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Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease with high

incidence and is closely related to metabolic syndrome. If not controlled, it

may eventually become hepatocellular carcinoma (HCC). Ferroptosis, a non-

apoptotic form of programmed cell death (PCD), is closely related to NAFLD

and HCC, and the mechanisms of action involved are more complex. Some

studies have demonstrated that many drugs inhibit ferroptosis and protect

liver steatosis or carcinogenesis. The role of Traditional Chinese Medicine

(TCM), especially herbs or herbal extracts, has received increasing attention.

However, there are relatively few review articles on the regulation of NAFLD by

TCM through ferroptosis pathway. Here, we summarize the TCM intervention

mechanism and application affecting NAFLD/NAFLD-HCC via regulation of

ferroptosis. This article focuses on the relationship between ferroptosis and

NAFLD or NAFLD-HCC and the protective effect of TCM on both by targeting

ferroptosis. It not only summarizes the mechanism of early prevention and

treatment of NAFLD, but also provides reference ideas for the development of

TCM for the treatment of metabolic diseases and liver diseases.

KEYWORDS

traditional Chinese medicine, active ingredient, ferroptosis, non-alcoholic fatty liver
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Introduction

Liver dysfunction leads to metabolic disorders and ultimately endangers personal
health (1). For example, non-alcoholic fatty liver disease (NAFLD) is a manifestation of
metabolic syndrome in the liver (2). Simple steatosis occurs when the intrahepatic fat
content is > 5% due to of non-alcoholic or other secondary factors, and it can be further
developed into non-alcoholic steatohepatitis (NASH). Nearly half of patients with NASH
have the probability to develop liver fibrosis, cirrhosis, or even hepatocellular carcinoma
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(HCC) (3). Approximately 25% of the global population suffer
from NAFLD, and the incidence is gradually increasing (4). It
is important to note that, in order to reflect the mechanisms
of metabolic dysfunction and hepatic steatosis in patients more
accurately, NAFLD has been gradually renamed as metabolic
associated fatty liver disease (MAFLD) in the recent years (5, 6).
While cirrhosis was previously thought to be a major risk factor
for the development of HCC, up to 50% of NAFLD related-HCC
occurs in patients without cirrhosis as opposed to virus-driven
HCC. This group is also often neglected and diagnosed at an
older age and at an advanced stage of HCC (7, 8). Hester et al.
conducted a cross-sectional study of 13,648 HCC patients and
determined that NAFLD was the leading cause of HCC in both
the inpatient and outpatient populations, accounting for 32.07
and 20.22% of all cases, respectively (9).

NAFLD is a chronic progressive lesion involving in
inflammation, oxidative stress, insulin resistance, and
imbalances in lipid metabolism (10, 11). However, the
specific underlying mechanisms are not clear, and no definite
treatment criteria have been established (12). Cell death
determines pathological processes such as liver inflammation,
fibrosis, and even transformation (13). Furthermore, hepatocyte
ballooning and death can be aggravated by lip toxicity, oxidative
stress, organelle dysfunction, or inflammatory response (14).
More seriously, NAFLD may gradually transition to NAFLD-
HCC status. Therefore, it is necessary to explore strategies
to prevent NAFLD to reduce the probability of progression.
Programmed cell death (PCD) is a dominant process, which
forms part of the core of the complete growth of eukaryotes
and plays a regulatory role in NAFLD (15), including apoptosis,
necroptosis, autophagy, entosis, paraptosis, pyroptosis, etc. The
PCD pathways mentioned above may be activated at different
stages of NAFLD, and the key effector molecules involved
are also the focus of attention when developing therapeutic
agents for NAFLD. Therefore, targeting the modulation of
the PCD pathway is an effective approach to prevent or treat
NAFLD/NAFLD-HCC (16–18).

Several studies have demonstrated that ferroptosis plays a
crucial role in the occurrence of NAFLD (19–21). Inhibition
of ferroptosis improves pathophysiology of metabolic-related
diseases and is a potential pathway and effective strategy for
the prevention and treatment of NAFLD (22, 23). Traditional
Chinese medicine (TCM) has the advantages of multi-target,
multi-channel, structural stability and high safety (24, 25).
And a variety of natural molecules based on TCM such
as artemisinin, baicalein, and salvia have been found to be
valuable in tumors and nervous system diseases by intervening
with ferroptosis (26). However, there is a lack of systematic
review of the mechanism of action and clinical application of
TCM interventions on ferroptosis affecting the NAFLD disease
spectrum. Therefore, we take it as our focus to summarize
the association between ferroptosis and NAFLD/NAFLD-HCC,
and summarize the intervention mechanisms and applications

of TCM that have been reported previously, providing ideas
and information for the future development of herbs or herbal
extracts for the prevention and treatment of NAFLD/NAFLD-
HCC.

Ferroptosis and non-alcoholic
fatty liver disease/non-alcoholic
fatty liver disease-hepatocellular
carcinoma

Ferroptosis

Ferroptosis is a non-apoptosis with a completely different
morphology. Condensation of the cell membrane without
affecting membrane integrity, blistering of the plasma
membrane, increased density of the mitochondrial membrane,
reduction or disappearance of the mitochondrial crest, and
rupture of the mitochondrial outer membrane are typical
characteristics of ferroptosis (27). It is often accompanied
by complex networks of genes, proteins, and metabolisms
(Figure 1) (16), which means that it is associated with multiple
mechanisms of occurrence. Iron metabolism imbalance, lipid
peroxidation and the System Xc-/GSH/GPx4 axis imbalance
are the “three hallmarks” (28). Iron is well known to have two
different valence states that can undergo redox reactions in vivo.
The ferroptosis-sensitive cellular transferrin receptor 1 (TFR1)
can transports Fe3+ into cells for reduction to Fe2+, which is
stored in the intracellular unstable iron pool in the form of
an iron storage protein complex consisting of a ferritin light
chain polypeptide, and a ferritin heavy chain polypeptide in
the presence of divalent metal ion transport protein 1 (DMT1).
However, when excess free Fe2+ is present in the cell, ferritin is
recruited and solubilized by specific cargo receptor recognition,
and the released excess Fe2+ in turn increases the formation
of hydroxyl radicals through the Fenton reaction, inducing
reactive oxygen species (ROS) production and increased
susceptibility to cellular ferroptosis (29).

Lipid peroxidation is an important factor driving
ferroptosis. Polyunsaturated fatty acids (PUFAs) contain
easily extractable diallyl hydrogen atoms, making it sensitive
to lipid peroxidation and one of the essential elements for
the occurrence of ferroptosis (30). Hydrogen of PUFAs is
acquired by hydroxyl groups to form carbon-centered lipid
atom groups (L-), and O2 reacts rapidly with L- to produce
lipid peroxidation atom groups (LOO-). Lipidomic results
suggest that phosphatidylethanolamine (PE) containing
arachidonic acid (AA) is the key membrane phospholipid
for the occurrence of oxidation-driven ferroptosis (31). Acyl
coenzyme A synthase long chain family member 4 (ACSL4)
and Lys phosphatidylcholine acyltransferase 3 (LPCAT3) are
involved in PE biosynthesis, activating PUFA and forming
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FIGURE 1

Core regulation of ferroptosis (16). The pathways primarily divided into two based on iron metabolism and oxidative stress. CoQ10, coenzyme
Q10; DHODH, dihydroorotate dehydrogenase; FSP1, ferroptosis suppressor protein 1; GSH, glutathione; GPx4, GSH peroxidase 4; GSSG,
oxidized glutathione; Nrf2, nuclear factor erythroid 2-related factor 2; ROS, reactive oxygen species; TFR1, transferrin receptor 1.

PUFA-PE. The loss of ACSL4 and LPCAT3 depletes substrates
for lipid peroxidation and increases inhibition of ferroptosis.
Eventually PUFA-PE further promotes ferritic oxidation
catalyzed by lipoxygenase (LOX) (32).

System Xc- is a heterodimeric cell surface amino acid reverse
transmitter. Extracellular cystine will be transported into cell
and reduced to cysteine for the synthesis of glutathione (GSH)
(33). GSH is the major antioxidant in mammals and is a cofactor
of GPx4. If the level of GSH is compromised by System Xc-, ROS
will accumulate and ferroptosis will be initiated by GPx4 with
reduced activity (34).

In addition to the above typical pathways that regulate
cellular susceptibility to ferroptosis, several others also play
a role. P53 is a tumor suppressor gene that inhibits System
Xc- uptake by downregulating SLC7A11, affecting GPx4
activity and ultimately inducing ferroptosis (35). Nuclear
factor erythroid-2-related factor-2 (Nrf2) is an important
antioxidant regulator that promotes the HO-1, GSH, and GPx4
expression in the downstream, eliminates ROS accumulation
in the liver, and reduces malondialdehyde (MDA) levels
(36). Meanwhile, protein genes responsible for encoding GSH
synthesis, such as SLC7A11, GCLC/GLCM, and GSS are all
target genes of Nrf2 (37). The latest research has found
that dihydroorotate dehydrogenase (DHODH) in mitochondria
can regulate ferroptosis through a GSH-independent pathway,
which provides a new idea for precise targeted regulation of
ferroptosis (38). Therefore, the pathways regulating ferroptosis
susceptibility are more abundant and are considered to have

important implications in the pathogenesis, treatment or drug
development, and specific studies may be more beneficial for its
comprehensive understanding.

Ferroptosis in non-alcoholic fatty liver
disease/non-alcoholic fatty liver
disease-hepatocellular carcinoma

Metabolic changes and hepatocyte lip toxicity caused by the
ectopic accumulation of free fatty acids (FFAs) in the liver are
considered to be the principal causes of liver injury in patients
with NAFLD (39). However, the mechanisms that drive simple
steatosis to NASH, fibrosis and even cirrhosis and HCC are still
not fully understood. Whereas the liver is an important organ
for iron storage, and the content of iron and lipid ROS in the
dysfunctional liver are significantly increased. Serum ferritin is
usually showing a high level in patients with NAFLD, which
is associated with intrahepatic iron accumulation (40). Insulin
resistance is one of the key causative factors of NAFLD, and iron
accumulation in the body can also interfere with the function
of Islet β Cells, affecting insulin synthesis and secretion, and
resulting in insulin resistance (41, 42). Various results suggest
that iron metabolism and lipid peroxidation, as the main links
in ferroptosis, are closely related to the pathogenesis of NAFLD.

Notably, as researches continue, it has been found that
ferroptosis in the different stages of NAFLD may variable.
Early results suggested that in addition to iron, levels of the
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lipid peroxide MDA, 4-NHE, are simultaneously elevated in
NAFLD patients (43). Vitamin E, the ferroptosis inhibitor,
can reduce lipid peroxidation and improves liver injury (44).
Subsequently, Tsurusaki et al. reported that ferroptosis in
hepatocytes and intrahepatic macrophages may be the incentive
for early simple steatosis and the progression from NAFLD
toward to NASH: hepatocyte ferroptosis precedes apoptosis
during the initial stages of NAFLD in model mice, leading
to liver damage, immune cell infiltration, and inflammatory
response (19). Contrastingly, ferroptosis inhibition results in
reduced liver injury inflammatory and lipid peroxidation (19).
This report provides the first clear insight into the relationship
between ferroptosis and NAFLD, and contrasts the differences
among hepatocyte ferroptosis, apoptosis and necrosis. Li et al.
found that AA metabolism enhanced lipid ROS accumulation,
and key regulatory factors of iron metabolism significantly
were increased in MCD-induced NASH mice (21). However,
these changes occurred after administration of a ferroptosis
inhibitor, ferrostatin-1 (21). Increased Fe2+ and AA may act
jointly to promote lipid peroxidation and NASH. Excessive
Fe2+ impairs the function of pancreatic β cells and liver
cells through oxidative stress and mitochondrial injury, leading
to insulin resistance and affecting NAFLD development (41).
Other studies have shown that ferroptosis may exacerbate
the early inflammatory, oxidative stress, and cell damage in
NASH (45). Further progression of NASH can lead to the
development of liver fibrosis in patients. The key to the
development of liver fibrosis is the activation of hepatic
stellate cells (HSC). And HSCs are abundant in iron. Induce
activation of HSCs promotes the accumulation of Fe2+, elevates
ROS levels, and leads to ferroptosis (46). In addition, HSCs
contain the ferroptosis regulator P53, ELAV-like protein 1
(ELAV1) and zinc finger monoprotein 36 (ZFP), which have
been reported to be effective targets for fibrosis prevention
(47, 48). As previously mentioned, P53 inhibits SLC7A11 and
reduces GPx4 activity, leading to ferroptosis in HSC. The p62-
kelch-like ECH associated protein 1 (Keap1)- Nrf2 antioxidant
signaling pathway is more frequently engaged in HCC, which
is also involved in the regulation of ferroptosis. Inhibition or
knockdown of Nrf2 enhanced erastin- or sorafenib-induced
ferroptosis in HCC in vitro and in vivo (49). Non-coding RNAs
(ncRNAs) are responsible for the regulation of tumorigenesis
through various biological processes. Among them, microRNA
(miRNA) regulates GSH, Fe levels, Nrf2 and ROS to regulate
ferroptosis and inhibit cancer development (50, 51). LncRNAs
mainly act as the regulatory factors of transcription factors
in the nucleus or as miRNAs of sponges in the cytoplasm to
regulate ferroptosis (52). In conclusion, ferroptosis is pivotal
in the occurrence and progression of the NAFLD disease
spectrum. However, unlike the early two stages, the promotion
of cellular ferroptosis may be beneficial for liver fibrosis and
HCC. This may also be a perspective to distinguish the
severity of NAFLD.

Intervention effects of herbs or
herbal extracts in regulating
ferroptosis on non-alcoholic fatty
liver disease

Currently, there is no agreed standard or definitive effective
drugs for the treatment of NAFLD. The commonly used
chemotherapeutic drug sorafenib is resistant to treatment in
patients with advanced HCC. Therefore, the search for more
effective new drugs has become an urgent task. TCM occupies
an equally important position as Western medicine in health
management and disease treatment, and even numerous of
clinical cases have proven to be superior in treatment of
certain diseases (53–56). TCM is the natural treasure trove
of compounds with a wide range of sources, a great deal of
active ingredients, and the stability of structure (57). TCM
intervention in ferroptosis has certain efficacy and value.
For example, artemisinin and piperine amide are believed
to exert effective mechanisms of anti-cancer by interfering
ferroptosis in HCC, pancreatic cancer and other tumor
diseases (58, 59). Baicalein is also a natural inhibitor of
ferroptosis, weakening lipid peroxidation and ROS production
and protecting cells of acute lymphoblastic leukemia induced by
RSL3 from ferroptosis (60). Herbs or compounds and derived
compounds or extracts have a certain ameliorating effect on
NAFLD based on antioxidants, lipid metabolism and intestinal
microbiota regulation (61). Therefore, TCM can intervene with
NAFLD (Figure 2) or NAFLD-HCC by regulating ferroptosis
(Table 1 and Figure 3).

Monomers

Dehydroabietic acid
Dehydroabietic acid (DAA) is a natural diterpenoid resin

acid, which is primarily obtained by catalytic disproportionation
of rosin abietic acid (62). It is stable in nature and has the
properties of anti-tumor (63) and anti-inflammatory (64). DAA
alleviates insulin resistance and weakens hepatic steatosis and
lipid accumulation through activation of PPAR-γ and PPAR-
α in high-fat diet (HFD) model mice, leading to reducing
hepatic function (65). Further studies revealed that DAA
was able to bind to Keap1 in the cytoplasm and increase
the luciferase activity of Nrf2-antioxidant reactive element
(ARE), promoting the expression of downstream antioxidant
gene hame oxygenase-1 (HO-1), GSH, and GPx4 through the
Keap1/Nrf2 pathway, while DAA treatment results in achieving
attenuation of ROS and lipid peroxidation (36). Importantly,
Nrf2 is a necessary transcription factor that regulates the
cellular oxidative stress reaction and also controls Fe2+, which
is manifested as an inhibition of ferroptosis (27, 66). HO-1,
an important source of intracellular iron, plays a key role in
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FIGURE 2

Major molecules, genes, and metabolic networks for ferroptosis involved in NAFLD interfering by traditional Chinese medicine. Keap1, kelch like
ECH associated protein 1; Nrf2-ARE, nuclear factor erythroid-2-related factor-2-antioxidant reactive element; TFR1, transferrin receptor 1;
IREB2, iron-responsive element binding protein 2; FTH1, ferritin heavy chain; HO-1, hame oxygenase-1; GSH, glutathione; GPx4, GSH
peroxidase 4; ROS, reactive oxygen species.

TABLE 1 Intervention effects of TCM in regulating ferroptosis on NAFLD.

TCM Function Stage in NAFLD References

DAA Activates Nrf2, leading to reducing lipid peroxidation Simple steatosis and NASH (36, 65, 67)

GB Activates Nrf2, leading to reducing lipid peroxidation Simple steatosis and NASH (70, 71)

Que Targets Mitochondrial ROS-Mediated Ferroptosis Simple steatosis and NASH, HCC (75–79)

EGCG Inhibits system Xc− , for preventing GSH consumption, GPx4 inactivation and lipid peroxidation NASH (83–85)

DLT Increases Fe2+ accumulation, promoting ubiquitination of the IREB2 protein and suppressing
expression of FTH1

Simple steatosis and NASH (90)

DHA Decreases the expression of GPx4, inducing HSC ferroptosis; Activates the anti-survival UPR and
upregulates CHAC1 expression

Fibrosis, HCC (93–95)

ART Inhibits ubiquitination of IRP2, promoting its accumulation for HSC ferroptosis Fibrosis (46)

Artesunate Activates HSC ferritinophagy/ferroptosis; Acts synergistically with sorafenib Fibrosis, HCC (96, 97)

ART, Artemether; CHAC1, Chac glutathione-specific γ-glutamylcyclo-transferase 1; DAA, Dehydroabietic acid; DHA, dihydroartemisinin; DLT, Danlou tablet; EGCG, Epigallocatechin
Gallate; FTH1, ferritin heavy chain; GB, Ginkgolide B; HCC, hepatocellular carcinoma; HSC, hepatic stellate cell; Que, Quercetin; Nrf2, nuclear factor erythroid-2-related factor-
2; ROS, reactive oxygen species; GSH, glutathione; GPx4, glutathione peroxidase; IREB2, iron-responsive element-binding protein 2; IRP2, iron regulatory protein; UPR, unfolded
protein response.

ferroptosis induced by erastin (67). At the same time, DAA
increased the expression of key genes of ferroptosis such as
ferroptosis suppressor protein 1 (FSP1) in vivo and in vitro (36).
Therefore, it is believed that DAA inhibits ferroptosis through
activation of the Keap1/Nrf2 pathway and is a potentially
effective means of treating NAFLD. One shortcoming, however,
is that these studies did not compare DAA with ferroptosis
inhibitors. If available, the credibility of DAA modulation of
ferroptosis to improve NAFLD would be increased.

Ginkgolide B
Ginkgolide B (GB) belongs to terpene trilactones and is the

main active ingredient in Ginkgo biloba leaf extract (68). Like

DAA, the effect of anti-inflammatory function by GB is well
known (69). Application of GB for treatment of HFD-induced
obese mice reduced the body weight and triglyceride (TG) levels
and improved steatosis in the liver (70). To verify whether the
protective effect of GB on steatosis hepatocytes is related to
ferroptosis and the underlying molecular mechanisms, Yang
et al. conducted in vivo and in vitro experiments (71). Mice
fed with HFD and HepG2 cells treated by palmitic acid
(PA) oleic acid (OA) exhibited significant reduction in Fe2+

concentrations and obvious increase in Fe3+ concentrations,
and both showed changes in combinations of biomarkers based
on ferroptosis, such as the upregulation of TFR1, and the
inhibition of Nrf2 expression (71). The reversal effect was
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FIGURE 3

Summary of herbs or herbal extracts modulating the disease spectrum of NAFLD. NAFL, non-alcoholic fatty liver; NASH, non-alcoholic
steatohepatitis; HCC, hepatocellular carcinoma.

evident after GB administration, with a clear promotion in
the expression of Nrf2, which facilitated iron metabolism and
inhibited oxidative stress in the liver (71). And the effect of
high concentrations of GB approximated that of the positive
control drug atorvastatin, an ferroptosis inhibitor. TFR1, as
an ferroptosis sensitive protein, also plays a crucial role in
hepatic iron metabolism. It can be found that GB and DAA
have similarities in the pathways related to the regulation of
ferroptosis, both of which may mobilize downstream genes by
influencing Nrf2 activity, and finally exert the role of anti-
ferroptosis, while achieving a balance of iron metabolism and
lipid peroxidation.

Quercetin
Quercetin (Que) is a polyhydroxy flavonoid widely

distributed in fruits, vegetables, and the root, leave or fruit from
medicinal plants. The antioxidant activity of Que is excellent,
and the phenolic hydroxyl groups rich in its structure can
inactivate free radicals by providing active hydrogen while
being oxidized to a more stable form of free radicals themselves
(72). In addition, Que is a natural iron chelator. Its B ring
displays the catechol portion and multiple free hydroxyl groups
that drive the reduction of Fe3+ to Fe2+ (73); and at pH 7.2,
quercetin completely blocks the iron-promoted Fenton reaction
at the micromolar level (74). This is an effective strategy to

prevent excess iron-induced oxidative stress, which means
that chelation with Fe2+ is the key to the antioxidant activity
of Que. And it is oxidative stress that plays a crucial role in
the pathogenesis of NAFLD. Zhu et al. found that Que intake
resulted in a 39% reduction in hepatic TG content and a 1.5-fold
increase in VLDL in HFD-induced NAFLD rats (75). Yang
et al. applied Que in NAFLD model in vivo and vitro and
showed a significant decrease in serum transaminase levels,
a recovery for liver superoxide dismutase, catalase and GSH
levels, and a relieve in lipid accumulation (76). In a randomized,
double-blind and controlled trial, 90 patients supplemented
with Que twice daily for 12 weeks showed significantly higher
erythrocyte levels but evidently lower mean erythrocyte volume
and hemoglobin, as well as ferritin compared to controls
(77). It was suggested that Que exhibits potent in animal
models hepatoprotective effect and also beneficial for some
NAFLD-related biomarkers in clinical patients. Recently,
Jiang et al. found that lipid peroxidation, lipid accumulation
and ferroptosis induced by HFD could be alleviated via Que
supplementation in mice. Next, Que was found to markedly
depress mitochondrial ROS production in FFA-treated L-02
cells, with similar effects to Fer-1, an ferroptosis inhibitor (78).
Mitochondrial ROS is a unique property of ferroptosis that
distinguishes it from other types of PCD, and chelation of
Fe2+ in the liver by Que reduced hepatocyte lipid peroxidation
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and ROS production. In addition, Que seems to have twofold
properties. It was shown that for HepG2 hepatoma cells it was
able to induce lysosomal activation mediated by transcription
factor TFEB, promote ferritin degradation and eventually
induce ferroptosis (79). However, the specific signaling pathway
by which Que regulates mitochondrial ROS to improve NAFLD
has not been elucidated, and this may be something that could
be explored further.

Epigallocatechin gallate
Epigallocatechin Gallate (EGCG) is the main polyphenol

catechin in green tea, with antioxidant and anti-inflammatory
effects, and is also beneficial in metabolic syndrome and
different types of liver injury (80, 81). These advantages rely
on its unique structure. EGCG has three hydroxyl groups at
carbons 3’, 4’, and 5’ of the B ring and an esterified gallate
portion at carbon 3’ of the C ring, which contributes to its
ability to scavenge free radicals and chelate transition metal ions
(80). Data from multiple in vitro and vivo experiments showed
that EGCG is helpful for improving NAFLD-related fibrosis
and HCC (81). EGCG increases the activity of mitochondrial
complex chains, thus promoting lipid peroxidation to prevent
hepatic steatosis (82). EGCG-treated rat liver showed a decrease
The MDA levels was significantly decrease, while GSH and SOD
levels was clearly elevated in mice treated with EGCG (83),
the antioxidant activity of the liver increased. In recent years,
EGCG was found to be a novel ferroptosis inhibitor, which can
prevent the depletion of GSH, inactivation of GPx4 and lipid
peroxidation by chelating iron ion (84). Ning et al. investigated
the effect of EGCG on NASH by intraperitoneal injection and
gavage, and found that the iron accumulation in the liver of mice
fed by both methods was significantly lower than that of the
NASH group, and the long-chain fatty acid coenzyme ACSBG
expression was increased, with a significant negative correlation
with Bacillus mimicus, a representative lineage organism genus
of the intestinal microbiota (85). ACSBG is necessary in fatty
acid metabolism and ferroptosis pathway, indicating that EGCG
altered the intestinal microbiota and regulated the metabolism
of NASH mice, which in turn improved lipid accumulation
and ferroptosis, so as to prevent the development of NASH.
Therefore, the regulation of EGCG on NAFLD is inseparable
from its efficacy as an ferroptosis inhibitor. It is also worth
noting that humans may experience side effects if they ingest
large amounts of EGCG, so the safe dose range needs to be
considered when applying it.

Compounds

Danlou tablet
Danlou tablet (DLT) are composed of ten Herbs, including

Chuanqiong, Radix Salvia Miltiorrhiza, Trichosanthes, Allium
macrostemon, Pueraria lobata, Paeoniae Rubra, Tulip, Rhizoma

Drynariae, Alismol, and Radix Astragali (86). Among them,
Alismol, Pueraria lobata, and Radix Astragali exhibit the
ability to anti-oxidant stress and anti-inflammatory (87–
89). Ethanol extracts of Danlou tablet (EEDT) can inhibit
inflammation by downregulating the NF-κB single signal and
promote the outflow of cholesterol and lipids by activating the
PPARα/ABCA1 signaling pathway (90). Xin et al. established a
model of NAFLD in HFD ApoE-/- mice to explore whether DLT
mediates the occurrence and development of NAFLD through
the ferroptosis pathway (91). After the DLT intervention,
the Fe2+ levels in liver tissue of mice were significantly
reduced, and the protein and mRNA expression levels of GPx4
and ferritin heavy chain (FTH1) were apparently elevated,
and the cytoplasm was brownish yellow and dark in color
(91). Moreover, the protein and mRNA expressions of iron-
responsive element-binding protein 2 (IREB2) were reduced,
and hepatocyte swelling was lightened, and the number of fat
vacuoles was completely lessened (91). Unlike DAA and GB,
IREB2 is a key indicator of cellular ferroptosis, and increased
Fe2+ can promote ubiquitination of the IREB2 protein and
suppress expression of FTH1. This is sufficient to proof that DLT
targets ferroptosis to inhibit oxidative stress and inflammatory
factor levels to achieve a protective effect on the liver of NAFLD
model mice. The evidence on DLT still appears weak, so more
verifications are necessary.

Artemisinin compounds
Artemisinin is the active ingredient of the dried stems

and leaves of Artemisia annua, a member of the Asteraceae
family, and belongs to the sesquiterpenoids. The derivatives
of it include dihydroartemisinin (DHA), artemether (ART),
artesunate and so on. In addition to anti-malaria, artemisinin
compounds also have various pharmacological effects such as
anti-inflammatory and anti-fibrotic (92). Zhang et al. found
that DHA triggered ferroptosis to eliminate the activation of
HSC, which characterized by iron overload, GSH depletion, lipid
ROS accumulation, and peroxidation, whereas Fer-1 and Lip-
1 inhibited the DHA effect (93). Shen et al. reported similar
results, at the same time, they discovered that DHA attenuates
liver fibrosis by activating autophagy to trigger ferroptosis in
HSC (94). In addition, DHA induced ferroptosis as an antitumor
agent in primary liver cancer (PLC) by activating the anti-
survival unfolded protein response (UPR) and upregulating
Chac GSH –specific γ-glutamylcyclo-transferase 1 (CHAC1)
expression, which was significantly attenuated by Fer-1 and
DFO application after iron loading (95). These reveal a potential
mechanism by which DHA ameliorates liver fibrosis or PLC,
and moreover suggest that ferroptosis is a favorable method
to eliminate activated HSC or PLC cells. ART was detected to
promote the accumulation of iron regulatory protein (IRP2) by
inhibiting its ubiquitination, thus inducing an increase in iron
content, generating a large amount of ROS and leading to the
onset of ferroptosis of HSCs (46). Kong et al. demonstrated
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that artesunate obviously evoked ferroptosis of activated HSC
in fibrotic liver, as characterized by decreased cell viability,
accumulated iron, elevated lipid peroxidation, and diminished
antioxidant capacity. In contrast, the inhibition of DFO almost
abolished the antifibrotic effect induced by artesunate (96).
Artesunate is a clinically well-tolerated compound that acts
synergistically with sorafenib to induce ferroptosis in the HCC
cell lines Huh7, SNU-449, and SNU-182 (97). Thus, artemisinin
compounds have prominent effects as ferroptosis inducers to
hinder HSC activation in the liver fibrosis stage of NAFLD,
resulting in antifibrosis. In addition, all the above results imply
a possible interaction between autophagy and ferroptosis from
another perspective, which deserves to be explored in depth.

Conclusion and perspectives

With the increasing incidence and the wide spread of
complications, NAFLD has become one of the most concerned
chronic liver diseases. The unclear pathogenesis is a major
obstacle to the treatment of NAFLD, and at present, the main
focus is to protect liver with pharmacological, especially TCM.
The core steps of ferroptosis are reflected in the development
of the NAFLD disease spectrum, and the manifestation at
different stages may vary according to the current pathological
features, which also opens a new approach for the study of the
hepatic protective mechanism of TCM. Although studies on
the improvement of NAFLD by intervention of ferroptosis in
herbs or herbal extracts are not well reported yet, these suggest
their strong potential to be used as natural ferroptosis inhibitors.
Compared to classical ones, they have the advantage of being
widely available, less expensive, more stable, and fewer side
effects. In addition to the above mentioned, there are many
studies on the protective effect of liver by herbs or herbal extracts
through the means of anti-lipid peroxidation. Hesperidin has
been shown in in vitro and in vitro experiments to upregulate
antioxidant levels by activating the PI3K/AKT-Nrf2 pathway
and alleviate liver steatosis by inhibiting NF-κB-mediated
inflammation (98). Bicyclic, extracts of Wuweizi, has a wide
range of pharmacological effects that attenuate tetracycline-
induced hepatic steatosis, and hepatic lipid accumulation and
physalide steatosis are ameliorated (99). They are all potential
regulators for ferroptosis, and whether the mechanisms involved
in liver protection are related to the ferroptosis pathway
that ultimately led to the regulation of NAFLD should be
further explored in works. For HCC, several therapies or
drugs have been tried in the clinic, but no breakthroughs have
been achieved, and even some approved drugs later failed to
inhibit tumor growth due to the emergence of drug resistance
mechanisms. Ferroptosis is considered to be the most promising
tumor growth inhibitor that can affect the development and
progression of HCC by regulating intracellular iron levels
and ROS (100). This provides new therapeutic options for

patients with HCC. The research prospect of TCM targeting
ferroptosis is very promising, and although there are some
undeniably limitations and difficulties involved, the meaning
for the prevention and treatment of NAFLD and NAFLD-HCC
is great. For example, ferroptosis is involved in the occurrence
and development of NAFLD and can serve as an independent
predictor of early alterations in NAFLD, as well as a potentially
important target for prevention and treatment in clinical
practice. However, the disadvantage is that most of the current
research focuses on animal models, and there is still less evidence
to prove the mechanism of ferroptosis from the molecular level
or in clinical patients. Whether ferroptosis or other forms of
PCD can be clearly distinguished during the disease for targeted
prevention and treatment is also deserves further exploration.
In addition, Studies on the regulation of ferroptosis by herbs
or herbal extracts at different stages of NAFLD development
to achieve intervention remains inadequate, and the related
mechanisms need to be further explored as well.
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