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[FeFe]-hydrogenases are complex metalloenzymes, key to microbial energy metabolism
in numerous organisms. During anaerobic metabolism, they dissipate excess reducing
equivalents by using protons from water as terminal electron acceptors, leading to
hydrogen production. This reaction is coupled to reoxidation of specific redox partners
[ferredoxins, NAD(P)H or cytochrome c3], that can be used either individually or
simultaneously (via flavin-based electron bifurcation). [FeFe]-hydrogenases also serve
additional physiological functions such as H2 uptake (oxidation), H2 sensing, and
CO2 fixation. This broad functional spectrum is enabled by a modular architecture
and vast genetic diversity, which is not fully explored and understood. This Mini
Review summarises recent advancements in identifying and characterising novel [FeFe]-
hydrogenases, which has led to expanding our understanding of their multiple roles
in metabolism and functional mechanisms. For example, while numerous well-known
[FeFe]-hydrogenases are irreversibly damaged by oxygen, some newly discovered
enzymes display intrinsic tolerance. These findings demonstrate that oxygen sensitivity
varies between different [FeFe]-hydrogenases: in some cases, protection requires the
presence of exogenous compounds such as carbon monoxide or sulphide, while
in other cases it is a spontaneous built-in mechanism that relies on a reversible
conformational change. Overall, it emerges that additional research is needed to
characterise new [FeFe]-hydrogenases as this will reveal further details on the physiology
and mechanisms of these enzymes that will enable potential impactful applications.
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INTRODUCTION

Microbial hydrogen metabolism is thought to have appeared in the very early days of life on Earth,
before oxygen began to accumulate in the atmosphere 2.4 billion years ago (Lyons et al., 2014). It
has existed ever since, and it still plays a key role in numerous environments such as soil, wetlands,
marine sediments, freshwaters, oceans, geothermal springs, and animal guts (Boyd et al., 2010;
Greening et al., 2016; Piche-Choquette and Constant, 2019).

Hydrogenases are specialised metalloenzymes essential to microbial hydrogen metabolism. They
are classified in three classes based on the metals found at the active site: [FeFe]-hydrogenases,
[NiFe]-hydrogenases, and [Fe]-hydrogenases (also known as Hmd) (Vignais and Billoud, 2007).

[FeFe]-hydrogenases are found in the genome of numerous microorganisms, both Prokaryotes
and Eukaryotes but not in Archaea (Peters et al., 2015). Their enzymatic features depend on
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a biologically unusual iron sulphur centre, named H-cluster,
composed of a cubane [4Fe4S]-subcluster linked to a [FeFe]-
subcluster via a conserved cysteine residue. Concerted proton
and electron transfer steps lead to H2 production, via a
mechanism that is under debate (Haumann and Stripp, 2018;
Birrell et al., 2021). The ability of [FeFe]-hydrogenases to
catalyse reversible H2 production at high turnover rates and
low overpotential has put them under the spotlight for potential
exploitation in devices to produce green hydrogen (Morra
et al., 2017; Evans et al., 2019; Brown and King, 2020). [FeFe]-
hydrogenases have also inspired the synthesis of artificial catalysts
that mimic their natural properties (Ahmed and Dey, 2019;
Karayilan et al., 2019). Synthetic biology has also explored the
potential of exploiting [FeFe]-hydrogenases in vivo, to improve
or to instal H2 production in several microbial hosts (Klein et al.,
2010; Kelly et al., 2015; Noone et al., 2017; Kanygin et al., 2020;
Wegelius et al., 2021).

This Mini Review will focus on [FeFe]-hydrogenases
and highlight how recent research is revolutionising our
understanding of these enzymes.

[FeFe]-HYDROGENASES DIVERSITY: A
POORLY EXPLORED SPACE

In the post-genomic and multi-omics era, thousands of putative
[FeFe]-hydrogenase sequences can be retrieved from public
databases. The common factor to all [FeFe]-hydrogenases is the
H-domain, a ∼40 kDa (350 amino acids) protein domain that
hosts the H-cluster. In addition to sequence variability within
this core domain, [FeFe]-hydrogenases display a highly modular
genetic organisation, featuring several additional domains and
subunits that lead to both monomeric and multi-subunit enzyme
complexes. Research in this field has identified massive diversity
and several classification schemes have been proposed (Meyer,
2007; Vignais and Billoud, 2007; Calusinska et al., 2010; Winkler
et al., 2013). In addition to studying the hydrogenase gene
phylogeny, recent studies have also included the analysis of
flanking genes. Poudel et al. (2016) compiled 714 sequences and
proposed three groups: (G1) monomeric HydA; (G2) trimeric
HydABC; (G3) tetrameric HydABCD. Greening et al. (2016)
curated 1,222 sequences and proposed a classification into three
groups (Figure 1): (A) prototypical and bifurcating; (B) putative
ancestral; (C) putative sensory; by analysing variations in the
domain organisation and probable quaternary structure, group
A can be further split into four subtypes.

However, only three model enzymes have been experimentally
characterised to a high level of detail using various techniques,
and they all belong to group A (subtype A1). These are:
CpI (from the anaerobic nitrogen-fixing bacterium Clostridium
pasteurianum) (Nakos and Mortenson, 1971; Peters et al., 1998;
Therien et al., 2017); DvH (from the sulphate-reducing bacterium
Desulfovibrio vulgaris) (Legall et al., 1971; Nicolet et al., 1999;
Pohorelic et al., 2002); and CrHydA1 (from the eukaryotic
green alga Chlamydomonas reinhardtii) (Happe and Naber, 1993;
Happe and Kaminski, 2002; Mulder et al., 2010). DvH and DdH
(from Desulfovibrio desulfuricans) sequences have been claimed

to be identical (Nicolet et al., 1999), even if a closer inspection
at genomes denotes numerous differences. Despite this, the
nomenclature has been used interchangeably, and biophysical
characterisation has been carried out on DvH sequence under the
DdH name (Nicolet et al., 1999; Birrell et al., 2016; Rodriguez-
Macia et al., 2020).

From the late 1990s, research has expanded to more [FeFe]-
hydrogenases thanks to important technical advances, such as
recombinant overexpression (Girbal et al., 2005; King et al., 2006;
Kuchenreuther et al., 2010) and production of semi-synthetic
hydrogenases (Berggren et al., 2013; Esselborn et al., 2013).
Currently, approximately 40 [FeFe]-hydrogenases have been
studied experimentally (Figure 1 and Supplementary Table 1).
A simple comparison of these numbers with the count of putative
[FeFe]-hydrogenases makes it evident that only very little is
currently known about these enzymes’ diversity. Furthermore,
the level of characterisation is highly variable, and in most
cases only a very limited amount of information is available
(Supplementary Table 1).

BEYOND HYDROGEN PRODUCTION:
MULTIPLE FUNCTIONAL ROLES

[FeFe]-hydrogenases are well-known for their prototypical role
in hydrogen production (Figure 1): the enzyme acts as a sink for
reducing equivalents, allowing for dissipation of excess reducing
power from energy metabolism. This role is well-characterised
in some clostridial hydrogenases, such as CpI (Therien et al.,
2017), and in algal hydrogenases, such as CrHydA1 (Happe and
Kaminski, 2002). Other hydrogenases with very high sequence
similarity are believed to acts in a similar way both within
green algae (Florin et al., 2001; Winkler et al., 2002; Kamp
et al., 2008; Meuser et al., 2011; Cornish et al., 2015) and
Clostridia (Demuez et al., 2007; Morra et al., 2016b). However,
H2-producing hydrogenases do not cluster together in the
phylogenetic tree, demonstrating that the function cannot simply
be predicted from the sequence alone, as previously noted
(Greening et al., 2016).

In addition to this flagship role, several new functions
have been identified. During hydrogen uptake (Figure 1), the
enzyme oxidises hydrogen and transfers the low potential
electrons to a suitable cellular acceptor. This function has
been proposed for relatively few [FeFe]-hydrogenases, such as
the cytoplasmic CpII (Therien et al., 2017) and periplasmic
DdH/DvH (Pohorelic et al., 2002).

Reactions of additional complexity are catalysed by multi-
subunit [FeFe]-hydrogenases. AwHydA2 (from Acetobacterium
woodii) (Schuchmann and Muller, 2013) and TkHydA2 (from
Thermoanaerobacter kivui) (Schwarz et al., 2018) have been
shown to form stable heterotetrameric complexes with two
FeS subunits and a formate dehydrogenase (FdhF) subunit.
These enzymes have been named HDCR (Hydrogen-Dependent
Carbon dioxide Reductase) after their unprecedented ability to
catalyse direct CO2 reduction using H2 as the sole reducing
agent, in a single and efficient step (Schuchmann et al., 2018;
Leo et al., 2021).
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FIGURE 1 | [FeFe]-hydrogenases phylogeny and known functions. A phylogenetic tree shows the phylogeny of [FeFe]-hydrogenase sequences from public
databases, as previously proposed (Greening et al., 2016). Enzymes that have been experimentally characterised are indicated on the tree to show their relative
position. The proposed physiological function of each enzyme is also presented, where known. A full list of enzymes is available in Supplementary Table 1,
including details on the enzyme identifier/acronym used here. Hyd, hydrogenase subunit; FdhF, formate dehydrogenase subunit; Fdrex/ox , reduced/oxidised
ferredoxin; NADH/NAD+, reduced/oxidised nicotinamide adenine dinucleotide.

Following the discovery of TmHydABC (from Thermotoga
maritima) (Schut and Adams, 2009), numerous other
heterotrimeric and heterotetrameric [FeFe]-hydrogenases have
been shown to perform flavin-based electron bifurcation (FBEB).
These enzymes couple the thermodynamically favourable
oxidation of ferredoxin to the unfavourable oxidation of NADH
leading to H2 production. The coupling is synergistic and
provides a clear physiological advantage over “conventional”
hydrogen production from ferredoxin only, as it allows
simultaneous reoxidation of both NADH and ferredoxin from
glycolysis, thus facilitating ATP production in the absence of
aerobic respiration (Buckel and Thauer, 2018; Peters et al., 2018;
Schuchmann et al., 2018).

Two [FeFe]-hydrogenases SwHyd1ABC (from
Syntrophomonas wolfei) (Losey et al., 2017) and SaHydAB
(from Syntrophus aciditrophicus) (Losey et al., 2020) have
been discovered to catalyse H2 production from NADH
without the requirement of reduced ferredoxin. Despite overall
sequence and predicted structural similarity to FBEB enzymes,
closer inspection of the flavin-containing HydB subunit revealed
differences that may explain the absence of synergistic bifurcation
(Losey et al., 2020).

A sensory role has been proposed for a number of group C
[FeFe]-hydrogenases, such as TmHydS (Chongdar et al., 2018)

and TamHydS (Land et al., 2020). This function has been
proposed based the presence of a PAS domain, that is known to
take part in signal transduction of other proteins. Furthermore,
the lack of a conserved cysteine near the H-cluster slows down
the turnover rate, thus making unlikely an active metabolic role.
Additional evidence supporting a sensory role has been reported
for RaHydS (from Ruminococcus albus) (Zheng et al., 2014) and
TsHfsB (from Thermoanaerobacterium saccharolyticum) (Shaw
et al., 2009). However, given the little direct physiological
evidence for such role, this assignment is considered putative.

Group B is currently much less characterised and a tentative
denomination as “ancestral” has been proposed, but due to lack
of evidence it is difficult to discuss further on their function. Some
data are available for CpIII, showing that the gene is transcribed
(Therien et al., 2017) and that the enzyme is active and displays a
different catalytic bias to both CpI and CpII (Artz et al., 2020).

It is also notable that proteins with sequence similarity
to [FeFe]-hydrogenases can be found in higher eukaryotes,
including humans (HsNARF, Figure 1), where they lost H2-
linked functionality and evolved to other roles (Barton and
Worman, 1999; Ding et al., 2020).

The impressive variety of functional roles for [FeFe]-
hydrogenases is not surprising given the large number of
organisms that rely on them, and their evolutionary history
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FIGURE 2 | Oxygen tolerance strategies in [FeFe]-hydrogenases. Schematic representation of the H-cluster in the oxidised active state Hox (centre). In the absence
of any exogenous protectant, numerous [FeFe]-hydrogenases undergo irreversible inactivation due to H-cluster damage with loss of Fe atoms (red pathway); carbon
monoxide acts as a protective agent due to its ability to form Hox-CO, by binding reversibly to the H-cluster at the same site as O2 (purple pathway); in DdH, a
similar mechanism occurs when sulphide binds to the H-cluster forming Hinact, via the Htrans intermediate (orange pathway); in CbA5H, a conformational change in
the protein structure allows for a conserved cysteine to directly bind to the H-cluster, forming Hinact (green pathway). Fep, proximal iron atom; Fed , distal iron atom;
Cys, cysteine residue.

that allowed adaptation to numerous ecological niches. However,
such diversity does not only occur across different organisms,
but also within them: several species possess multiple [FeFe]-
hydrogenase genes annotated in the genome, often in addition
to other H2-activating enzymes such as [NiFe]-hydrogenases and
nitrogenases (Calusinska et al., 2010; Baffert et al., 2019). The
apparent redundancy of hydrogen-related enzymes may provide
advantages by quickly adapting the metabolism in response
to the environmental changes. However, a comprehensive
investigation on multiple hydrogenases within an organism is
currently missing.

Thermoanaerobacterium saccharolyticum has four putative
[FeFe]-hydrogenases and a putative [NiFe]-hydrogenase genes.
A systematic knockout study revealed that the hfs genes encoding
for TsHfsB and TsHfsD [FeFe]-hydrogenases are essential for
H2 production, while deletion of the other genes had no effect
on this function. Moreover, deletion of hfs genes downregulated
the expression of all the other genes (hyd and ech), suggesting
a regulatory or sensory role for TsHfsB. Consequently, group
B TsHfsD may be the main enzyme for H2 production in this
organism (Shaw et al., 2009).

Within green algae, it is common to find two closely related
[FeFe]-hydrogenase genes that are likely originating from gene
duplication (Meuser et al., 2011). For example, Chlamydomonas
reinhardtii encodes for CrHydA1 and CrHydA2, whose
expression profile is very similar (Forestier et al., 2003). The
two isoenzymes differ for their affinity for the ferredoxin PetF
and for catalytic bias, suggesting different functional roles
(Engelbrecht et al., 2021).

The well-known solvent producer Clostridium acetobutylicum
has two [FeFe]-hydrogenases (CaHydA1 and CaHydA2), a
[NiFe]-hydrogenase and nitrogenase. It has been suggested
that CaHydA1 is the main enzyme for hydrogen production
during acidogenesis (Demuez et al., 2007), but more recently a
1CaHydA1 mutant strain has shown abundant H2 production
(Du et al., 2021) suggesting a significant contribution from
other enzymes. On the other hand, the [NiFe]-hydrogenase has
been shown to play a key role in hydrogen cycling during
solventogenesis (i.e., H2 reoxidation to provide reducing power
for the acid-to-solvent conversion) (Germane et al., 2018).

In the case of Clostridium pasteurianum (three [FeFe]-
hydrogenases, a [NiFe]-hydrogenase and nitrogenase), it has
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been proposed that CpI is the key H2 producer under non-
nitrogen-fixing conditions (Adams, 1990), while CpII and the
[NiFe]-hydrogenase would act as H2 uptake enzymes during
nitrogen fixation. This would allow for reducing equivalents to
be recovered from the highly uncoupled reaction of nitrogenase,
ultimately improving the efficiency of this energy-consuming
process (Therien et al., 2017).

Gene expression studies of multiple [FeFe]-hydrogenases in
Clostridium butyricum, Clostridium beijerinckii, and Clostridium
perfringens have shown that all genes are transcribed and
regulation is actively occurring, suggesting different functional
roles that have not yet been determined (Morra et al., 2014;
Calusinska et al., 2015; Arizzi et al., 2021).

OXYGEN SENSITIVITY: NOT AN
INSURMOUNTABLE PROBLEM

For long time it has been assumed that [FeFe]-hydrogenases
were extremely sensitive to O2, with their catalytic activity
disappearing irreversibly and very quickly, in contrast to [NiFe]-
hydrogenases that often display reversible inhibition or complete
tolerance (Goldet et al., 2009; Lautier et al., 2011; Kubas
et al., 2017). While this is certainly true for some of the most
studied model [FeFe]-hydrogenases, the characterisation of novel
enzymes has recently revealed that the phenomenon of oxygen
sensitivity is highly variable across the class, and several examples
of oxygen-stable enzymes exist (Figure 2).

Studies on model enzymes CrHydA1 and CpI have shown that
the H-cluster suffers severe and irreversible structural damage
when exposed to oxygen, resulting in loss of several Fe atoms and
their non-protein ligands (Stripp et al., 2009; Swanson et al., 2015;
Esselborn et al., 2019). The exact degradation mechanism is still
under debate, but there is agreement that this requires O2 binding
to the distal iron atom (Fed) followed by electron and proton
transfer, leading to the formation of reactive oxygen species
(ROS) that in turn would cause the actual damage (Figure 2).
Protection from oxygen can occur in the presence of carbon
monoxide via competition, as CO is able to bind to Fed faster
than oxygen, forming Hox-CO (Lemon and Peters, 1999; Goldet
et al., 2009).

Oxygen sensitivity of [FeFe]-hydrogenases is an obvious
practical limitation to working with such enzymes and raises
concerns over their prospective exploitation for potential
applications (Ghirardi, 2015; Karayilan et al., 2019). As such,
several attempts have been made to improve oxygen tolerance of
model [FeFe]-hydrogenases, adopting both rational and random
mutagenesis approaches but the improvements reported are
limited (Lautier et al., 2011; Bingham et al., 2012; King et al.,
2014).

More progress has been made by looking at other [FeFe]-
hydrogenases. For example, it has been known for decades
that DdH and DvH can be purified under air as an inactive
state (named Hinact) that can be reactivated by a reductive
treatment (Pierik et al., 1998; Roseboom et al., 2006). However,
the first attempts to generate Hinact in vitro were unsuccessful,
and the exact protection mechanism has been elusive for years.

Only recently it was shown that DdH requires the addition
of exogenous sulphide to form Hinact, via the intermediate
species Htrans. It has been demonstrated that Hinact in DdH
(Figure 2) is an overoxidized H-cluster with sulphide bound
to Fed, thus preventing O2 binding by direct competition and
protecting the enzyme from damage. Given the importance
of sulphur metabolism in Desulfovibrio, it has been suggested
that this mechanism may play a physiological role in vivo.
Interestingly, sulphide dependent Hinact formation is not an
exclusive feature of DdH, as it occurs in CrHydA1 as well;
however, this mechanism is not effective on CpI, highlighting
variability between different [FeFe]-hydrogenases (Rodriguez-
Macia et al., 2018; Rodriguez-Macia et al., 2020).

Also recently, it has been shown that CbA5H from
C. beijerinckii is able to form Hinact in a fully reversible manner;
the enzyme can be inactivated and reactivated multiple times
without any loss of activity (Morra et al., 2016a). Further
characterisation showed that Hinact formation in CbA5H does
not require exogenous sulphide and spectro-electrochemical
titrations showed that the Hox/Hinact transition in CbA5H
is a 1-electron process that occurs at an unusually low
potential, without forming Htrans (Corrigan et al., 2020). Xray
crystallography has recently confirmed that Hinact in CbA5H is
indeed independent of exogenous sulphide, as a sulphur atom
from a conserved cysteine can bind directly Fed, following a
conformational change within the enzyme (Figure 2). This is
particularly fascinating since the immediate surroundings of
the H-cluster in CbA5H are conserved and do not differ from
other [FeFe]-hydrogenases. Hence, it has been proposed that the
protection mechanism depends on three non-conserved amino
acids, situated far away from the H-cluster, that allow for the
local conformational change to occur. This finding highlights the
complexity of the interplay between the H-cluster and the protein
residues as a fundamental part of [FeFe]-hydrogenase function,
challenging the common assumption of [FeFe]-hydrogenases
being a rigid scaffold that simply hosts a metal cluster responsible
for their peculiar features (Winkler et al., 2021).

Protection from oxygen is not limited to few fortunate
cases, as it has been shown that two other [FeFe]-hydrogenases
are likely to display similar protection mechanisms: DfHnd,
the heterotetrameric bifurcating [FeFe]-hydrogenase from
Desulfovibrio fructosovorans forms Hinact and is protected from
oxygen damage (Kpebe et al., 2018); also CpIII can form a species
whose spectroscopy is reminiscent of Hinact (Artz et al., 2020).

Overall, recent research has highlighted that oxygen
sensitivity/tolerance in [FeFe]-hydrogenases is much more
complex than previously assumed. Different enzymes display
completely different reactivity toward oxygen, with a growing
number of them being able to tolerate it. It emerges that long
term protection from oxygen damage in [FeFe]-hydrogenases
invariably requires a nucleophilic species (CO, H2S or a
cysteine thiol) to directly bind Fed thus competing for O2
binding (Figure 2). While carbon monoxide protection seems
to be a universal feature of all hydrogenases, sulphur-based
protection appears to vary significantly between different
enzymes. This clearly highlights that the protein environment
plays a crucial role in determining the enzyme’s fate when
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exposed to O2, but the exact determinants for such a diversity
are not comprehensively understood. Also, the physiological
implications of oxygen tolerance in [FeFe]-hydrogenases have
not been fully addressed yet.

CONCLUSION AND FUTURE
PERSPECTIVES

Recent characterisation of novel [FeFe]-hydrogenases has
highlighted a broad functional spectrum that exceeds their
prototypical role in hydrogen production. Involvement in
hydrogen sensing, electron bifurcation and CO2 reduction
demonstrate how diverse [FeFe]-hydrogenase functions are, and
how crucial they are to support cellular metabolism under
different conditions. It has also become clear that several [FeFe]-
hydrogenases have evolved strategies to cope with oxygen,
making them oxygen tolerant.

Despite the major advancements summarised here, the
current understanding of [FeFe]-hydrogenase diversity is still
limited because few enzymes have been characterised in detail
so far. Studying novel [FeFe]-hydrogenases and populating
the phylogenetic tree with experimental evidence from this
unexplored space will be essential to improve our understanding
of [FeFe]-hydrogenase function.

Research in this field has shown that relying mainly on few
model enzymes and extrapolating information, in the assumption
that they represent a vast enzyme class, inevitably leads to severe
biases. Providing accurate predictions purely based on primary
sequence data and phylogenetic positioning will always be a risky

task but it is reasonable to expect that expanding our knowledge
to additional enzymes will make comparisons between closely
related sequences more reliable. Improving our understanding of
[FeFe]-hydrogenase function will provide numerous benefits, for
example when interpreting-omics data, as this task heavily relies
on previous information being available and correctly annotated
in databases. Also, the availability of additional enzymes will
inevitably expand the portfolio of [FeFe]-hydrogenases with
desirable features for a given application, either in vitro in a
technological device, or in vivowithin an engineered organism, or
as an inspirational example for artificial catalysts, thus increasing
the chances for success in future applications.
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