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Abstract
The relations, rather than the elements, constitute the structure of networks. We therefore develop a systematic approach to 
the analysis of networks, modelled as graphs or hypergraphs, that is based on structural properties of (hyper)edges, instead of 
vertices. For that purpose, we utilize so-called network curvatures. These curvatures quantify the local structural properties 
of (hyper)edges, that is, how, and how well, they are connected to others. In the case of directed networks, they assess the 
input they receive and the output they produce, and relations between them. With those tools, we can investigate biological 
networks. As examples, we apply our methods here to protein–protein interaction, transcriptional regulatory and metabolic 
networks.

Introduction

A central paradigm of structuralism (De Saussure 1972; 
Lévi-Strauss 1958) is the analysis of structural relations 
regardless of the identity of the elements involved. That is, a 
structure is conceived in terms of the relations between ele-
ments. One wants to understand the types of relations, rather 
than the nature of the elements. This paradigm is obviously 
also fundamental for the analysis of empirical networks, be 
they from the biological sciences or other domains. Such 
an analysis then again abstracts from the specific content 
of the elements and concentrates on the formal relations 
between them. In that manner, one can both find universal 
features that hold across a wide range of networks from dif-
ferent domains, and properties that are specific to particular 
empirical domains.

For that purpose, many different measures have been 
developed. Some of these measures, like for instance the 

assortativity (see for instance Newman 2003; Jackson 2008), 
are of a global nature, that is, associate some number to 
the entire network. Such a number is usually an average or 
perhaps, like the diameter of a network, an extremum of 
locally measured quantities. In any case, the basis for such 
global measures is to first develop local measures. For a 
more refined analysis, one can then also look at the statistics 
of those local measures, instead of lumping them together in 
a single number (for instance Piraveenan et al. 2010; Farzam 
et al. 2020 for assortativity).

Some of these local measures require global computa-
tions in the network; for instance, for computing the diam-
eter, one needs to evaluate the distances between any two 
elements. Therefore, some of these measures are difficult to 
evaluate in practice for networks of more than a moderate 
size. Others, including those that we shall concentrate on in 
this contribution, require only local computations and can 
be very easy to evaluate.

Now, somewhat surprisingly in view of the above struc-
turalist paradigm, many of the local measures assign num-
bers to the elements of the network, rather than directly to 
its relations. The most basic one here is the degree of an 
element, the number of relations that it participates in. More 
global measures for instance evaluate the robustness of the 
network in terms of how many or which elements need to 
be eliminated in order to disconnect the network. See, for 
instance, (Newman 2010; Estrada 2012).

In this situation, we and our collaborators have devel-
oped the research paradigm of a relation based analysis 
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of networks (for instance Sreejith et al. 2016; Weber et al. 
2017; Sreejith et al. 2017; Saucan et al. 2018; Samal et al. 
2018; Saucan et al. 2019; Painter et al. 2019; Saucan et al. 
2020; Leal et al. 2020; Farzam et al. 2020. That is, we evalu-
ate relations and associate measures to them whose statistics 
across the network then can provide structural insight.

There is another shortcoming of much of traditional net-
work analysis. It tries to represent all structures as graphs, 
that is, considers only pairwise relations. For instance, a 
relation between three elements is simply broken up into 
three pairwise relations. That may, however, suppress some 
important structural insight. Take the example of scientific 
collaborations. From preprint repositories in the internet, it 
is easy to extract patterns of collaborations from coauthor-
ships between authors. There are some single-author papers, 
but of more interest are those written by several authors. 
There may be more than two authors involved in some paper, 
say A, B, and C. Of course, one could reduce it to pairwise 
relations and say that any two of them are coauthors. But 
there may be more structure. For instance, there may also 
exist a two-author paper by A and B, no such paper between 
A and C, and a paper of B and C with two other authors D 
and E. This is obviously not captured by the pairwise rela-
tions, and for a more adequate model of the structure of 
scientific collaborations, we should rather use a hypergraph 
instead of a simple graph. In a hypergraph, a hyperedge can 
connect any number of elements. See for instance (Berge 
1985; Gallo et al. 1993; Ghoshal et al. 2009; Bretto 2013; 
Joslyn et al. 2020). In computer science, directed hyper-
graphs are also known as Petri nets (Petri 1962; Adam and 
Wolfgang 2008). They were originally proposed by Petri as 
models of chemical reactions. Over the years, while not as 
widely employed as graphs, they have found applications 
in many fields, for instance recently as models of coupled 
dynamics in statistical physics (Mulas et al. 2020; Banerjee 
and Parui 2020; Battiston et al. 2020), of social contagion 
(Ferraz et al. 2020) and for knowledge representation in 
natural language processing (Menezes and Roth 2019).

In this contribution, we shall summarize relation-based 
measures both for graphs, that being the simplest case, and 
for hypergraphs.

The idea of curvatures

The name curvature derives from its origin in differential 
geometry. Originally, curvature was an infinitesimal quan-
tity, obtained by taking second derivatives of functions 
describing shapes of smooth objects, like curves or sur-
faces. In Riemannian geometry, curvatures obtained a deeper 
conceptual significance, as tensors encoding the geometric 
invariants of Riemannian metrics of smooth manifolds (Jost 

2017). In particular, the Ricci tensor is fundamental not only 
in Einstein’s theory of general relativity and in elementary 
particle physics (the Calabi-Yau manifolds of string theory, 
for instance, are characterized by the vanishing of the Ricci 
tensor), but it also permeates much of modern research in 
Riemannian geometry. While Ricci curvature in Riemann-
ian geometry again is computed infinitesimally, by taking 
second derivatives of the metric tensor, it essentially encodes 
local property, like the average divergence of geodesics or 
the growth of the volume of balls as a function of their radii. 
Moreover, Bochner-type identities link it to other important 
geometric quantities, like the first eigenvalue of the Laplace 
operator. See for instance (Bauer et al. 2017) for a survey.

Since such objects and properties are also meaningful 
and important in metric spaces that are more general than 
Riemannian manifolds, alternative definitions of Ricci cur-
vatures have been proposed that are formulated in terms of 
local quantities and no longer depend on taking derivatives. 
Several of these definitions turned to be also meaningful and 
useful for graphs, and we have extended them to hypergraphs 
and are exploring their properties. Here, we shall not recount 
the history in detail, but rather systematically develop a con-
ceptual approach that is in line with the paradigm of struc-
turalism described at the beginning. We only note the curi-
ous fact that these concepts, although extremely natural from 
a structuralist perspective, were not developed directly, but 
inspired by concepts in a different, and more highly devel-
oped branch of mathematics, Riemannian geometry.

How relations connect

Abstractly, there are different types of relations. They can 
vary with respect to the number of elements involved, they 
can be symmetric or directed, that is, distinguish between 
inputs and outputs, and they may also carry weights. The 
simplest case are binary, symmetric and unweighted rela-
tions. Such a web of relations is then modelled by an undi-
rected and unweighted graph whose vertices stand for the 
elements in question and whose edges represent the pres-
ence of a relation between the two vertices they connect. 
For simplicity, we also assume that the graph is simple, that 
is, there is at most one edge between any two vertices, and 
that it is connected, that is, by passing from edge to edge 
we can reach any vertex from any other one, although these 
assumptions are not essential for any of the sequel. So, we 
start with that case.

We want to assess how a relation, that is, an edge of such 
a graph, sits in the web of relations, that is, how it relates 
to other relations. Two edges are called neighbors when 
they share a vertex. We can then already define the simplest 
concept, called Forman–Ricci curvature, because it was 
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introduced by Forman (2003) as an analogy with the Ricci 
curvature of Riemannian geometry (the analogy relates to 
the role it plays in Bochner-type identities). We define the 
degree of an edge e as

and define its Forman–Ricci curvature as

The 2 and the minus sign are somewhat unfortunate for our 
purposes, but they are there because of the analogy with the 
well-established Ricci curvature of Riemannian geometry, 
and they are useful from an abstract geometric perspective.

When the edge e connects the vertices v, w, we can also 
assess their contribution to the number of neighbors of e. 
We let degv(e) be the number of edges that share with e the 
vertex v. Then, obviously,

Instead of the sum of the degrees, we may also consider 
their difference. When the edge is not directed, there is no 
intrinsic structural difference between the two vertices that 
it connects, and so, it is natural to take the absolute value 
of the difference and define the degree difference (Farzam 
et al. 2020) as

Let us interpret the geometric significance of these quan-
tities. ℸ(e) is large when e connects vertices of different 
types, a well-connected one from which many further edges 
emanate, and a less well-connected one from which only 
fewer edges originate. The statistics of this quantity therefore 
quantify to what extent the network is assortative, that is, 
typically connect similar vertices (small ℸ(e) ), or disassorta-
tive, that is, typically connect dissimilar vertices (large ℸ(e) ). 
This is important, for instance, because social networks tend 
to be assortative (Fisher David et al. 2017) (well connected 
people like to link with other well connected people, and 
this further improves their position in social networks). In 
contrast, F(e) is very negative, that is, has a particularly 
large absolute value when both ends of an edge are well 
connected. Such edges may play a very important role in the 
network. In fact, we have found (Samal et al. 2018) that a 
quantity that needs a global computation, edge-betweenness 
centrality (see Newman 2010), is statistically well correlated 
with F(e). This edge-betweenness centrality measures how 
many shortest connections between pairs of vertices in the 
network pass through that particular edge. The computation 
of that quantity is expensive because all shortest connections 
between any two vertices have to be evaluated. In contrast, 
the computation of F(e) is very quick and easy, because only 
local neighborhoods have to be evaluated.

(1)deg(e) ∶= #(neighbors of e),

(2)F(e) ∶= 2 − deg(e).

(3)F(e) = 2 − (degv(e) + degw(e)).

(4)ℸ(e) ∶= | degv(e) − degw(e)|.

Edges with large |F(e)| also play an important role for 
spreading in the network because from its vertices many 
other vertices in the network can be reached in a single step. 
There is one issue here, however. Edges from the two ver-
tices v, w of e may end at the same vertex z, that is, v, w, z 
may form a triangle. In that case, they would not contribute 
to spreading into different directions. Or the endpoint of 
an edge from v and that of an edge from w may be con-
nected themselves by an edge. That is, they form a quad-
rangle together with v and w. Again, that does not really 
constitute spreading into different directions. It is possible 
to address this issue by inserting two-dimensional faces into 
such triangles and perhaps also into quadrangles, and then 
to evaluate the Forman curvature of the resulting simplicial 
or polyhedral complex. Those faces would then increase the 
Forman curvature and make it less negative or even positive. 
See for instance (Saucan et al. 2019).

This aspect is taken care of in a different way by a more 
refined concept of Ricci curvature, the Ollivier–Ricci curva-
ture introduced in Ollivier (2009). For that purpose, consider 
the edge e = (v,w) and let ev = (v, v1) and ew = (w,w1) be 
edges emanating from v and w, respectively. We then define 
their distance w.r.t. e as

where d(v1,w1) denotes the distance between v1 and w1 in the 
network, that is, the minimal edges that have to be traversed 
for getting from v1 to w1 . Let Ev be the set of edges that have 
v as a vertex, and let |Ev| be its cardinality. We then define a 
probability measure �v on the set of all edges E by giving 
each edge ev ∈ Ev the weight 1

|Ev|
 and all edges not in Ev the 

weight 0. We then define the Ollivier–Ricci curvature 
(Ollivier 2009) of the edge e = (v,w) as

where W1 is the 1-Wasserstein distance between �v and �w,

and Π(�v,�w) is the set of measures on E × E that project to 
�v and �w , resp. We thus try to arrange the two collections 
Ev,Ew of edges sharing one of their endpoints with e in an 
optimal manner, that is, that the average distances of the 
arranged pairs become as small as possible. We note that the 
sets Ev and Ew both include the edge e = (v,w) that we are 
evaluating. This convention is only needed to let our defini-
tion agree with that originally proposed in the literature, but 
could otherwise be abandoned, to make the definition more 
natural in the present context.

In order to evaluate (6), we have to optimize the arrange-
ment between the edges in Ev and Ew , to make the trans-
portation cost as small as possible. Since this is a quantity 

(5)de(ev, ew) ∶= d(v1,w1)

(6)O(e) ∶= 1 −W1(�v,�w)

(7)W1(�v,�w) ∶= inf
p∈Π(�v,�w)

∑

(e1,e2)∈E×E

de(e1, e2)p(e1, e2)
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all edges in those two edge sets, it is not necessarily the 
case that an optimal transport plan arranges each edge e1 
in Ev with the edge e0 in Ew closest to it. There might be 
some competition, as there might be other edges e2, e3,… 
for which e0 is closest. But even if there is no such competi-
tion, it might be overall more beneficial to arrange e1 with an 
edge different from e0 . Also, because of the normalization, 
the edges in Ev and Ew have fractional weights, and if the 
cardinalities of the two edge sets are different, also the corre-
sponding weights are different, necessitating an arrangement 
where some part of an edge in Ev is arranged with some part 
of an edge in Ew , and other parts with other ones.

Notwithstanding these complications, let mi be the frac-
tion of edges in Ev that are moved a distance i in some opti-
mal transport plan (such an optimal arrangement need not 
be unique, but that does not matter for our discussion). Then 
(Eidi and Jost 2020)

In particular, moving an edge a distance 1 does not contrib-
ute at all to O(e). (While m1 itself does not appear in (8), 
its computation is nevertheless needed as an intermediate 
step for computing m2 and m3 .) Distance 0, that is, when 
e participates in a triangle, has a positive contribution. A 
pentagon, that is, distance 2, has a negative contribution, but 
not as a negative as the maximal distance, that can occur in 
a transportation plan, which is 3. This simple formula thus 
encodes the essential features of Ollivier–Ricci curvature. 
In fact, we could simply take (8) as the definition of O(e), 
instead of utilizing the more complicated formula (7).

More generally, the Ollivier–Ricci curvature is related to 
the clustering coefficient, that is, the relative frequency of 
triangles in the network (Jost and Liu 2014).

Protein–protein interaction networks

To illustrate an application of these structural measures to 
empirical data, we have studied the protein–protein inter-
action (PPI) networks in human (Luck et al. 2020), with 
8275 nodes and 52,569 edges, and fission yeast S. pombe 
(Vo et al. 2016), with 1306 nodes and 2278 edges. The edges 
in these network represent binary interactions between the 
pair of proteins represented as nodes. These undirected and 
unweighted networks are disconnected with several compo-
nents, however, they both include a giant component. The 
giant component consists of 8152 nodes and 52,036 edges in 
the human PPI network, and of 1306 nodes and 2278 edges 
in fission yeast PPI network. We have computed the For-
man–Ricci curvature, Ollivier–Ricci curvature, and degree 
difference of edges in these networks, and their distributions 
are shown in Fig. 1.

(8)O(e) = m0 − m2 − 2m3.

In the human PPI network, while Ollivier–Ricci curvature 
has a unimodal distribution, the bimodal distribution of For-
man–Ricci curvature in Fig. 1 signals an evident heterogene-
ity in the space of protein–protein interactions in the giant 
component; a major group of interactions are distributed 
around a relatively small-valued mode, and a small group of 
interactions between proteins that are, in average, involved 
in a signficantly larger number of interactions. The degree 
difference distribution indicates that, although the majority 
of interactions are between proteins with relatively similar 
degree, a noticeable proportion of the edges have a consider-
ably large degree difference, which can be as large as 497. 
This observation is in line with the fact that this network is 
moderately disassortative with assortativity value ∼ −0.119.

Unlike the Ollivier–Ricci curvature distribution of the 
human PPI network, the fission yeast PPI network has a tri-
modal distribution of the Ollivier–Ricci curvature, reaching 
its global mode at curvature value 0. In fact, in the PPI net-
work for fission yeast, all three measures have multimodal 
distributions, as demonstrated in Fig. 1. Interestingly, the 
peaks over highly negative values of Forman–Ricci curva-
ture have larger frequencies than those over the moderately 
negative values. A similar phenomenon is observed in the 
degree difference distribution of the fission yeast PPI net-
work. The global degree assortativity of the fission yeast PPI 
network is ∼ −0.237 . This means that the fission yeast PPI 
network is considerably more disassortative than the human 
one, which is explained by the more substantial proportion 
of interactions in fission yeast between proteins with signifi-
cantly different degrees. Thus, we see that the distribution 
of curvature and degree difference values can point us to 
biologically relevant properties of the interaction statistics 
in the PPI networks of different species.

Directed graphs

It is not only the case that the preceding constructions extend 
to directed graphs, but in fact, they become even more natu-
ral in that context. Curvature concepts for directed graphs 
have been systematically developed and evaluated in Saucan 
et al. (2019) (see also see Saucan et al. 2018). Here, we 
shall formulate the concepts in such a manner that they will 
naturally generalize to hypergraphs.

Thus, let e = [v,w] be a directed edge with tail v and head 
w, that is, going from v to w. The input of e at its tail v then 
are all edges that have v as their head; let their number be 
degin(e) . Similarly, degout(e) denotes the number of output 
edges of e, that is, those that have w as their tail. We may 
then put (Leal et al. 2018)

(9)F
→
(e) ∶= 2 − degin(e) − degout(e).
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We could also form alternative expressions by considering 
the numbers of edges that have v as their tail and/or of those 
that have w as their head. Similarly for the next expression, 
the directed degree difference (Farzam et al. 2020)

F
→
(e) now is  very negative,  or  equivalently, 

degin(e) + degout(e) is very large for those edges that receive 
a lot of input and produce a lot of output. ℸ

→
(e) is positive 

(10)ℸ
→
(e) ∶= degout(e) − degin(e).

for those edges that are productive in the sense that they 
produce more output than they receive input, or that lead to 
more diversification. It is negative for edges that are recep-
tive, that is collect more input than emit as output.

Likewise, we can define the Ollivier–Ricci curvature 
O

→
(e) of a directed edge (Eidi and Jost 2020) by computing 

the optimal transportation distance between its input and 
its output. When there are no shorter connections between 
inputs and outputs than those going through e itself, then 
O

→
(e) assumes its smallest possible value −2 . In contrast, 
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Fig. 1   The distribution of (a, b) Forman–Ricci curvature, (c, d) 
degree difference, and (e, f) Ollivier–Ricci curvature in the giant 
components of the binary protein interaction networks in human 
(left) and fission yeast (right), respectively. In each case, protein–pro-
tein interactions are represented via an undirected and unweighted 

graph. The nodes and edges represent proteins and binary interactions 
between them, respectively. The giant component of the human net-
work has 8152 nodes and 52,036 edges, while of the fission yeast net-
work has 1306 nodes and 2278 edges
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when inputs coincide with outputs, that is, if there is a 
directed triangle from a vertex u to itself, where u produces 
both an input of e and receives an output of e, then this 
yields a positive contribution. In fact, formula (8) perfectly 
extends to the directed case.

Let us recall the procedure in detail. For the directed edge 
e[v, w], we define two measures,

The first cases, that is, where there are no incoming edges at 
the tail or no outgoing edges at the head, that is, where the 
tail is a source or the head is a sink, represent complications 
that would not arise in the undirected case. As they are eas-
ily handled, we shall mostly ignore them. In any case, both 
measures are normalized to have total mass 1 and thus are 
probability measures. We then define the distance between 
an edge e1 occurring in (11) and an edge e2 occuring in (12) 
as

We then put again

where W1 now is the 1-Wasserstein distance between �in and 
�out,

and Π(�in,�out) is the set of measures on E × E that project 
to �in and �out , respectively. E here is the set of directed 
edges of the directed graph under consideration. We again 
have the important formula (Eidi and Jost 2020)

where mi is the number of edges that have to be transported 
by the distance i in an optimal transport plan. Again, for two 
given edges in the in- and output of e, that distance might be 
larger than the distance (13).

Thus, the directed curvature notions evaluate flows 
through edges. As in Saucan et al. (2019), we may also 
evaluate flows through vertices by taking the difference 
between the sum of the Ricci curvatures of the incoming 

(11)

{
if e has no incoming edges: �in(e) = 1

if e has n1 incoming edges: �in(e1) =
1

n1
for each incoming edge

(12)

{
if e has no outgoing edges: �out(e) = 1

if e has n2 outgoing edges: �out(e2) =
1

n2
for each outgoing edge

and �in(e
�) = �out(e

�) = 0 for all edges e� not occurring in those formulae.

(13)

de(e1, e2) =minimal number of edges needed to get from the tail of e1

to the head of e2.

(14)O
→
(e)

→
∶= 1 −W1(�in,�out)

(15)W1(�in,�out) ∶= inf
p∈Π(�in,�out)

∑

(e1,e2)∈E×E

de(e1, e2)p(e1, e2)

(16)O
→
(e) = m0 − m2 − 2m3,

edges and that for the outgoing edges. Moreover, in Saucan 
et al. (2019), also notions of augmented Forman curva-
ture were developed for directed networks. Augmentation 
means that one inserts two-dimensional faces into trian-
gles of edges. Such triangles then increase the curvature, 
and thereby decrease the difference between Forman and 
Ollivier type curvatures. Here, however, we do not explore 
that direction.

Transcriptional regulatory networks

To illustrate an application to directed networks, we have 
studied the transcriptional regulatory network (TRN) of the 
important human pathogen Mycobacterium tuberculosis 
(Minch et al. 2015), with 2547 nodes and 6581 edges. The 
M. tuberculosis TRN was constructed based on ChIP-seq 
data for 143 transcription factors (TFs) (Minch et al. 2015). 
In this directed and unweighted network, each directed edge 
signifies the regulatory control by a TF of a target gene. 
In other words, the source nodes in this directed network 
are TFs while target nodes are target genes. In Fig. 2, we 
show the distribution of the Forman–Ricci curvature, 
Ollivier–Ricci curvature and degree difference of directed 
edges in the M. tuberculosis TRN. In Fig. 2a, it is seen that 
the edges are densely concentrated around Forman–Ricci 
curvature value 0, and this indicates that the majority of 
the edges have a tail vertex with small indegree and a head 
vertex with small outdegree. Likewise, most edges have zero 
or small value of directed degree difference, and this indi-
cates that the indegree of the tail vertex and the outdegree 
of the head vertex for most edges are rather similar. There 
are also 24 vertices with outdegree greater than 100, which 
can explain the long tail in both Forman–Ricci curvature and 
degree difference distributions in Fig. 2. On the other hand, 
the Ollivier–Ricci curvature of the edges in this TRN has a 
multimodal distribution, with major peaks corresponding to 
curvature values 0, −1 , −0.5 , and −0.75.

Weighted graphs

The extension of all discussed concepts to weighted graphs 
is straightforward. One simply counts each edge with its 
weight. It is therefore not necessary to develop the details 
here.
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Hypergraphs

The preceding concepts are set up in such a manner that 
they naturally extend to hypergraphs. We directly consider 
directed hypergraphs. A directed hypergraph may have sev-
eral nodes through which it receives inputs and several nodes 
through which it produces outputs. An important example 
is a chemical reaction whose input nodes are called educts 
and whose output nodes products. In a chemical reaction, 
there may exist catalyzers, that is, substances that increase 
the rate of a reaction without being modified by it. Formally, 
they should be counted as both input and output nodes. That 
is, the two subsets of the nodes of a directed hypergraph, its 
input and output nodes, need not be disjoint. That will not 
constitute a problem for the formal concepts to be devel-
oped (see, for instance, (Leal et al. 2020) for a discussion of 
directed hyperloops and their curvature).

A directed hypergraph H = (V ,E) consists of a set V of 
nodes or vertices and a set E of ordered pairs of subsets 
of V, not both of them being empty, called hyperedges. 
For a hyperedge e = (e1, e2) ∈ E , e1 ⊂ V  is the head of e, 
and e2 ⊂ V  is its tail. We let |f| be the number of vertices 
in f ⊂ V  . We let degin(e) of a hyperedge be the number of 
hyperedges that have an input node of e as their head, and 
degout(e) the number of hyperedges that have an output node 
of e as their tail. Since an input edge might connect to more 
than one input node of e, input hyperedges are counted with 

the number of input nodes of e that they connect to, and 
analogously for output edges. As in (9), we then define the 
Forman–Ricci curvature of a hyperedge e = (e1, e2) as (Leal 
et al. 2018)

(For a different definition of the Forman–Ricci curvature of 
a directed hypergraph, see Saucan and Weber 2018.) Thus, 
here we count the number of inputs received through input 
nodes and the number of outputs produced at output nodes. 
As in Leal et al. (2018), one can also define different types of 
Forman–Ricci curvature of a directed hyperedge by arrang-
ing inputs and outputs differently.

Similarly, as in (10), we can put

Following (Eidi and Jost 2020), we can also define the 
Ollivier–Ricci curvature of a directed hyperedge via the 
Wasserstein distance between two probability measures 
associated to a directed hyperedge. As in (11) and (12), we 
need to define the corresponding measures �in,�out . In (11) 
and (12), the principle that was that the total measure 1 is 
evenly split among the inputs or the outputs, resp., unless we 
had a source or a sink. Now, there are more demands for 
splitting. A directed hyperedge may in general have more 
than one tail or head node, and at each of them, several 

(17)F
→
(e) = |e1| + |e2| − degin(e) − degout(e).

(18)ℸ
→
(e) ∶= degout(e) − degin(e).
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Fig. 2   The distribution of (a) Forman–Ricci curvature, (b) degree 
difference, and (c) Ollivier–Ricci curvature in the transcriptional 
regulatory network of Mycobacterium tuberculosis. There are 6581 

unweighted directed edges and 2547 unweighted nodes. The source 
in each directed edge is a transcription factor (TF) and the target is a 
target gene controled by the TF
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incoming resp. outgoing hyperedges might be found, and 
each them may again have more than one tail or head. The 
principle then is to split the available measure at each step 
evenly among all the possible recipients. We shall explain 
the resulting splitting procedure for �in as the one for �out is 
analogous. Let the tail e1 of the hyperedge e = (e1, e2) have 
�in elements. A source, that is, an element of e1 without 
incoming hyperedges, gets the weight �in(v) =

1

�in
 . To handle 

the others, we define the set M of masses of e = (e1, e2) as 
the union of the tails of hyperedges that come in at an ele-
ment w ∈ e1 , that is, have w in their head set. We then first 
divide the measure 1

�in
 that we can distribute at such a w 

evenly among all those incoming hyperedges, and for each 
such hyperedge, we divide the measure associated with it in 
that manner evenly in its tail. In that manner, we assign a 
measure to every element in M . Thus, we have distributed 
the total measure 1 among the sources and the masses of our 
hyperedge. This yields �in , and as mentioned, �out is con-
structed analogously by assigning measures to the sinks, that 
is, those members of e2 and the holes, that is, the heads of 
hyperedges that have an element of e2 in their tail set. The 
(directed) distance d(u, v) between a mass u and a hole v of 
a hyperedge e = (e1, e2) is defined as the minimal number of 
directed hyperedges connecting them. Again, it is at most 3, 
and this value is attained if u → e1 , e2 → v and there is no 
shorter way to move from u to v than to go through e. It is 0 
when u = v is at the same time a mass and a hole of e, and it 
is 1 if u is an input of a hyperedge and v is an output. Again, 
formally, we want to solve an optimal transport problem for 
moving the first probability measure to the second one. We 
thus minimize

over the set of all matrices E (transport plans) whose entries 
E(u, v) represent the amount of mass from �M(u) moved 
from vertex u to vertex v.

If m� is the amount of mass that is moved at distance � in 
an optimal transport plan, the directed Ollivier–Ricci curva-
ture of e is defined as in (12) and becomes again as in (13)

It is bounded above by 1. This is reached when m0 = 1 , i.e., 
when each mass coincides with a hole of the same size. It 
is bounded below by −2 , reached when m3 = 1 , i.e., when 
there are no shortcuts available and each mass has to be 
moved through e to reach a hole. Again, (20) can be taken 
as the definition of O

→
(e) . While it depends on identifying 

an optimal transport plan, the formula as such is obviously 
very simple. For applications, see (Leal et al. 2019).

For instance, we can consider the red hyperedge in 
Fig. 3. Bullets represent vertices. The green bullet in the 

(19)
∑

u→ei

∑

ej→v

d(u, v)E(u, v)

(20)O
→
(e) = m0 − m2 − 2m3.

left is a source since it has no incoming hyperedge while 
the blue bullet in the right is a sink since it has not outgo-
ing hyperedges. For representing masses and holes we use 
triangles and squares, respectively. As the red hyperedge 
has two vertices in its tail set and each of them has at most 
one vertex as an incoming neighbour, the size of the masses 
is 1/2. In contrast, the sizes of the four holes are different. 
The biggest one is the sink, with mass 1/2. Another hole 
with the size 1/4 is the top middle vertex which already 
got 1/2 of the total mass. The size of the remaining hole 
is 1/4, divided equally among the two vertices in the top 
right of the figure. Thus, both the triangles and the squares 
have total size 1, and the task now is to move the triangles 
to the squares with least total cost. There are two optimal 
plans, leading to the negative curvature value −1∕4 ; in one 
plan, m0 = 1∕4 , m1 = 1∕2 , m2 = 0 and m3 = 1∕4 , while in 
the other m0 = 1∕4 , m1 = 1∕4 , m2 = 1∕2 and m3 = 0 . Note 
that there are also transfer plans with m2 = 1 , and all other 
values 0, but they are not optimal.

These two different curvature notions represent comple-
mentary tools for detecting local geometry and connectivity 
patterns in directed hypergraphs. Forman curvature mono-
tonically decreases with the number of incoming and out-
going neighbours of input and output nodes, resp., and it 
therefore detects hyperedges joining highly connected nodes. 
Ollivier curvature, on the other hand, is controlled by the 
overlap of the set of masses and holes (e.g. directed trian-
gles) and by shortcuts between them (e.g. directed quadran-
gles and pentagons). We illustrate these principles in Fig. 4. 
We want to evaluate the curvatures of the black hyperedge 
in the left and the right figure in various constellations. 
Without any of the colored hyperedges, F

→
(e) = |ei| + |ej| , 

�•�

•
•

•�

• •

�• •�

•�

Fig. 3   The red hyperedge is negatively curved as in an optimal trans-
ference plan, the size of coincident masses (triangles) and holes 
(quadrangles), located on the top middle vertex, is less than the size 
of the masses which need to be moved with distance 2. Also the two 
colored vertices in the left and the right of the figure are a source and 
a sink since they have no incoming resp. outgoing hyperedges
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while O
→
(e) = 0 . When the red edges are present, we get 

F
→
(e) = 0 in both the left and the right figure, whereas 

O
→
(e) is negative in the left case, because there are no short-

cuts, but positive in the right case, when the inputs of the 
tail coincide with the outputs of the head. The presence of 
the blue edges on the right, however, makes a difference for 
F
→
(e) , but not for O

→
(e) , that is, the former, but not the latter 

distinguishes between those cases. In contrast, while F
→
(e) 

does not distinguish between the presence of the blue and 
the green edges in the right figure, O

→
(e) sees the effect, as 

it is more negative in the presence of the green than in that 
of blue edges (the blue edges contribute to m1 , but the green 
ones to m2).

Metabolic networks

Metabolic networks are evocative examples of directed 
hypergraphs, where metabolites react with others to pro-
duce products. Both, reactants, e1 , and products, e2 , typi-
cally contain more than one substance ( |e1| ≥ 1 or |e2| ≥ 1 ) 
and the reactions may not be reversible. This directed rela-
tionship between sets is therefore naturally modelled by a 
directed hyperedge ( e1 → e2 ). Since metabolic networks 
have been extensively studied, they present an ideal set-
ting to illustrate how to use the hypergraph tools described 
here. For this, let us consider the metabolic network of 
Mycobacterium tuberculosis H37Rv (version iNJ661) 

Fig. 4   Illustration of the different connectivity patterns that 
affect F(e) and O(e). Well-connected hyperedges often play 
a key role in a network. Said hyperedges are identified by 
F
→
(e) = |e1| + |e2| − degin(e) − degout(e) , since it decreases 

monotonically with the number of incoming neighbors to the tail 
and outgoing neighbors from the head of e. Nevertheless, F

→
(e) 

is not affected by the presence of arcs from the former to later. 
O

→
(e) = m0 − m2 − 2m3 captures this complementary information. 

On the right, we find directed triangles, which contribute to m0 (black 
and red hyperedges), directed quadrangles to m1 (black and blue 
hyperedges), and directed pentagons to m2 (black and green hyper-
edges). In the figure on the left, the shortest path between any incom-
ing and any outgoing neighbor, is 3. Such a connectivity pattern con-
tributes to m3

Fig. 5   The distribution of a For-
man–Ricci curvature, b degree 
difference, and c Ollivier–Ricci 
curvature in the metabolic 
network of Mycobacterium 
tuberculosis H37Rv, which 
is represented as a directed 
hypergraph with nodes as M. 
tuberculosis metabolites and 
directed hyperedges as chemi-
cal reactions. The network has 
743 nodes and 1195 hyperedge 
edges
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(Duarte et al. 2007) modelled as a directed hypergraph. 
This network contains 939 reactions and 743 metabo-
lites, of which 256 are reversible. Each reversible reac-
tion ( e1 ⇆ e2 ) was divided into two, a forward reaction 
( e1 → e2 ), and its reverse reaction ( e1 ← e2 ). As a result, 
the network contains 1195 directed hyperedges. Most sub-
strates of this metabolic network are consumed or pro-
duced by one reaction only. Also, a few are involved in 
more than half of the reactions ( ∼ 50% require h, h2o, 
atp or nadhp, and ∼ 57% produce h, pi, h2o, adp, 
or co2), the distributions of indegree and outdegree in 
Fig. 6a) summarize this behavior.

Suppose that we want to investigate whether starting 
materials that are produced in several different ways (large 
indegree in e1 ) produce substances that also serve as starting 
materials for many reactions (large outdegree in e2 ), that is, 
whether targets are transformed into key precursors. There 

are two aspects relevant for this question. First, we must find 
out if the network is assortative. Since it is a hypergraph, we 
use the degree difference and its distribution shows that this 
is mostly the case [see Fig. 5b)]. Notoriously, the degree dif-
ference is ∼ 0 for 217 ( ∼ 18% ) reactions. Second, we have 
to locate which of those 217 reactions involve metabolites 
of large degree. For that, instead of looking at the difference 
between out- and indegrees, we need to look at their sum 
and turn to the distribution of F

→
(e) . Figure 5a shows that 

the dominant mode is represented by curvature around zero. 
There are also secondary humps associated with more nega-
tive curvature values. Perhaps the most important reactions, 
however, are those that have very low (negative) curvature 
values, but a degree difference near zero. In fact, the first 
reaction on the list is the fundamental reaction that creates 
the energy storage molecule adenosine triphosphate (ATP), 
e: adp+h+pi → atp+h+h2o, with F

→
(e) = −1347 and 
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Fig. 6   The distribution of a node degree, b sizes of tails and heads, 
(|e1|, |e2|) , c number of masses and holes, (M,H) , and d (F(e), O(e)) 
values in the metabolic network of Mycobacterium tuberculosis 

H37Rv, which is represented as a directed hypergraph with nodes 
as M. tuberculosis metabolites and directed hyperedges as chemical 
reactions. The network has 743 nodes and 1195 hyperedge edges
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ℸ
→
(e) = 1 . Furthermore, the associated mass set M shows 

that there are 400 precursors for the substrates of this reac-
tion, and, based on the set of holes H , there are 464 derived 
metabolites. This pair of values correspond to the upper 
right blue mark in Fig. 6c. Notice that this information is not 
given by node degree. With few exceptions, precursors and 
derivatives are at distances shorter than three, and mostly 
around zero, as shown by O

→
(e) [see Fig. 5c)]. For the reac-

tion discussed here, O
→
(e) = 0.35 and it corresponds to the 

the left most blue mark of Fig. 6d. The preceding already 
illustrates how a combination of the three measures that we 
have developed, F

→
(e),O

→
(e) and ℸ

→
(e) , can reveal the fun-

damental structural properties of specific reactions inside the 
metabolic network. Both evaluating the statistical distribu-
tions of these three quantities and comparing them for dif-
ferent networks, and analyzing those reactions that produce 
particularly prominent values for them in more detail should 
yield deeper insight into the structure of metabolic networks.
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