-alcohols (C6, C8,
and C10) was achieved by utilizing native ADHs (EutG, YiaY,
and BetA). Lastly, generation of longer odd-chain n-alcohols
(C5, C7, and C9) was achieved by overexpressing yiaY, encod-
ing a Fe-containing ADH, and supplementing the media with
propionate.

Bokinsky et al. (2011) used consolidated bioprocessing (CBP)
(Lynd et al., 2002) to produce three different biofuels, including
1-butanol, using E. coli able to grow on and degrade ionic liquid-
pretreated switchgrass (Li et al., 2010a), without the addition of
exogenous glycoside hydrolases (Bokinsky et al., 2011). To degrade
cellulose, they found a cellulase, when fused with OsmY, capable
of being transported out of E. coli. Out of the two OsmY-cellulase
fusions, the one that had the highest endocellulase activity was
from Bacillus sp. D04. To degrade hemicellulose, a previously
found endoxylanase from C. stercorarium, Xyn10B (Steen et al.,
2010), was also fused to OsmY. Genes encoding this fusion were
under control of a native PcspD promoter in a pSC101* origin
(Stoker et al., 1982) plasmid. To further break down the cello- and
xylodextrins into glucose, a β-glucosidase from Cellvibrio japoni-
cus, encoded by cel3A, was overexpressed under the control of the
native PwrbA promoter to degrade cellobiose, while a xylobiosidase
from C. japonicus, encoded by gly43F, was overexpressed under the
control of the native PcstA promoter in a p15A origin (Chang and
Cohen, 1978) plasmid to degrade xylodextrins. Resulting plasmids
expressing cellulose and hemicellulose breakdown were named
pCellulose and pXylan, respectively. By overexpressing a CoA-
dependent 1-butanol pathway in an E. coli DH1 �adhE strain,
28 mg/L 1-butanol was produced in EZ-Rich media (Teknova) and

3.3% w/v ionic liquid-pretreated switchgrass as the only carbon
source.

2-KETO ACID PATHWAYS FOR C3–C8 ALCOHOLS
Amino acid pathways are universal, and have also been harnessed
for the ease in which amino acid precursors can be rerouted for
production C3–C6 alcohols (Figure 2). The following describes
research that emanates from utilization of the last two steps of
the Ehrlich pathway (Sentheshanmuganathan and Elsden, 1958)
to divert 2-keto acid intermediates to higher-chain alcohols in
various hosts.

Atsumi et al. (2008b) reported production of several higher-
chain alcohols, including isobutanol, 1-butanol, 2-methyl-1-
butanol (2MB), 3-methyl-1-butanol (3MB), and 2-phenylethanol,
from glucose by engineering the amino acid biosynthetic path-
way in E. coli. In the pathway, 2-keto acids are converted to the
corresponding aldehyde with a 2-keto acid decarboxylase (KDC)
and then to the alcohol using an ADH. First, ADH2 (S. cere-
visiae) was overexpressed with genes encoding five different KDCs
[Pdc6, Aro10, and Thi3 (S. cerevisiae), Kivd (Lactococcus lac-
tis), and Pdc (C. acetobutylicum)] in colE origin plasmids under
control of the PLlacO1 promoter to determine which combina-
tion gave the highest longer-alcohol titer. Results indicated that
Kivd was the most active and had the largest substrate range,
and produced all of the expected alcohols. About 22 g/L isobu-
tanol (86% theoretical max) was produced under microaerobic
conditions in 112 h by overexpressing alsS (B. subtilis), ilvC,
ilvD, kivd, and ADH2, by introducing �adhE, �ldhA, �frdAB,
�fnr, �pta, and �pflB knockouts in order minimize produc-
tion from competing pathways. Isobutanol has an energy density
of 29.0 MJ/L. In addition, about 541 mg/L 1-propanol and
667 mg/L 1-butanol was produced in M9 media (supplemented
with glucose) by the non-native alcohol producing pathway. In
this pathway, 2-ketobutyrate (2KB), a precursor to isoleucine, is
formed via the threonine pathway, and can be converted to 1-
propanol using Kivd and Adh2. On the other hand, 2KB can
be extended by one carbon using LeuABCD operon to produce
the unnatural amino acid norvaline precursor 2-ketovalerate,
which can be converted to 1-butanol using the same KDC
and ADH.

ISOBUTANOL PRODUCTION VIA THE 2-KETO
ACID PATHWAY
To improve upon the amino acid-based production of isobutanol,
Baez et al. (2011) compared aerobic isobutanol production in a 1 L
bioreactor connected to a gas-stripping system. Using the engi-
neered isobutanol strain (Atsumi et al., 2008b), 50 g/L isobutanol
was produced in the bioreactor after 72 h (68% maximum theoret-
ical yield) under aerobic conditions and 30◦C, which is over twice
as high as the 22 g/L produced in a shake flask. By-product pro-
duction (except acetate) was not detectable. Efforts to knockout
several acetate-producing pathways (�ack �pta �poxB), however,
did not prevent accumulation of acetate.

Microaerobic conditions have been used to produce isobutanol.
For a large-scale production of isobutanol, however, anaerobic
production is preferred. A major barrier that must be overcome is
NADPH dependency. Since two of the enzymes in the pathway are
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FIGURE 2 | Metabolic representation of 2-keto acid pathways for biofuel

production. G3P, glyceraldehyde-3-phosphate; PEP, phosphoenolpyruvate;
AlsS, acetolactate synthase; IlvC, acetohydroxy acid isomeroreductase;
IlvD, dihydroxy-acid dehydratase; LeuA, isopropylmalate synthase; LeuB,
isopropylmalate dehydrogenase; LeuCD, isopropylmalate dehydratase;

CimA, citramalate synthase; 2KIC, 2-ketoisocaproate; 3MB,
3-methyl-1-butanol; 2KIV, 2-ketoisovalerate; 2KB, 2-ketobutyrate; 2KV,
2-ketovalerate; KMV, 2-keto-3-methylvalerate; 2MB, 2-methyl-1-butanol;
KMH, 2-keto-4-methylhexanoate; 3MP, 3-methyl-1-pentanol; OAA,
oxaloacetate.

NADPH-dependent, the pentose phosphate pathway and tricar-
boxylic acid cycles can regenerate this cofactor only in the presence
of oxygen. Under anaerobic conditions, however, NADH is pro-
duced as a result of glycolysis. To overcome this cofactor imbalance
issue, Bastian et al. (2011) constructed an NADH-dependent path-
way by engineering a ketol-acid reductoisomerase IlvC (E. coli) and
ADH AdhA (L. lactis). Directed evolution approaches (Romero
and Arnold, 2009) were applied to IlvC and AdhA to switch cofac-
tor dependence from NADPH to NADH. In an anaerobic, fully
NADH-dependent strain containing AdhARE1 and IlvC6E6-his6,
13.4 g/L isobutanol at 100% theoretical maximum yield was pro-
duced in M9 media supplemented with glucose, yeast extract,
and trace metals (hereafter modified M9). Overexpression of
pntAB, which enabled reversible transfer of a hydride ion between
NADH and NADPH, with ilvC and yqhD overcame the cofactor
imbalance, but produced at a titer and theoretical yield slightly
lower than the strain overexpressing NADH-utilizing engineered
IlvC6E6-his6 and AdhARE1.

Another host used for isobutanol production is the cyanobac-
terium S. elongatus PCC7942, a photosynthetic organism that
Atsumi et al. (2009) engineered to convert CO2 and light energy
directly into isobutyraldehyde, a precursor to isobutanol. To install
the isobutyraldehyde production pathway in S. elongatus, kivd
(L. lactis), under Ptrc control, was integrated into NSI (Bus-
tos and Golden, 1992), and alsS (B. subtilis), ilvC, and ilvD (E.
coli), under PLlacO1 control, was integrated into NSII (Ander-
sson et al., 2000) of the genome by homologous recombination

(Golden et al., 1987). Production in a Roux culture bottle at
30◦C and subsequent gas-stripping of isobutyraldehyde resulted
in 723 mg/L after 12 days and a production rate of 2,500 μg/L·h.
No isobutanol was detected, most likely because the endoge-
nous ADH had no detectable activity toward isobutyraldehyde.
One known bottleneck to the pathway is a low activity of
ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) in fix-
ing CO2 within the Calvin–Benson–Bassham cycle. To improve
isobutyraldehyde production, the rbcLS genes from a related
S. elongatus, PCC6301, was inserted downstream from the endoge-
nous rbcLS genes. With an increased Rubisco activity, the resulting
strain produced 1.1 g/L isobutyraldehyde after 8 days and a pro-
duction rate of 6,230 μg/L·h. Isobutanol production was also
measured by integrating NADPH-dependent ADH, encoded by
yqhD, in addition to the isobutyraldehyde pathway. This strain
produced 450 mg/L isobutanol after 9 days.

Isobutanol production in Gram-positive Corynebacterium glu-
tamicum, an industrial amino acid producer (Kinoshita, 1972;
Sahm et al., 1996; Wendisch, 2007) has also been achieved. Smith
et al. (2010) explored isobutanol production using C. glutamicum
because C. glutamicum was chosen for its rapid growth rate and
vast range of tools for genetic manipulation. Furthermore, C.
glutamicum has been modified to produce L-valine in industrial
quantities, and the isobutanol pathway utilizes its precursors. In
this system, alsS (B. subtilis), ilvC, ilvD, adhA (C. glutamicum),
and kivd (L. lactis), in a Peftu-controlled, NG2 origin (Messerotti
et al., 1990) plasmid, were overexpressed in C. glutamicum and
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resulted in 2.6 g/L isobutanol, 50 mg/L isobutyraldehyde, 0.4 g/L
3MB, as well as other various higher-chain alcohols, after 48 h in
CGIII media supplemented with glucose (Menkel et al., 1989). To
prevent direct formation of oxaloacetate from pyruvate, the pyc
gene (encoding pyruvate carboxylase) was inactivated. In order
to inactivate a desired gene in Gram-positive organisms like C.
glutamicum, a pK-derived mobilizable cloning vector contain-
ing a fragment of the gene is first constructed (Schafer et al.,
1994). Then, RP4-mediated conjugation occurs (Haase et al.,
1995), where the pK-derived plasmid is first incorporated into
the genome, then subsequently disrupted. Essentially, a double
cross-over event is carried out. As a result of the �pyc knockout,
isobutanol titer increased to 4.3 g/L. Despite this increase, 2.6 g/L
of lactate formed. To inhibit formation of lactate from pyruvate
and NADH, an additional knockout, �ldh, which would have
encoded lactate dehydrogenase, was introduced. In the highest-
producing C. glutamicum �pyc �ldh knockout strain (contain-
ing NG2 origin Peftu::alsS-ilvCD-adhA-kivd), 4.9 g/L isobutanol
was produced after 120 h (23% theoretical maximum) using a
fermenter.

Li et al. (2011) engineered B. subtilis for production of isobu-
tanol. B. subtilis was a host of interest because it was found to
have a higher isobutanol tolerance (2%) than both C. glutam-
icum and E. coli (1.9- and 3.8-fold, respectively). In a strain
containing �amyE and a two-plasmid system (P43::ilvD-ilvC-
alsS and P43::kivd-adh2), 2.02 g/L isobutanol was produced after
40 h under 37◦C and microaerobic conditions. In addition, lower
titers of ethanol, 1-phenylethanol, 2MB, and 3MB were produced.
Acetate and lactate were also detected in the production culture. To
improve titer, batch and fed-batch fermentations in 1 L shake flasks
were performed under microaerobic conditions. After 48 h, the
fed-batch fermentation in LB media supplemented with glucose,
phosphate buffer, and trace metals produced 2.62 g/L isobutanol
at a 0.086 g/L/h production rate.

Higashide et al. (2011) used the cellulolytic mesophile C. cel-
lulolyticum to convert crystalline cellulose into isobutanol. C.
cellulolyticum uses an extracellular, multi-enzymatic cellulosome
to breakdown and consume cellulose and other complex polysac-
charides efficiently (Desvaux, 2005). In a strain overexpressing
kivd, yqhD, alsS, ilvC, and ilvD under the control of a constitu-
tive ferredoxin C. pasteurianum promoter, 364 mg/L isobutanol
was produced in 90 h from cellobiose, while 660 mg/L isobutanol
in 9 days was produced from cellulose. Two major setbacks to
the successful production of isobutanol in C. cellulolyticum using
a CBP platform were (1) lack of an available inducible expres-
sion system and the resulting toxicity of gene products, and (2)
lack of detectable activity of IlvC and IlvD (due to differences
in GC content and codon usage frequencies between E. coli and
C. cellulolyticum).

Chen et al. (2011) engineered S. cerevisiae to produce isobu-
tanol. To construct the pathway, an acetolactate synthase, encoded
by ILV2 (catalytic subunit) and ILV6 (regulatory subunit), converts
two pyruvate molecules into 2-acetolactate, which is subse-
quently reduced to 2,3-dihydroxyisovalerate by an acetohydroxy
acid reductoisomerase, encoded by ILV5. Then, 2-ketoisovalerate
(2KIV) is produced using a dihydroxyacid dehydratase, encoded
by ILV3. Next, two branched-chain amino acid aminotransferases,

encoded by mitochondrial BAT1 and cytosolic BAT2, reversibly
converts 2KIV into L-valine. Afterward, isobutanol is formed using
pyruvate decarboxylases (Pdc6, 5, 1) and ADHs. In a strain over-
expressing ILV2, ILV3, and ILV5 (in plasmids under control of
the PGK1 promoter) led to 4.12 mg isobutanol/g glucose when
cultivated under aerobic conditions in pH-maintained minimal
media supplemented with yeast extract, peptone, dextrose, and
40 g/L glucose. Under anaerobic conditions and minimal media
supplemented with 40 g/L glucose, isobutanol yield was 2.13 mg/g
glucose in a strain that overexpressed BAT2 in addition to ILV2,
ILV3, and ILV5.

To improve upon the isobutanol titer in S. cerevisiae, Kondo
et al. (2012) searched for and overexpressed KDC and ADH
genes from different sources. The following three KDC enzymes
were tested: endogenous phenylpyruvate decarboxylase (Aro10),
endogenous 2-ketoisocaproate decarboxylase (Thi3), and 2KIV
decarboxylase (Kivd) from L. lactis. In addition, six ADH genes
from S. cerevisiae, encoding for Adh1, Adh2, Adh5, Adh6, Adh7,
and Sfa1, were overexpressed in plasmids under control of the
PGK1 promoter. Different KDC–ADH combinations were used to
measure isobutanol levels under additive additions of 8 g/L 2KIV,
the precursor to isobutanol. A kivd-ADH6 combination gave the
highest isobutanol level at 488 mg/L, and was used for isobutanol
production. To reduce ethanol production, ILV2 encoding an ace-
tolactate synthase was overexpressed (catalyzes the first committed
step in valine biosynthesis from pyruvate). Furthermore, to pre-
vent acetaldehyde production, pdc1, which encodes an isozyme
of the pyruvate dehydrogenase complex, was deleted. This strain
was cultured in synthetic dextrose media supplemented with yeast
nitrogen base and glucose, and produced 75 mg/L after 72 h. Under
microaerobic conditions, titer rose to 143 mg/L after 120 h at a
yield of 6.6 mg/g glucose.

1-PROPANOL AND 1-BUTANOL PRODUCTION VIA THE
2-KETO ACID PATHWAY
Shen and Liao (2008) improved a keto acid-based pathway in E. coli
to produce 1-propanol (contains an energy density of 27 MJ/L)
and 1-butanol from glucose (Atsumi et al., 2008b; Shen and Liao,
2008). To deregulate threonine synthesis and increase 2-keto acid
intermediates for alcohol production, a feedback-resistant ThrAfbr

was used. In addition, several competing pathways were deleted
to increase flux toward 2-keto acid production. The final strain
containing �metA �tdh �ilvB �ilvI �adhE and overexpres-
sion of thrAfbrBC, ilvA, leuABCD (E. coli), kivd (L. lactis), and
ADH2 (S. cerevisiae), in p15A (Chang and Cohen, 1978) or colE
(Kahn et al., 1979) origin plasmids and all under the control of the
PLlacO1 promoter, produced 2 g/L 1:1 coproduction of 1-butanol
and 1-propanol after 72 h in modified M9 media under anaerobic
conditions.

Atsumi and Liao (2008) improved production of 1-propanol
and 1-butanol by evolving a citramalate synthase (CimA) from
the extreme thermophile Methanococcus jannaschii. CimA is a
homolog of LeuA that implements a more direct route than the
threonine pathway toward 2KB. In addition, bypassing the thre-
onine pathway to generate 2KB (�ilvA and �tdcB) eliminates
the liberation of NH3 due to deamination of threonine. CimA
catalyzes the addition of an acetyl group from acetyl-CoA onto
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pyruvate to synthesize citramalate, which then undergoes trans-
formations catalyzed by LeuBCD to produce 2KB. 1-Propanol and
1-butanol can then be produced using the same enzymes expressed
by kivd (L. lactis) and ADH2 (S. cerevisiae; Atsumi et al., 2008b).
To improve activity of CimA toward pyruvate, several rounds of
random mutagenesis and DNA shuffling were used to mutate
the cimA gene, and improved variants were screened for using
a growth-based selection. That is, in a strain containing �ilvA and
�tdcB, isoleucine cannot be produced, and thus the strain cannot
grow, unless CimA is active in the cell. The strain containing the
evolved cimA, overexpressed in a PLlacO1-controlled, p15A origin
(Chang and Cohen, 1978) plasmid, anaerobically produced 2.8 g/L
1-propanol and 393 mg/L 1-butanol after 40 h at 30◦C in modified
M9 media.

3-METHYL-1-BUTANOL PRODUCTION VIA THE 2-KETO
ACID PATHWAY
Connor and Liao (2008) took advantage of native amino acid
biosynthetic pathways to produce 3MB, another higher-chain
alcohol with an energy density of 30.5 MJ/L, in E. coli from glu-
cose. To produce 3MB, the ilvIHCD genes were overexpressed
to convert pyruvate into 2KIV, a precursor to the amino acid
valine, which can be converted to 2-ketoisocaproate, a precur-
sor to the amino acid leucine, by LeuABCD enzymes. Finally,
2-ketoisocaproate can then be redirected by Kivd and Adh2 to
produce 3MB. The initial strain produced 56 mg/L 3MB after
18 h in modified M9 media under anaerobic conditions at 30◦C.
To increase 3MB titer, several modifications were introduced.
First, alsS (B. subtilis), previously shown to increase isobutanol
production via valine synthesis, was overexpressed in place of
ilvIH in a pSC101 origin (Stoker et al., 1982) plasmid under
PLlacO1 control (Lutz, 1997). To increase production of 2KIV,
the leuABCD genes were overexpressed in a colE origin (Kahn
et al., 1979), PLlacO1-controlled plasmid. Furthermore, genes
expressing enzymes involved in competing pathways were deleted
(�adhE �frdBC �ldhA �pta �fnr �pflB �ilvE �tyrB) from the
genome. Lastly, a feedback-insensitive LeuAfbr (Gusyatiner et al.,
2002) was used to deregulate leucine synthesis and increase flux
toward 2-ketoisocaproate. The final strain produced 1.28 g/L 3MB
(0.11 g/g yield) and 0.2 g/L isobutanol after 28 h under anaerobic
conditions.

Expanding upon the 3MB pathway (Connor and Liao, 2008),
Connor et al. (2010) performed several rounds of random whole-
cell mutagenesis with N-methyl-N ′-nitro-N-nitrosoguanidine
and selection with amino acid analog 4-aza-D,L-leucine (AZL) to
produce a 3MB hyper-producer. If the cell can outcompete pro-
duction of this L-leucine analog by producing much more natural
L-leucine – in turn increasing production of 3MB precursor 2-
ketoisocaproate – then the cell will circumvent the occurrence of
fatal incorporation of AZL into polypeptides. Therefore, selecting
for mutants able to adapt to the addition of toxic levels of AZL
by elevating production of natural amino acids should increase
3MB titer. Using a mutant able to outcompete production of AZL,
4.4 g/L 3MB was produced with a theoretical yield of 30% after
36 h in under anaerobic conditions. In addition to mutagenesis
and selection for higher 3MB producers, a two-phase fermentation
strategy with oleyl alcohol was implemented in order to separate

3MB from the production phase and minimize toxic concentra-
tions of 3MB, thus extending production lifetime of the engineered
3MB hyper-producer. Using this approach with a mutated 3MB
strain resulted in a titer of 9.6 g/L at 33% theoretical maximum
after 60 h. Further analysis of the two-phase culture revealed that
90% of 3MB and 80% of isobutanol produced was present in the
oleyl alcohol phase.

2-METHYL-1-BUTANOL PRODUCTION VIA THE 2-KETO
ACID PATHWAY
Cann and Liao (2008) demonstrated the production of 2MB,
a branched-chain alcohol with an energy density of 30.5 MJ/L,
via the precursor for isoleucine, 2-keto-3-methylvalerate (KMV),
in E. coli from glucose. In this study, different isozymes of key
enzymes along the constructed 2MB pathway were tested and
selected based on 2MB versus 1-propanol titer. Both 2MB and
1-propanol are derivatives of 2-keto acids, and involve the use of a
broad-substrate range KDC to convert the corresponding 2-keto
acid into an aldehyde, then reduce it into the alcohol using an
ADH. Further, an acetohydroxy acid synthase (AHAS) catalyzes
the first step in isoleucine synthesis, where 2KB and pyruvate
are condensed to make 2-aceto-2-hydroxybutyrate, a precursor
to 2MB. Therefore, an ideal AHAS for 2MB production was cho-
sen based on how well it outcompeted KDC for 2KB. If the AHAS
outcompetes KDC, then 2MB production would be favored over
1-propanol production. First, several AHAS isozymes were tested
for rate of conversion of 2KB to 2MB versus 1-propanol. It
was found that AHAS II (encoded by ilvGM) from Salmonella
typhimurium produced the highest amount of 2MB and minimal
1-propanol in modified M9 media supplemented with 8 g/L 2KB.
Next, various threonine deaminase isozymes were overexpressed
in p15A origin (Chang and Cohen, 1978) plasmids under PLlacO1

control to analyze how well supplied L-threonine is consumed and
converted into 2MB and 1-propanol. The strain containing the
best threonine deaminase coded by ilvA (C. glutamicum) converted
about 88% of supplied L-threonine into 2MB and 1-propanol.
Then, the threonine pathway was overexpressed (thrABC). Lastly,
several combinations of �metA �tdh �ilvB �ilvI �leuA and
�ilvE deletions were tested for 2MB production. The best combi-
nation was determined to be �metA and �tdh, which eliminated
carbon flux toward methionine and consumption of threonine,
respectively. The resulting E. coli strain produced, from glucose,
1.25 g/L 2MB (44% theoretical maximum) in 24 h at 30◦C under
anaerobic conditions.

C6–C8 ALCOHOL PRODUCTION VIA THE 2-KETO
ACID PATHWAY
Zhang et al. (2008) expanded the 2-keto acid-based pathway
for the production of higher-chain alcohols (C > 5) by using
structure-based protein engineering to expand the substrate range
of 2-isopropylmalate synthase (LeuA) and 2KIV decarboxylase
(Kivd) from L. lactis, which are both already known to be
promiscuous enzymes. First, Kivd was engineered to be more
selective toward 2-keto-4-methylhexanoate, a non-natural pre-
cursor of 3-methyl-1-pentanol. To do this, a sequence alignment
was done on indolepyruvate decarboxylase (IPDC) of Enterobac-
ter cloacae and pyruvate decarboxylase (PDC) from Zymomonas
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mobilis, each having a 40 and 31% homology to Kivd, respectively.
Investigation of residues within the keto acid-binding pocket
of each enzyme led to an F381L/V461A Kivd variant. To engi-
neer LeuA, sequence alignment of LeuA from S. typhimurium
and Mycobacterium tuberculosis showed 92 and 21% homology
to that of E. coli, respectively. In addition to the G462D point
mutation to deregulate valine synthesis, S139G mutation was
inserted to accommodate the extra methyl group (S)-2-keto-
3-methylvalerate contains. In an E. coli strain containing both
Kivd and LeuA mutants, 793.5 mg/L 3-methyl-1-pentanol was
produced in modified M9 media. Additional point mutations
into smaller amino acids in Kivd were included to accommo-
date larger keto acid intermediates. Specifically, the addition
of an N167A point mutation to the double mutant allowed
for the production of 51.9 mg/L 4-methyl-1-hexanol. Moreover,
incorporation of H97A to the triple mutant resulted in pro-
duction of 57.3 mg/L 4-methyl-1-hexanol, as well as 22.0 mg/L
5-methyl-1-heptanol.

Marcheschi et al. (2012) modified LeuA further with structure-
based protein engineering to increase its promiscuity toward larger
2-keto acids. These larger 2-keto acids, in turn, can be directed
toward higher-chain alcohol production (C > 5). Furthermore,
quantum mechanical modeling and protein–substrate complex
modeling were used to simulate and analyze the different transition
states of the carbon–carbon bond forming steps that are catalyzed
by candidate LeuA variants (LeuA*) in order to determine the best
conformers. Using this approach, mutants that cater to a 2-keto
acid of interest can be predicted, whether it contains an aromatic,
linear-chained, or branched-chain group. In a threonine hyper-
producer strain containing a �rhtA (encoding threonine trans-
porter gene), and three plasmid [with pSC101 (Stoker et al., 1982),
p15A (Chang and Cohen, 1978), or colE (Kahn et al., 1979) repli-
cation origin], PLlacO1-controlled (Lutz, 1997) overexpression of
thrABC (threonine pathway genes), ilvA (B. subtilis) leuA*BCD,
kivd (F381L/V461A, L. lactis), and ADH6 (S. cerevisiae), produc-
tion of C4–C8 alcohols in modified M9 media was measured.
There were four notable LeuA* variants. LeuA* containing
S139G/G462D produced 993 mg/L and 2.22 g/L 1-butanol and
1-pentanol, respectively. LeuA* H97A/S139G/G462D produced
302 mg/L 1-hexanol. Lastly, LeuA* H97A/S139G/P169A/G462D
produced 80 and 2 mg/L 1-heptanol and 1-octanol, respectively.

PROTEIN CONVERSION TO C4–C5 ALCOHOLS
Apart from the use of glucose as a feedstock for biofuel produc-
tion, Huo et al. (2011) explored the use of protein biomass as
a potential feedstock. E. coli was engineered to generate protein
hydrolysates in order to breakdown proteins in three exogenous
transamination and deamination cycles from bacteria, yeast, and
microalgae into amino acids, which can then be converted to the
corresponding 2-keto acid intermediates, and finally into C2–C6
alcohols by mimicking the Ehrlich pathway. Any reduced nitro-
gen, i.e., NH3, produced is excreted irreversibly from the cell, and
can be collected and recycled as fertilizer. In addition, leftover
amino acids can be used as raw material for various chemicals
and pharmaceutical intermediates, or as a supplement for animal
feedstocks. The final strain [YH19�glnA�gdhA�lsrA overex-
pressing alsS, ilvC, ilvD, and avtA in a p15A origin (Chang and

Cohen, 1978), PLlacO1-controlled (Lutz, 1997) plasmid, kivD,
yqhD, leuDH, and ilvE, in a colE origin (Kahn et al., 1979),
PLlacO1-controlled plasmid, and sdaB and ilvA in a pSC101
origin (Stoker et al., 1982), PLlacO1-controlled plasmid] pro-
duced 4 g/L C4 and C5 alcohols at 56% theoretical yield from
amino acids.

ISOPENTENOL PRODUCTION VIA THE MEVALONATE
ISOPRENOID PATHWAY
Isoprenoids have a vast range of uses, including for nutraceuticals,
therapeutics, polymers, and fragrances. They are hydrocarbons
that stem from isopentenyl diphosphate (IPP) and dimethylal-
lyl diphosphate (DMAPP) precursors, which are produced from
acetyl-CoA or pyruvate and glyceraldehyde-3-phosphate using
the mevalonate (Goldstein and Brown, 1990) or methylerythri-
tol (Lichtenthaler, 2000) pathways, respectively. The mevalonate
isoprenoid pathway has been engineered and exploited for pro-
duction of isopentenol from acetyl-CoA.

To produce isopentenol from isoprenoid precursors IPP and
DMAP (Figure 3), Withers et al. (2007) first used a growth-based
phenotype to screen a library of isoprene synthases from B. subtilis
6051 based on ability to minimize toxic levels of prenyl diphos-
phates by converting them into prenyl alcohols. One of two genes

FIGURE 3 | Metabolic representation of mevalonate isoprenoid

pathway for biofuel production. AtoB, acetyl-CoA thiolase; HGMS,
HMG-CoA synthase; tHGMR, truncated HMG-CoA reductase; ERG12,
mevalonate kinase; ERG8, phosphomevalonate kinase; IPP, isopentenyl
diphosphate; Idi, IPP isomerase; DMAP, dimethylallyl diphosphate; NudF,
ADP-ribose pyrophosphatase.
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isolated from a pool of 19,000 clones, nudF, was overexpressed in
a colE origin (Kahn et al., 1979) plasmid under control of a native
Bacillus promoter in conjunction with the mevalonate pathway
plasmids pMevT (p15 origin) and pMBI (Bbr origin) in the pre-
viously optimized E. coli DH1 strain (Martin et al., 2003), and
produced 110 mg/L isopentenol after 43 h at 30◦C under aerobic
conditions in 250 mL shake flasks containing M9 media sup-
plemented with 3-(N-morpholino)propanesulfonic acid, glucose,
and yeast extract.

CONCLUSION
The evolving field of synthetic biology has helped widen the
range of modular possibilities in which cell system and behav-
ior can be modified, and will continue to be an influence in the
development and improvement of biological methods for biofuel
production. In recent years, there has been a growing number
of biotech companies that are applying these methods in order
to produce higher-chain alcohols commercially. Namely, both
Gevo and Butamax have industrialized isobutanol production
platforms. But as titers in an engineered host continue to elevate
(Table 1), and experimental yields start to match up with theoret-
ical maximums, the resulting increase in productivity comes with
a price.

One prominent barrier is the toxic accumulation of the target
molecule that stunts cell fitness during production, which, in turn,
can hinder a newly engineered strain from producing at industrial-
relevant titers. Thus, increasing the product tolerance of, as well
as simultaneous product removal from, a host is desirable. Fortu-
nately, there are several approaches that have been developed to
help mitigate toxicity levels during the production phase (Zheng
et al., 2009; Atsumi et al., 2010; Ezeji et al., 2010; Dunlop, 2011).
There is, however, much to be elucidated about the convoluted
physiological effects that occur in a host when exposed to elevated
levels of a final product.

Development of a process to breakdown biomass effectively
and efficiently is also vital to decreasing production time and
costs. Until then, CBP is yet another approach worth considering
in increasing titer, yield, and productivity. A unified production
platform in which biomass can be broken down efficiently and
subsequently converted into fuel can be practical, especially if
paired with product removal methods. Meanwhile, development
of a production platform that uses sunlight and CO2 directly,

Table 1 | Highest reported higher-chain alcohol titers in E. coli.

Higher-chain alcohol Titer (g/L) Reference

1-Propanol 2.8 Atsumi and Liao (2008)

Isopropanol 143 Inokuma et al. (2010)

1-Butanol 30 Shen et al. (2011)

Isobutanol 50 Baez et al. (2011)

1-Pentanol 2.22 Marcheschi et al. (2012)

Isopentenol 0.11 Martin et al. (2003)

2-Methyl-1-butanol 1.25 Cann and Liao (2008)

3-Methyl-1-butanol 9.6 Connor and Liao (2008)

1-Hexanol 0.047 Dekishima et al. (2011)

3-Methyl-1-pentanol 0.794 Zhang et al. (2008)

1-Heptanol 0.08 Marcheschi et al. (2012)

4-Methyl-1-hexanol 0.057 Zhang et al. (2008)

5-Methyl-1-hexanol 0.022 Zhang et al. (2008)

such as cyanobacteria and microalgae is well worth the effort,
and is yet another approach that should be considered in bio-
fuel research. Especially, this approach circumvents the need for
a biomass source, and can be cultivated in non-arable areas, i.e.,
oceans and deserts.

The race to reach a renewable fuel production level of 36 bil-
lion gallons by 2022 continues as the production of advanced
biofuels gains momentum. For 2012, the Renewable Fuel Stan-
dard (RFS2) has established a goal to produce 15.2 billion
gallons of biofuels, which already approaches half the mandate
for 2022. Although the process to become independent from
petroleum-derived fuels is still in its initial stages, efforts to
increase synergy between all aspects of strain design, develop-
ment, optimization, and execution for renewable higher-chain
alcohols and other liquid fuel production in non-native hosts
will be a great aid in leading the way toward a permanent turn
of tables.
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