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Abstract: Background: Hydrocolloids are ingredients used to improve the technological properties of
products; currently, there is a growing demand from the food industry and consumers to use natural
ingredients and reduce the environmental impact. Methods: This work evaluated the effect of pH
on hydrocolloid extraction from the pulp, seed, and peel of mango (Mangifera indica) var. hilaza and
their chemical, physicochemical, techno-functional, and structural properties. Results: The main
component of the hydrocolloid was the carbohydrates for pulp (22.59%) and peel (24.05%), and the
protein for seed (21.48%) was corroborated by NIR spectra and associated with the technological and
functional properties. The solubility increases with the temperature presenting values higher than
75% at 80 ◦C; the swelling index was higher than 30%, while the water holding capacity was higher in
samples with higher carbohydrate content (110–121%). Moreover, a higher content of total phenolic
compounds (21.61 ± 0.39–51.77 ± 2.48 mg GAE/g) and antioxidant activity (≥193.82 µMol Trolox/g)
was obtained. The pH of extraction changes the color parameters and microstructural properties.
Conclusions: Novel ingredients from mango pulp, seed, and peel at different pH levels have techno-
logical and functional properties that are potential use in the food industry as an alternative to the
development of microstructural products.

Keywords: mango (Mangifera indica) var. hilaza; waste products; agroindustry; hydrocolloids; structure;
functionality

1. Introduction

Hydrocolloids are high molecular weight biopolymers used in the food and phar-
maceutical industries due to their techno-functional properties [1]. The biopolymeric
structures present a hydroxyl group which increases the hydrophilic capacity, producing
viscous aqueous dispersions. The characteristics of hydrocolloids allow their use as dietary
fibers, thickeners, gelling agents, emulsifiers, stabilizers, fat substitutes, clarifying agents,
flocculating agents, and clouding agents [2]. In addition, hydrocolloids have applications
in research and industrial areas to develop edible films, encapsulating properties, and
substance crystallization inhibitors, allowing them to be used in beverages, confectionery,
dairy-based products, and bakeries [3,4].

Different vegetable and fruit waste have been resources for the extraction of hydro-
colloids using different techniques. Conventional extraction technique with hot water is
commonly used for extraction; that is, Orgulloso-Batista et al. [5] obtained hydrocolloids
from Cucurbita moschata peel with stabilizer properties; Rojas-Torres et al. [6] from butter-
nut squash seed with stabilization and emulsification properties; Lopez-Barraza et al. [7]
from Pereskia bleo leaves with high water holding capacity and emulsifying stability; de
Andrade Vieira et al. [8] from cacti with good water and oil retention capacities; Teme-
nouga et al. [9] obtained hydrocolloids mucilage from okra with emulsifying properties;
and Rashid et al. [10] extracted flax gum from Linum usitatissimum L. seeds with foaming
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capacity, swelling index, and foaming stability. Furthermore, ultrasound-assisted extrac-
tion (UAE) as a new method has been developed to advance the extraction process [11],
i.e., ultrasound-assisted extraction and vacuum cooling to obtain peach gum polysaccha-
ride [12]; Keshani-Dokht et al. [13] extracted mucilage from Cordia myxa with antiradical
capacity, water solubility, and water/oil holding capacity; Ezzati et al. [14] solubility, wa-
ter and oil holding capacities, emulsifying capacity and emulsifying stability and Chen
et al. [15] extracted polysaccharides from okra with antioxidant capacity and high solubility.
Then, microwave-assisted extraction was used for the extraction of high hydrocolloid yield
in a short time, i.e., Samavati [16] obtained hydrocolloids from okra pod with antioxidant
activity, and Dranca et al. [17] extracted pectin from Malus domestica with film-forming
properties. Similarly, hydrocolloids obtained from vegetables and fruits have been used to
develop new products, such as banana, papaya, and Citrus sinenesis peels in the production
of yogurt [18,19]; cress seed gum with chitosan nanoparticles has been used to develop
active films evaluating its encapsulation capacity for the pomegranate peel extract [20].
In addition, they have been incorporated as enhancers of the physical attributes of cakes
when they are partially added as egg substitutes [21].

The techno-functional properties of hydrocolloids depend on their solubility in the
aqueous phase of food; the ability to increase the viscosity of solutions, form gels, or stabi-
lize emulsions requires good solubility in water [22]. Different hydrocolloids have been
used in the food industry, i.e., acacia, modified starch, whey protein, casein, and soybean
proteins, due to their good water solubility properties [23,24]. However, some hydrocol-
loids are insoluble in water depending on their molecular characteristics, particularly their
surface hydrophobicity, charge, and molecular weight [25]. The viscosity of hydrocolloids
depends mainly on their physical entanglement (random coils) [26]. In dispersion, the indi-
vidual hydrocolloid molecules can move freely and do not show thickening or gel-forming
ability. However, when there is a concentrated substance, these molecules begin to contact
each other; therefore, the movement of the molecules becomes restricted, facilitating the
change of viscosity. The transition from free-moving molecules to an interlaced network is
a thickening process. Moreover, hydrocolloid thickeners can be considered as an entangle-
ment of network producers. In cases where interactions between polymer and polymer are
not observed, thickening properties are associated with molecular weight and hydrocolloid
concentration [27,28].

Mango (Mangifera indica) is an Anacardiaceae family fruit of the Sapindales order and
grows in many parts of the world, mainly in tropical countries [1]. Each part of a mango
tree can be used, such as leaves, flowers, bark, fruit, pulp, peel, and seeds, due to essential
nutrients [29]. Approximately 100 mango fruit varieties are known for diversity in size,
shape, color, flavor, seed size, and chemical composition, depending on the crop, weather
conditions, harvest, and post-harvest treatments. [30–32]. In general, this fruit is considered
an essential source of micronutrients, vitamins, dietary fiber, carbohydrates, proteins, fats,
and phenolic compounds in the diet [33]. The main industrial products obtained are
syrup, nectar, fruit puree, canned food, and chutney; then, depending on the process,
different amounts of industrial byproducts such as seeds and peels could be obtained,
representing 35–60% of the fruit’s total weight [1,34–37]. The objective of this study was to
obtain novel hydrocolloids from all parts of mango (Mangifera indica) var. Hilaza and their
physicochemical, chemical, techno-functional, and structural characteristics, are capable
of contributing to the development of new food science additives using renewable and
environmentally friendly sources.
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2. Results and Discussion
2.1. Chemical and Physicochemical Properties of Hydrocolloid

Hydrocolloids were extracted at pH 3, 7, and 10 from the pulp (HP3, HP7, and HP10),
seed (HS3, HS7, and HS10), and peel (HE3, HE7, and HE10). The extraction yield of
hydrocolloids are shown in Figure 1, indicating yields of 5.56%, 2.62%, and 7.81% for pulp;
6.34%, 1.86%, and 8.3% for seed, and 7.64%, 3.83% and 7.72% for peel, at pH 3, 7 and 10,
respectively; in general the peel presents the highest yield at pH 3 and pH 7 and seed at
pH 10. Then, the extraction yields at pH 3 and 10 were higher than at pH 7. At pH 10, the
viscosity of the solution increased, increasing the power required to mix the slurry and
thus subjecting the sample to higher shear stress; this increased shear may have resulted
in a higher erosion rate and thus higher extraction [38]. Then alkaline conditions could
increase the yield by hydrolyzing insoluble constituents into soluble which increases the
extraction yield. This finding was in agreement with previous researchers, i.e., Balke and
Diosady [38], Estévez et al. [39], and Somboonpanyakul et al. [40]. At pH 3 can improve
de yield because it promotes extensive hydrolysis resulting in smaller chains that do not
precipitate by adding ethanol, thus reducing yield [41]; Similar results were obtained by
Colodel and Petkowic [42] and Keisandokht et al. [43]. Change in pH favors extraction of
hydrocolloids due to exposure of hydrophilic groups that can interact with water and favor
their extraction [17,44]. In all cases, the lowest extraction yield was obtained at pH 7. It can
be deduced that the extraction of solubilized hydrocolloids at this pH did not have good
yields as the denaturation capacity of polymeric systems is not adequate; the interaction of
polymeric chains responds to physical, chemical, and electrical changes that are favored by
changes in pH, allowing better extraction [45,46].

Figure 1. Percentage of hydrocolloid extraction from the seed, peel, and pulp of mango (Mangifera in-
dica) var. hilaza. HP (pulp hydrocolloid), HS (seed hydrocolloid), and HE (peel hydrocolloid).

The chemical composition of hydrocolloids depends on their source and extraction
conditions. Table 1 shows the physicochemical properties of hydrocolloids from the seed,
peel, and pulp of mango (Mangifera indica) var. hilaza. Soluble solids present significant
differences (p < 0.05) from mango parts, the pulp has the highest value, followed by peel
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and seed due to its higher sugar content [47], which does not variate with the extraction
pH (p > 0.05). The acidity values decreased with increasing extraction pH (p < 0.05) and did
not vary with the mango source of mango (p > 0.05).

Hydrocolloids have moisture values between 62.96% and 75.32%, lipid content of
0.63 and 11.15%, protein content of 0.33 and 20.93%, carbohydrates of 2.06 and 23.52%, and
ash values less than 1.61%. Similar results were obtained by Cao et al. [48], Renard et al. [49],
and Ma et al. [50], who extracted and characterized hydrocolloids from vegetable raw
materials, such as camelina gum isolation, acacia gums (Senegal andseyal); and Chickpea
flour as a functional ingredient in foods. Furthermore, the protein content is higher than
flaxseed gum [51] compared to hydrocolloids extracted from the mango seed.

Table 1. Proximal composition and physicochemical properties of the hydrocolloids of mango (Mangifera in-
dica) var. hilaza. at different pH.

Sample
Code pH * SS *

Brix
Acidity

%
Moisture

%
Ash
%

Lipids
%

Carbohydrate
%

Proteins
%

HP3 3.51 ac 10.56 ab 0.17 ± 0.78 c 75.38 ± 0.98 bc 1.61 ± 0.54 abd 0.63 ± 0.12 ac 21.59 ± 2.11 ab 0.33 ± 0.03 abc

HP7 6.73 abc 10.45 abc 0.06 ± 0.99 ac 74.25 ± 1.43 bd 0.48 ± 0.36 ac 0.65 ± 1.04 abc 23.52 ± 1.03 abc 0.38 ± 0.02 ac

HP10 8.15 bc 10.58 abc 0.01 ± 0.41 abc 72.10 ± 2.35 abc 0.94 ± 0.63 abe 0.85 ± 0.50 abe 23.06 ± 1.70 ac 0.42 ± 0.09 bc

HE3 4.54 adc 4.21 acd 0.17 ± 0.48 adc 75.32 ± 1.21 ad 1.30 ± 0.61 abc 0.93 ± 0.01 abc 21.20 ± 1.20 abc 0.35 ± 0.03 abc

HE7 6.78 ab 4.35 bc 0.08 ± 0.05 abd 74.13± 0.95 ab 1.52 ± 0.48 ab 0.87 ± 0.25 abc 22.45 ± 1.08 ac 0.41 ± 0.08 abe

HE10 8.72 ad 4.65 ac 0.01 ± 0.06 ab 74.52 ± 1.43 acd 1.10 ± 0.71 abc 0.78 ± 0.31 ab 22.12 ± 0.54 bc 0.37 ± 0.03 abe

HS3 4.25 abc 2.56 abc 0.17 ± 0.58 bc 65.74 ± 0.23 bd 1.47 ± 0.46 abd 9.86 ± 1.35 ac 2.06 ± 0.30 abc 20.24 ± 0.96 acd

HS7 6.54 bc 2.34 ab 0.05 ± 0.05 abc 63.07 ± 1.44 ad 1.32 ± 0.85 ab 10.32 ± 1.73 ad 2.32 ± 0.40 ac 20.93 ± 1.21 ac

HS10 8.21 abc 3.12 abd 0.02 ± 0.11 cd 62.96 ± 0.83 ab 1.65 ± 0.53 ac 11.15 ± 0.98 ad 2.63 ± 0.90 abc 20.36 ± 0.67 dc

The proximal compositions were determined on a wet basis, which is not reported in the literature or reported
on a wet basis. Data are expressed as mean ± standard deviation. Different letters in the same column express
statistically significant differences (p < 0.05). * pH and soluble solids (SS) have a coefficient of variation of <0.05.

Similarly, Estévez [39] carried out a study on the influence of pH on the level of fat,
protein, and ash content. The main content of the hydrocolloids was protein from seeds and
carbohydrate from peel and pulp, which could be associated with the techno-functional
properties of the samples. The values of the ash content were similar to those obtained by
Escobar et al. (0.9–2.1 g/100 g DM) [52] and commercial guar gum (1.5%) and locust bean
gum. The lipid content was lower for hydrocolloids from peel and pulps; in acid extraction
(pH 3), the lipid content was lower, whereas the level in alkali-extracted gum was similar
to that reported by Ibañez and Ferrero [53], while for hydrocolloids from seed were higher
(>9%) associate to the higher lipid content of mango seed [54]. The protein content was
higher in HS (20%) and lowered in HP and HE when the acid extraction (pH 3) resulted
in a lower protein content owing to molecular hydrolysis caused by the acid. The higher
protein and ash content is due to the increased damage of the sample during the extraction
of hydrocolloids. HS presents the lowest carbohydrate content (<2%) and the highest value
of HP, and HE has the highest value (>20%). This characteristic can positively impact the
formation of emulsions due to the hydrophilic and hydrophobic attributes of the proteins,
which present values higher than those obtained by Lopéz-Barraza et al. [7] based on gums
extracted from Pereskia bleo Leaves, Gannasin et al. [46] of gums extracted from tamarind
seed; in addition, the proximal composition of the hydrocolloids in terms of pH changes,
presented minimal significant differences with respect to the extraction material.

Measurements of color parameters (Table 2) were taken to evaluate the influence of
the treatment on the visual appearance of hydrocolloids. Similarly, the lightness value
(L* > 95) and the whiteness index (WI > 90) combined are associated with the yellow color
of the samples. Relative pH changes in the raw material process promote the browning of
hydrocolloids when they are brought to alkaline conditions, lowering the levels of L and
WI in all cases, except for the hydrocolloids extracted from the seed present grayish tones
with values <70 in all pH treatments [55].
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Table 2. Color parameters of hydrocolloids extracted from mango (Mangifera indica) var. hilaza. at
different pH.

Sample Code L* WI ∆E

HP3 94.46 ± 0.56 c 94.15 ± 0.45 a 94.48 ± 0.76 cb

HP7 97.07 ± 0.18 bc 95.78 ± 0.29 cb 97.11 ± 0.64 ac

HP10 88.20 ± 0.58 b 87.75 ± 0.65 abc 88.7 ± 0.56 ab

HS3 67.47 ± 1.14 abc 67.05 ± 0.90 b 67.67 ± 0.34 a

HS7 57.96± 0.85 cb 57.78± 0.81 bc 58.09 ± 0.72 a

HS10 56.87± 0.45 abc 56.62 ± 0.36 c 57.07 ± 0.44 b

HE3 98.05 ± 0.14 bc 80.49 ± 0.42 bc 99.95 ± 0.14 c

HE7 67.38 ± 1.45 a 66.22 ± 0.35 ac 67.98 ± 0.42 ac

HE10 67.45 ± 1.12 abc 67.23 ± 0.85 cb 67.57 ± 0.04 b

L*, lightness; WI, whiteness index; ∆E, color variation. Data are expressed as mean± standard deviation. Different
letters in the same column express statistically significant differences for hydrocolloid extraction at pH 3, 7, and
10 (p < 0.05). pH and soluble solids (SS) have a coefficient of variation of <0.05.

Regarding the color variation (∆E), a decrease is observed as the pH of treatment (3–10) in-
creases. The hydrocolloids of the peel (94.48± 0.76–88.7± 0.56); pulp (99.95± 0.14–67.57± 0.04);
seed (67.67± 0.34–57.07± 0.44) show this trend. Otherwise, this characteristic is observed con-
cerning microstructural properties. It is observed that the internal changes of the samples
directly influence the visual effects since the size of the polymeric particles becomes more
prominent with increasing pH, having greater absorbance capacities that reflect their color
change, as they do not have reflection angles that scatter light.

2.2. Hydrocolloids Spectral Features

The NIR spectra of the hydrocolloids are presented in Figure 2. The absorption
intensity was significantly different between the seed, peels, and pulp samples, being
the seed with the lowest absorbance degree between 0.2 and 0.5. The hydrocolloid from
peel and pulp exhibited a higher amplitude and sharper peak depending on the ratio
of the pH sample. The peak amplitude decreased as the pH variation increased; these
differences in NIR spectral features reflect differences in water hydrocolloid interactions
in the structure of gels [56–59]. As the NIR spectrum is sensitive to changes in hydrogen
bonds and the packing of crystal cells, it can be detected. The polymorphic form or
compound concentration can be carried out from a qualitative and quantitative point of
view. In addition, for the wavelength, there is one major water band (O-H) discernable
at around 1455–1460 nm and bands observable around 1930 nm, which represents the
presence of carbohydrates (C-H) for all hydrocolloids [59,60]. The main components of
plant tissue, which consist of various combinations of groups mentioned above, have
absorption properties in this spectrum region [61].

Vibration differences in the range around 1300 to 1460 nm have been identified for
fruits such as grape products, wine, citric, etc. [62–64], showing the vibration range of the
c-H and OH peaks corresponding to water, combined with the absorbance of phenolic com-
pounds. Moreover, the spectrum shows another absorbance peak, around 1950–2100 nm,
in the hydrocolloid from the seed corresponding to protein groups (N-H) [61]. In the
Pulp, the O-H group appears at 1455 nm and C-H at 1930 nm. In the seed, the O-H ap-
pears at 1460 nm, the C-H group appears at 1930, and N-H at 2100. Finally, Peel O-H
appears at 1455 nm and C-H at 1930 nm. They are supported by the data obtained from the
physiochemical characterization of the samples in Table 1.
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Figure 2. Representative NIR spectra of hydrocolloid; (a) Pulp; (b) Seed; (c). Peel.

2.3. Total Phenolic Compounds (TPC) and Antioxidant Activity

The total phenolic compounds and antioxidant activity of hydrocolloids are shown in
Table 3. Hydrocolloids have TPC values in the range of 21.61± 0.39 to 51.77± 2.48 mg GAE/g,
close to those reported by Sánchez-Camargo et al. [65] and Dorta et al. [66] in mango peel and
seed. These phenolic compounds contribute significantly to the antioxidant activity of the
hydrocolloids obtained, in accordance with studies in the scientific literature on phenolic
compounds as antioxidants [67,68]. Furthermore, phenolic antioxidants are molecules that,
in small concentrations, protect biomolecules (phospholipids, nucleic acids) from damage
caused by free radicals [69,70]. The truth is that the nature of free radicals makes them very
reactive [71]. However, phenolic compounds are capable, when colliding with them, of
giving an electron or hydrogen, stabilizing, and thus preventing the initiation or oxidative
damage propagation. Antioxidant activity measured through ABTS differed between
the pulp, seed, and peel hydrocolloids, ranging between 152.38 and 198.85 TEAC (µMol
Trolox/g); the ABTS radical scavenging capacity is equivalent to that of Trolox; therefore,
higher values of µM of Trolox g−1 determines a higher antioxidant activity. In general, an
increase in antioxidant activity is associated with high TPC. However, a correlation could
be established with the treatments applied to materials with bioactive compounds, such as
changes in temperature, pH, light intensity, and acidity [72].

However, for the ABTS radical test, the total antioxidant activity is equivalent to
the concentration of the extract required to reduce the initial concentration of the ABTS
radical by 50%; therefore, lower values correspond to higher antioxidant activity [73]. The
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values show a higher antioxidant activity of the hydrocolloids extracted from the peel
and seed (≥193.82) and a lesser extent for the pulp. Similarly, hydrocolloids with these
characteristics can be applied in different food matrices such as emulsions, sauces, and
beverages, conferring added value to the final product [74–78]. The hydrocolloids obtained
could then be used in the development of food products to reduce the oxidation process as
antioxidants and preservatives.

Table 3. The total phenolic compounds (TPC) and antioxidant activity (IC50 and TEAC) of the
hydrocolloids were obtained from mango (Mangifera indica) var. hilaza. at different pH.

Sample Code TPC
mg GAE/g

IC50
µL/g

TEAC
µMol Trolox/g

HP3 31.69 ± 4.50 bc 49.98 ± 0.22 a 152.38 ± 0.66 c

HP7 25.17 ± 0.18 abc 46.36 ± 0.07 d 164.29 ± 0.24 a

HP10 32.13 ± 2.17 ab 41.67 ± 0.05 abc 185.03 ± 0.23 a

HS3 47.98 ± 2.17 abc 38.84 ± 0.19 d 196.44 ± 0.95 a

HS7 46.61 ± 0.85 c 36.77 ± 0.78 abc 198.73 ± 0.72 a

HS10 21.61 ± 0.39 abc 43.83 ± 0.34 d 193.82 ± 1.34 a

HE3 37.34 ± 1.16 abc 38.23 ± 0.12 d 198.85 ± 0.76 a

HE7 51.77 ± 2.48 a 37.25 ± 0.93 abc 197.55 ± 0.02 a

HE10 28.68 ± 4.50 abc 38.16 ± 0.07 196.98 ± 0.37 c

Data are expressed as mean ± standard deviation. Different letters in the same column express statistically
significant differences for hydrocolloid extraction at pH 3, 7, and 10 (p < 0.05).

2.4. Technological Properties

Variation in the mechanical properties of foods, such as texture, viscosity, and surface
activity, gives rise to various physical properties that determine the functionality of hy-
drocolloids. Solubility is a factor of analysis that affects other functional properties and
serves as a valuable performance indication of hydrocolloids in dispersion systems. Hydro-
colloid interaction in aqueous systems reduces the diffusion and collision of suspended
particles [79,80]. These must be adequately hydrated and solubilized to perform their
function. They can be soluble in hot or cold water depending on factors such as the length
of the polymeric chain and its ramifications, the way in which they are grouped, and the
configuration of electrical charges [55].

2.4.1. Solubility

Figure 3 presents the solubility properties of hydrocolloids from the pulp, seed, and
peel of mango (Mangifera indica) var. hilaza. In general, they have an excellent solubility
capacity. However, as the temperature increases, the ability to dissolve in water increases,
similar property to that carried out by Sciarini et al. [81], where they evaluated the functional
properties of Gleditsia triacanthos gum, having a maximum capacity of 80% solubility when
exceeding 70 ◦C. Likewise, the study carried out by Salahi et al. [82] investigated the
functional properties of a new gum from Eremurus luteus root. They presented similar
solubility results between 50% and 80% when the temperature increases. These structural
changes occur when breaking hydrogen (H) bonds between polysaccharide chains is
favored, exposing OH groups that facilitate the ability to form H bonds with water.

2.4.2. Swelling Index (SI) and Water Holding Capacity (WHC)

The SI and WHC values are shown in Figure 4. The highest values were observed for
hydrocolloids obtained from the pulp, followed by the peel and seed associated with their
composition. Hydrocolloids from pulp and peel could retain more moisture due to CHO’s
presence. When subjected to heating and changes in pH, they could cause the splitting of
the constituent polysaccharides and their more significant proportion of branching [83].
These factors decreased the degree of chain-to-chain interaction. Therefore, it was easier for
water to form bonds with polysaccharide chains; this may be explained because it increased
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molecular mobility, promoted water absorption, and increased the degree of water held by
the hydrocolloids. Amid et al. [84] reported similar values when evaluating this property
in green gram gum (139.5% WHC) and evenly in tamarind seed mucilage (107% WHC)
at 60 ◦C, evaluated by Alpizar-Reyes et al. [4]. Then, seed hydrocolloids at pH 7 (HSph7)
and pH 10 (HSph10) presented the lowest carbohydrate values and a higher proportion of
protein chains, which require strong process conditions; these polymers interact strongly
with each other and, to a lesser extent, with water.

Figure 3. Sample solubility as a function of temperature from (a) Pulp; (b) Seed; (c). Peel.

The swelling index (SI) indicates the degree of hydration of the granules. In this
way, the increase in swelling capacity means weaker bonding forces; when the chains are
separated, they increase the weaker bonding interactions between the polymer molecules.
Therefore, the enlargement of molecules allows greater water retention. Additionally, the
increase in the swelling index depends on the composition of the materials and the exposure
of functional groups that can cause a greater volume available for the retention of water
in the molecule. Furthermore, the swelling power index was correlated with WHC (the
higher the swelling index, the higher water retention), with results between 28–35.2% SI. In
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that sense, the molecular weight of proteins is more significant than that of carbohydrates,
representing an inversely proportional behavior (higher molecular weight-lower swelling
capacity and water retention) [85].

Figure 4. (a) Swelling index (SI) and (b) water holding capacity (WHC) of hydrocolloids from mango
(Mangifera indica) var. hilaza.

2.5. Microstructural Characterization

Figure 5 demonstrates the microstructural characteristics of the hydrocolloids obtained.
The confocal microscope offers the possibility of analyzing transverse optical sections, allow-
ing the internal sample structure to be observed without any special preparation, achieving
it through the displacement of the focal plane through the sample, which is only possible to
observe the model in the XY plane. Based on this, the hydrocolloid microstructural analysis
shows dense areas and compact regions for hydrocolloids obtained from the pulp at pH 3
and 7 (Figure 5a,b). In seed, more compact regions were observed (Figure 5d–f), similar
characteristics obtained by Lofgren et al. [86], where the structure of mixed pectin gels
was studied and this polymeric network formed; being of great importance for the func-
tional properties of solubility, swelling index, and water retention capacity. These results
are according to the spectrum obtained from the NIR measurement, where characteristic
peaks are observed exposing C-H and O-H groups that prove functional capacities such as
solubility, swelling index, and water retention. This network that forms with the aqueous
system can be observed in the pulp hydrocolloids obtained at pH 10 (Figure 5c), peel at
pH 7 (Figure 5h), and seed, more clearly at pH 7 and 10 (Figure 5e,f) [82].

The results obtained at the microstructural level show that the extraction of hydrocol-
loids at different pH levels does not represent a differential parameter in the capacity to
form a polymeric network, but if the aggregation state is attributed instead to its compo-
sition, as in the case of seed hydrocolloids where the protein chains (a major component
in these samples) tend to be in the aggregation state, image (Figure 5d–f), which repre-
sents a higher molecular weight, linked with higher textural hardness and generally lower
moisture content (Table 1) [85].
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Figure 5. Microstructure of hydrocolloids from pulp, seed, and peel of mango (Mangifera indica) var. hilaza.

3. Conclusions

Hydrocolloids of the peel, pulp, and seed of mango (Mangifera indica) var. Hilaza
were obtained at different pH treatments. The yields obtained have higher values when
the raw material is solubilized at pH 3 or 10. Physicochemical analysis showed that the
peel and pulp mainly have carbohydrates as a functional component and the seed has a
higher protein content. However, besides having functional characteristics, hydrocolloids
can provide phenolic compounds in food matrices with antioxidant capacity, representing
an added value of nutritional traits.

The microstructural characteristics showed that hydrocolloids obtained from the seed
form compact regions and have the ability to form polymeric networks capable of retaining
water as those obtained from the pula at pH 10 and the peel at pH 7. Color parameters
are related to the extraction treatment of the hydrocolloids, where they vary ∆E, color
variation. It is less than alkaline pH with brown tones and more yellow and white tones at
acid pH conditions. NIR spectra are essential for validating the hydrocolloid composition,
representing its degree of functionality and industrial applicability. They maintain a similar
wavelength but differ in breadth, exposing the O-H, C-H, and N-H groups and modifying
the solution conditions and functional properties. Therefore, the hydrocolloids obtained
are a new alternative for the exploitation of mango at the industrial level and can be used
in food matrices such as jams, juices, sauces, etc.; with functional (solubility, swelling,
and water holding properties) and biological benefits (antioxidant capacity whit phenolic
compounds) properties.
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4. Materials and Methods
4.1. Chemical Reagents

Ethanol (Analytical grade, 99.5%) and glacial acetic acid (99.5%) were purchased from
Panreac (Bacelona-Spain); sodium hydroxide (99.5%) from EMSURE (Darmstadt Germany),
anhydrous sodium carbonate (99.5%), gallic acid standard (>98%), phenylmethyl siloxane (5%),
Folin–Ciocalteu reagent, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium
salt (ABTS, ≥95%) were obtained from Sigma Aldrich (St. Louis, MO, USA).

4.2. Materials

Mango (Mangifera indica) var. Hilaza was purchased from the local market of Carta-
gena de Indias (Colombia) in a state of organoleptic maturity. The whole fruits were
sanitized by immersion in a sodium hypochlorite solution (100 mg/L) for 10 min at a
temperature of 30 ◦C. Peel, pulp, and seed were manually separated with stainless steel
knives. Subsequently, the pulp, seed, and peel were lyophilized for 72 h using Labconco
Freezone 1.5 L benchtop equipment. Subsequently, a reduction in particle size was made in
an IKA MF 10.2 mill coupled with a sieve to obtain particle sizes smaller than 250 µm.

4.3. Hydrocolloid Extraction

Hydrocolloid extraction was carried out following the procedures described by Quin-
tana et al. [87] and López-Barraza et al. [7] with some modifications, evaluating the parts of
mango (pulp, peel, and seed) and three pH (3, 7, and 10) of solubilization obtaining nine
experiments (Table 4). Briefly, the material (part of mango) was solubilized with distilled
water in a 1:8 ratio followed by adjustment of pH with acetic acid (1 N) and NaOH (0.1 N)
continuously stirred for 4 h at 80 ◦C and filtered. The solubilized mixture was then mixed
with ethanol (1:1 ratio) at 0 ◦C to favor hydrocolloid precipitation (3 h). The mixture was
centrifuged for 15 min at 4000 rpm, and the sediment was lyophilized and milled to obtain
dry hydrocolloid.

Table 4. Extraction conditions of hydrocolloids from pulp, peel, and seed from mango (Mangifera in-
dica) var. hilaza.

Sample Code Parts of Mango pH Temperature
◦C

Time
Hours

HP3 Pulp 3 80 4
HP7 Pulp 7 80 4
HP10 Pulp 10 80 4
HE3 Peel 3 80 4
HE7 Peel 7 80 4

HE10 Peel 10 80 4
HS3 Seed 3 80 4
HS7 Seed 7 80 4
H10 Seed 10 80 4

The extraction yield was calculated considering the amount of dry raw material used
and the amount of product obtained after the extraction process using Equation (1).

% yield =
the weight of dried hydrocolloid obtained

weight from raw material
× 100 (1)

4.4. Physicochemical and Proximal Analysis

Moisture, ether extract, ash, and protein content of hydrocolloids were determined
using standard methods of Association of Official Analytical Chemists- AOAC No. 926.08,
972.28, 935.42, and 926.123, respectively. The carbohydrate content was determined by the
difference [88].
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Titratable acidity was determined based on alkalimetric titration with 0.1 N NaOH
using phenolphthalein as an indicator (AOAC No.967.21). The pH was measured using a
Metter Toledo AG SG2 digital potentiometer, previously calibrated, according to Method
942.05 described by the AOAC [88].

Hydrocolloid color was determined using the method described by Shittu et al. [89].
The histogram of light-dark (L*), greenish/red (a), and bluish yellow (b) allows one to
calculate the whiteness index (WI) and the color variation (∆E) by Equations (2) and (3),
respectively [89–91].

WI = 100− [(100− L∗)2 + a2 + b2]
0.5

(2)

∆E = [(∆L∗)2 + (∆a)2 + (∆b)2]
0.5

(3)

4.5. NIR Spectral Measurement

NIR spectral measurements were made following the procedures described by Huang
et al. [59] and Lundin et al. [57] using a SpectraStarTM XT NIR analyzer Series with scanning
monochromator technology, an operating range of 1100–2600 nm, and spectral resolutions
of 2.5 nm; equipment with Si and Pbs detectors. To analyze the organic functional groups
(especially O-H, N-H, and C=O), the absorbance data were determined. Each measurement
was preceded and followed by calibration scans against air 1.9 scan/s. The diameter of the
fiber optic probe was approximately 5 cm; for spectral collection, the probe was placed in
direct contact with the surface of dry hydrocolloids.

4.6. Determination of Total Phenolic Compounds

The total phenolic compounds of the hydrocolloids obtained were determined using
the Folin-Ciocalteu singleton method [92]. Briefly, 50 mg of hydrocolloid are mixed with
3 mL of MilliQ water and 250 mL of Folin Ciocalteu reagent. The contents were thoroughly
mixed, and after 3 min, 750 mL of sodium carbonate solution and 950 mL of distilled
water were added. The mixture is kept for two hours at room temperature and in the
dark, then the absorbance measurement at 760 nm will be performed using a Genesys 10S
UV-Vis spectrophotometer (Thermo Fischer Scientific Inc., Miami, FL, USA). The results
will be expressed as GAE (mg of gallic acid equivalents/g of extract). All analyzes will be
performed in triplicate.

4.7. Determination of Antioxidant Activity

The antioxidant capacity of the extracts was determined by the ABTS + radical scav-
enging assay following the method described by Re et al. [93] ABTS + radical cation of
ABTS + was generated by mixing ABTS + stock solution of ABTS + (7 mM) with 2.45 mM
potassium persulfate after incubation of the mixture at room temperature for 16 h in
darkness. Once the ABTS + radical was formed, the solution absorbance was adjusted to
0.700 ± 0.02 at 734 nm by ethanol in a Genesys 10S UV–vis spectrophotometer (Thermo
Fischer Scientific Inc., Miami, FL, USA). Afterward, 990 µL of ABTS + solution was added
to 10 µL of the sample, and the reaction mixture was allowed to stand at room temperature
and under darkness until the absorbance reached a plateau. The absorbance was recorded
at 734 nm, and the results were expressed as the value IC50 value (Inhibitory concentration:
extract concentration necessary to inhibit the initial concentration of radical by 50%), as
well as equivalent Trolox (TEAC) (µmol Trolox/g extract), which were calculated taking
into account the Trolox standard and sample concentrations that produce the elimination
of 50% of ABTS + radical. All analyzes were performed in triplicate.

4.8. Techno-Functional Properties
4.8.1. Solubility

The solubility (%Solubility) of hydrocolloids was measured using the method described
by Sciarini [81] with some modifications. Accordingly, 500 mg of hydrocolloids were mixed
with 50 mL of water at 25, 65, and 90 ◦C for 35 min and cooled at 25 ◦C. After that, the
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mixture was centrifuged at 3000 rpm for 15 min. The supernatant was separated and dried
at 110 ◦C for 24 h. The %Solubility was calculated using Equation (4).

%Solubility =
Dry weight

Sample weight
× 100 (4)

4.8.2. Swelling Index (%SI)

The swelling index (%SI) was determined following the procedures described by
Kalegowda et al. [94] and Archara et al. [95] with some modifications. Briefly, 500 mg of
hydrocolloid were placed in a 10 mL graduated test tube. Further, 2 mL of alcohol (95%)
was added to reach a good dispersion; after that, distilled water was added to a distribution
of 10 mL. The solution that became viscous was stored at room temperature, and the final
volume of the sediment was recorded after 24 h. The swelling index was calculated by
determining the relationship between the swollen volume and the initial volume using
Equation (5).

%SI =
Initial volume
Final volume

× 100 (5)

4.8.3. Water Holding Capacity (%WCH)

The water holding capacity (%WCH) was determined following the procedures de-
scribed by Ghribi et al. [96]. Accordingly, 500 mg of hydrocolloids was placed in a centrifuge
tube, adding an excess of 3 mL of water and shaking for one minute. Subsequently, the
tubes were centrifuged at 3200 rpm for 30 min at 30 ◦C to measure the volume of water
that was not retained. The amount of water retention was expressed using Equation (6).

%WCH =
water absorbed volume

sample weight
× 100 (6)

4.9. Microstructural Analysis

For structural analysis, a primo Star optical microscope (Carl Zeiss Primo Star Mi-
croscopy GmbH, Jena, Germany) was set up using a 100×magnification lens to observe the
internal distribution of wet hydrocolloids extracted from MH. The equipment has a built-in
digital camera (DCMC310) with Scope Photo software (version 3.1.616) from Hangzhou
Huaxin Digital Technology Co., Ltd., Zhejiang, China, which allowed snapshots to be taken
as the observation was made.

4.10. Statistical Analysis

Data were analyzed by ANOVA (unidirectional) with Tukey’s HSD (honestly-significant
difference) test, using SPSS software (version 17.2 for Windows) to determine statistically
significant differences (p < 0.05) between samples. All tests were performed in triplicate.
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