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Anxiety disorders are more prevalent in women than in men. In women the menstrual

cycle introduces another variable; indeed, some conditions e.g., premenstrual syndrome,

are menstrual cycle specific. Animal models of fear and anxiety, which form the basis for

research into drug treatments, have been developed almost exclusively, using males.

There remains a paucity of work using females and the available literature presents a

confusing picture. One confound is the estrous cycle in females, which some authors

consider, but many do not. Importantly, there are no accepted standardized criteria for

defining cycle phase, which is important given the rapidly changing hormonal profile

during the 4-day cycle of rodents. Moreover, since many behavioral tests that involve

a learning component or that consider extinction of a previously acquired association

require several days to complete; the outcome may depend on the phase of the cycle on

the days of training as well as on test days. In this article we consider responsiveness of

females compared to males in a number of commonly used behavioral tests of anxiety

and fear that were developed in male rodents. We conclude that females perform in a

qualitatively similar manner to males in most tests although there may be sex and strain

differences in sensitivity. Tests based on unconditioned threatening stimuli are significantly

influenced by estrous cycle phase with animals displaying increased responsiveness

in the late diestrus phase of the cycle (similar to the premenstrual phase in women).

Tests that utilize conditioned fear paradigms, which involve a learning component appear

to be less impacted by the estrous cycle although sex and cycle-related differences

in responding can still be detected. Ethologically-relevant tests appear to have more

translational value in females. However, even when sex differences in behavior are not

detected, the same outward behavioral response may be mediated by different brain

mechanisms. In order to progress basic research in the field of female psychiatry and

psychopharmacology, there is a pressing need to validate and standardize experimental

protocols for using female animal models of anxiety-related states.

Keywords: anxiety, female, animal models, estrous cycle, conflict, unconditioned fear, conditioned fear, sex

differences

INTRODUCTION

It is well-established that the prevalence of psychiatric disorders encompassing anxiety-related
pathologies is much higher in women than in men (1–3). Women are also likely to experience
more adverse reactions to some psychoactive drugs than men (4). The menstrual cycle is another
significant influence on psychiatric pathology. For example, a perimenstrual exacerbation of
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symptoms has been reported in women diagnosed with a
psychotic disorder; admissions to psychiatric hospital are
more common during the peri-menstrual relative to non-
peri-menstrual phase of the cycle (5). Some anxiety-related
disease states in women are menstrual cycle specific e.g.,
premenstrual syndrome/premenstrual dysphoric disorder, or
feature a worsening of symptoms in the premenstrual phase e.g.,
panic disorder (6).

Given the clinical finding, it is perhaps surprising that
animal models of fear and anxiety, which form the basis
for research into drug treatments for humans, have been
developed almost exclusively, using males. The sex bias in
neuroscience and biomedical research is startling. A survey
in 2007 comparing studies of behavioral pharmacology using
rats and mice published in 5 reputable journals revealed that
more than 80% used only male models (7). Ten years later the
situation had hardly changed (7) despite the requirement by NIH
and an increasing number of grant awarding bodies worldwide
for consideration of sex differences in research proposals (8).
Although the situation is now improving, there still remains a
paucity of work using females and the available literature on sex
differences presents a confusing picture.

Much of the reticence toward working on female animal
models stems from the perceived difficulties and variability
introduced by the cyclical variation of female sex hormones
during the estrous cycle. Since steroid hormone molecules are
generally lipophilic, they pass readily through the blood-brain
barrier so that the female brain functions in a constantly
changing chemical milieu. It should be mentioned that sex
hormones may also impact on male behavior, although this is
invariably neglected in studies using males for screening of drugs
or to unveil the neural/chemical bases of psychopathalogies.
Testosterone for example, which influencesmale dominance, also
has a positive effect on the emission of stress-induced 22-kHz
calls (9).

To overcome the source of hormonal variability in females,
one strategy has been to ovariectomise animals, thereby
stabilizing hormone levels. Against a stable baseline, exogenous
hormones can be added back in a controlled manner to study
their effects on brain circuitry and behavior. This approach has
merit in that it has revealed much important information about
the cellular actions of different neuroactive steroid hormones
at genomic (nuclear) and non-genomic (membrane) levels (10),
as well as the impact of artificial manipulation of hormones
on behavior. But by its very nature, neutering removes the
essence of what it is to be female. The plummeting hormone
levels following the procedure may trigger adverse behavioral
changes. Ovariectomy can precipitate anxiety- and depressive-
like behaviors in female rats (11, 12). Indeed, in young, i.e., pre-
menopausal women, hormone replacement therapy is offered
following surgical hysterectomy and/or oophorectomy, precisely
to prevent the development of adverse emotional states and
cognitive decline (13).

There is mounting evidence that responsiveness to drugs
with anxiolytic effects, including alcohol, can vary during the
estrous cycle (14–19). An understanding of the changes in brain
neurochemistry during the estrous cycle is therefore fundamental

to the development of targeted pharmacological treatments for
women. Consideration of estrous cycle-linked effects on behavior
must not be overlooked and should be incorporated into the
design of female animal models of psychiatric pathologies.

Progress toward this goal is however, dependent on the
availability of models that are sensitive to estrous cycle stage.
At present the literature presents a confusing picture. Choice of
behavioral test and strain of rat or mouse as well as differences
in housing environment and experimental protocols are likely
only some of the sources of variability between laboratories. The
lack of universally accepted criteria for staging the estrous cycle
undoubtedly introduces another significant source of variability.

Clinical practice in psychiatry and psychobiology builds on
the use of appropriately relevant and robust animal models (20–
22), never more so than in relation to development of sex-specific
pharmacology for treatment of affective disorders in women. In
this short review we highlight a number of commonly used tests
of anxiety- and fear-related behaviors that were developed and
validated in males. We consider the limited information available
on how females behave in these tests, whether there are sex
differences in responding and in particular, whether the estrous
cycle influences responding in females.

The Estrous Cycle
The estrous cycle in rats and mice, the most commonly used
species for behavioral research, is characterized by a four or
sometimes 5 day long cyclic variation in secretion of ovarian
hormones. The duration of the cycle may be less consistent
in mice, varying from 2 to 8 days (23). During this time the
two major sex hormones: estrogen (17β estradiol in rodents)
and progesterone undergo dramatic out-of-phase fluctuations in
the level of secretion (Figure 1A). Since these lipophilic steroid
molecules pass readily through the blood brain barrier, their
concentration in the plasma is followed by parallel changes in
concentration in the brain where both hormones are neuroactive,
acting on genomic (nuclear) as well as at membrane-bound
receptors, the latter leading to rapid non-genomic effects on
membrane excitability (29).

There are no universally accepted criteria for defining cycle
stage and much confusion arises in the behavioral literature with
respect to estrous cycle stages. Classification of estrous cycle
stage is undoubtedly one of the major factors that contributes
to variability and lack of reproducibility of results obtained
by different laboratories using rodents to model anxiety-related
disorders in women. For behavioral experiments, sampling
plasma hormone levels is not practicable as a routine procedure
to assess gonadal status. However, changes in peripheral
hormone levels are reflected by a changing vaginal cytology as the
reproductive tract is primed to prepare for pregnancy. In non-
mated, single sex-housed females, the cycle can be subdivided
into a number of stages based on vaginal cytology. This provides
a convenient, if imprecise, surrogate for the changing hormonal
profile within the brain.

Samples for cytological evaluation are obtained from the
vaginal wall, either by lavage (flushing the vagina with water
or buffer) or by inserting a probe into the vagina to obtain a
cell sample. Three types of cell can readily be distinguished:
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FIGURE 1 | (A) Plasma concentration of estradiol and progesterone during the 4 day estrous cycle in Sprague Dawley rats. Shaded panels indicate dark period;

broken lines indicate midnight. Approximations of cycle stages are marked by broken lines set arbitrarily at midnight. P, proestrus; E, estrous; ED, early diestrus

(diestrus I); LD, late diestrus (diestrus II). Adapted from Smith and coworkers (24). (B) Photomicrographs show the characteristic cytology of vaginal smears obtained

from rats (25) and mice (26). In rats the cycle stages were classified as proestrus (PRO), estrus (OEST or EST), early diestrus (ED) and late diestrus (LD) whilst in mice

the authors subdivided the diestrus stage into metestrus (MET) and diestrus (DIST). Showing round-nucleated epithelial cells (e), larger, cornified cells (c) and

polymorphonuclear leucocytes with distinctly lobed nuclei (li) or clumped nucleus (liii). Note magnification of mouse smears is lower than for rats but scale bar not

available for mice. (C) Relative proportions of different cell types in vaginal smears at different stages of the estrous cycle in rat and mouse. From Cora et al. (27)

adapted from the Byers and Taft (28) estrous cycle identification tool.

lymphocytes, keratinised squamous cells and leucocytes, the
proportions of which vary throughout the cycle. The reader is
referred to excellent descriptions and illustrations of cell types

(30, 31). During the cycle, four stages of unequal duration:
proestrus, estrus and diestrus, the latter commonly subdivided
into two stages, may be identified according to the appearance
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and relative number of different cell types, with a gradual rather
than step-like transition between stages. For convenience, most
laboratories conduct behavioral experiments during the animal’s
light period, having collected a vaginal smear in the morning of
that day. Typically, in rats proestrus and estrus are assigned a day
each, starting at midnight whilst diestrus, which lasts longer, is
subdivided into two periods termed by different workers early
and late diestrus, diestrus I and II or metestrus and diestrus
(Figure 1A).

Vaginal Cytology and Cycle Stage
Proestrus is readily identified by the presence of nucleated
epithelial cells, which in smears stained with Giemsa or similar
stains, purple nuclei are clearly observed within a blue cytoplasm
(Figures 1B,C). Proestrus typically lasts around 14 h but within
that time widow there are rapid changes in the hormonal
profile. In rats maintained on a 12 h on 12 h off light-dark cycle
(lights on at 06.00 h) used in many laboratories, progesterone
secretion remains very low from midnight (00.00 h on the day
of proestrus) until about 15.00 h in the afternoon when a rapid
spike in secretion starts. Progesterone concentration peaks in
the evening in the early part of the dark phase, then declines
rapidly to basal level by around midnight (00.00 h) (24, 32).
Estradiol, which has been rising gradually over the previous 3
days, reaches peak concentration at aroundmidday (12.00 h), and
then declines, returning to basal level by the late afternoon (24,
32). Thus, mornings are characterized by low progesterone and
high estradiol whereas during the afternoon the surge in secretion
of progesterone leads to the highest concentration achieved
during the cycle, whilst estradiol concentration is declining
rapidly (24, 32). Given the rapidly changing hormonal profile
during proestrus, the timing of behavioral experiments during
the day of proestrus deserves consideration as a potential source
of variability.

In estrus, which lasts 24–48 h the nucleated lymphocytes
characterizing proestrus are replaced by large, keratinised
squamous cells (Figures 1B,C). Secretion of progesterone and
estradiol remain at a low stable level throughout estrus (24, 32).

Diestrus is the longest lasting phase and the source of
the most discrepancies in classification. The diestrus period
is characterized by an abundance of leucocytes in smears
(Figures 1B,C) but the number, appearance and presence of
other cell types and of mucus in the smears varies. As mentioned
above, most workers subdivide diestrus into two phases variously
termed metestrus and diestrus; diestrus I and II, or early and
late diestrus. These terms are not necessarily interchangeable
and precise cytological descriptions of the criteria applied for
classification are essential although regrettably, not available in
all studies. At the beginning of diestrus progesterone secretion
begins a progressive rise, which continues until the early
morning of the second day when secretion terminates abruptly,
precipitating a rapid fall in concentration (Figure 1A). In
contrast, estradiol remains relatively stable during this period
(Figure 1A). Rapid withdrawal from progesterone has been
shown to trigger plasticity of GABAA receptor subtype expression
that leads to significant changes in excitability of brain circuits
associated with anxiety (33–35).

The Estrous Cycle—Mice
Increasingly, mice are being used for behavioral research in
order to capitalize on the availability of an increasing number
of genetically modified strains, which can help in defining the
neurochemistry of emotional behavior. Female mice display
similar, but not identical, changes in vaginal cytology to rats
during their estrous cycle (Figures 1B,C). However, it is much
more difficult to imply a causative link between changing levels
of brain neuroactive steroid hormones and behavior in mice
compared to rats. Diurnal fluctuations in adrenal secretion of
progesterone and its metabolites, which undergo a surge in the
dark period, far outweigh ovarian secretion rates (36). Moreover,
the level of adrenal secretion of progesterone also appears to
be estrous cycle stage dependent (37), unlike in the rat (38).
Metabolism of progesterone in mouse brain also differs from
the rat (39) but perhaps most importantly, the concentrations
of progesterone and its metabolite tetrahydroprogesterone (TH
PROG) in female mouse brain are caused predominantly by
changes in the supply of endogenous brain progesterone (36),
rather than peripheral sources.

Refinements and Alternatives to Vaginal
Cytology
There is a pressing need to standardize classification of estrous
cycle stages to facilitate comparisons between cycle-linked
changes in behavior reported by different laboratories. Several
attempts have been made to develop rapid, objective methods,
particularly for use in mice. These include using non-stained
smear material (27, 40), modifications to staining methods (41)
and application of deep learning technology for classification of
smears (42). Alternatives to vaginal cytology have been proposed
based on gross examination of the vaginal opening (43), changes
in skin temperature due to activation of brown adipose tissue
(44) and variations in vaginal wall impedence (45). To date,
none of the latter methods has been widely adopted and vaginal
cytology remains the gold standard for assessing estrous cycle
stage. Avoidance of handling stress is also an important source
of variability that needs to be considered. Vaginal lavage can lead
to raised plasma corticosterone with associated deficits in spatial
memory (46). In male rats, even the acute stress of handling in
animals not habituated to the procedure, leads to raised brain
concentration of progesterone (47). A similar effect may be
produced in females. In skilled hands however, smear collection is
minimally stressful and the stained smears provide a permanent
record available for objective scrutiny by blinded personnel.
Even so, classification of the diestrus stage remains a source
of confusion between studies. For the purposes of simplicity,
with the caveat that criteria for defining these stages may differ
between laboratories, in this article we will use diestrus I to also
include the phases termed by different authors metestrus, early
diestrus and dietrus 1. Diestrus II encompasses stages termed
late diestrus or diestrus 2. Diestrus refers to studies in which
no distinction has been made between stages. There is clearly a
pressing need for a universally agreed consensus on cytological
criteria for estrous cycle staging to facilitate comparison between
results obtained from different laboratories.
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ANIMAL MODELS OF
ANXIETY—BEHAVIOR OF FEMALES IN
MALE MODELS

The emotional states of fear and anxiety have an adaptive value.
Novel stimuli/situations present a potential threat to the survival
of an individual. In small prey species the most pragmatic
response is usually to escape or alternatively, to become immobile
in order to reduce the risk of being detected. This strategy
becomes maladaptive if it is applied indiscriminately in response
to all novel stimuli since other behaviors essential for survival
such as foraging or finding a mate, will be compromised. Instead,
the animal needs to display a level of vigilance in order to
detect changes in its environment and then to assess the level of
threat and the risk before deciding whether a modification to its
ongoing behavior is appropriate (48).

Behavioral tests in animals that are aimed to elicit fear and
anxiety are broadly based on two tenets: (i) fear operates to move
the animal away from danger. It involves fight/flight/freezing,
and these defensive responses are more commonly evoked
by unambiguous, immediate/proximal threats, such as the
confrontation with a predator (49); (ii) anxiety refers to a
preparatory response to possible future threatening events,
especially in situations where there is conflict between different
goals, such as between avoiding a potential threat and being
attracted to food (50). It can be translated in behaviors such as
risk-assessment, including the scanning of the environment and
hyper-attentiveness to the potential threat, along with disruption
of ongoing behaviors (51).

Animal models of anxiety and fear can be broadly grouped
into two main subclasses: the first involves ethologically
based paradigms based on an animal’s spontaneous or natural
(unconditioned) reactions (e.g., flight, avoidance, freezing, risk-
assessment) to stress stimuli that do not explicitly involve pain
or discomfort but represent a threat to survival (e.g., exposure
to a novel highly illuminated test chamber or to a predator).
The second includes animals’ conditioned responses established
following exposure to stressful and often painful events (eg,
electric footshock) (52, 53).

Below, we consider a number of behavioral tests that were
developed in males, and the available information regarding the
behavior of females in these tests. The findings are summarized
in Table 1.

Tests Based on Unconditioned Threatening
Stimuli
Elevated Mazes

Elevated Plus-Maze

First proposed by Handley and Mithani (54) and further
validated by Pellow et al. (55), the elevated plus maze (EPM)
exploits the natural tendency of rodents to explore novel
environments and their innate avoidance of unprotected and
elevated places (Figure 2).When placed in the center of themaze,
the number of times the animal visits the open arms and the time
spent there reflect the choice the animal makes when balancing
the putative reward offered by exploring its new environment

(entering the open arm) weighed against the potential threat of
danger posed by the new environment.

The EPM is the most widely-used animal model for
investigating the pathophysiological bases of anxiety, as well as
for screening anxiety-modulating drugs and mouse genotypes.
After nearly 40 years of use, with nearly 8700 publications listed
as ofMay 2021 (PubMed, NIHNational Library ofMedicine), the
EPM remains the gold standard against which other behavioral
tests for anxiety are measured, at least in males (52, 56, 57).
Even so, some have expressed reservations about the use of the
EPM (20).

Despite its widespread use, relatively few studies have
considered sex differences in responding, or the effect of the
estrous cycle in females. The consensus based on the limited
literature available, is that adult female rats behave in a
qualitatively similar manner to males in the EPM but display
overall lower levels of anxiety (58–61). Sex differences were not
however, observed in young adult mice (C57BL/6NIA strain)
although interestingly, aged females were found to be more
anxious than males (62, 63).

Once the estrous cycle is taken into account, the picture starts
to become less clear. In rats, some investigators report reduced
anxiety levels (i.e., a more time spent in the open arms of the
maze) in proestrus/estrus compared to diestrus (16–18, 40, 64–
70) whereas others fail to see estrous cycle-linked effects at all
(16, 19, 61, 71–73). However, not all workers compare all stages
of the cycle and in some cases results from two stages of the
cycle have been pooled, which makes direct comparison between
studies difficult.

The results from studies in mice paint a similarly confusing
picture. Some studies report that mice in proestrus show more
open arm entries and spend a longer time on the open arm of the
EPM than diestrus females or males (66, 68, 74, 75) whilst others
found that mice in estrus spent longer on the open arm than
mice in diestrus (76) and yet others were unable to detect any
difference in performance between mice in estrus and diestrus
I (defined as receptive stages) and diestrus II and proestrus
(defined as non-receptive stages) (23).

In males, many factors have been identified that can
influence responding and potentially lead to inconsistencies
between results from different laboratories due tomethodological
differences. The importance of recognizing and carefully
controlling testing conditions, particularly light level, has been
highlighted (73, 77, 78). The age of the rat, circadian phase and
light illumination level during testing have all been reported to
influence the behavior of males (77, 79–84) but see (85) for an
opposing view.

Responsiveness of females has not been subjected to the same
level of scrutiny. There is however, some evidence that strain
(particularly in mice), light level and circadian phase may affect
responsiveness (26, 65, 86).

In terms of assessing influence of the estrous cycle, the
difficulties in making comparisons between results obtained
from different laboratories are further compounded by the fact
that in many cases, only two stages of the cycle have been
compared, typically proestrus and diestrus (not subdivided into
the substages), whilst in other studies data from two phases
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TABLE 1 | Sex and estrous cycle effects on fear/anxiety in commonly used behavioral tests in rats and mice.

Test Species Sex differences Estrous cycle

M>F F>M M=F No effect Diest>Pro/Est

Unconditioned threat

Elevated plus maze Rat 61–63 9,63, 73–5 18,40,66–72

Mouse 64,65 23 68,70,76-8

Elevated T—maze

Inhibitory avoidance Rat 97 94,95,96 96 94

Mouse

Escape Rat 94–96

Mouse

Open field Rat 62,101–104 60,63 107,109 68,109

Mouse 105 32,108 32,70

Light-dark test Rat 118-124 18,145–6

Mouse

22kH USV

Mild restraint Rat 154 154

Mouse

Air puff Rat 9,156 154

Mouse

Predator Rat 150

Mouse

Acute hypoxia Rat 178a

Mouse

Prey-Predator Rat 184 149,183 185 186

Mouse

Conditioned threat

Vogel conflict Rat 61,194–6 194

Mouse 197

Conditioned fear Rat 211 154,204–5, 213

Mouse

Fear potentiated startle Rat 200–3 209 154,204–7

Mouse 208 107–8 212

Fear extinction Rat 210 206,212–3

Mouse 215

is pooled e.g., proestrus/estrus, thereby precluding evaluation
of the effect of an individual cycle stage. At present there is
no consensus.

Elevated T-Maze

The EPM, discussed above, may be viewed as a mixed model of
anxiety/panic, because it combines two defensive strategies: (1)
inhibitory avoidance, when the animal is in the enclosed arms
and refrains from entering an open arm and (2) one-way escape,
when the animal retreats from one of the open arms to seek the
enclosed arm. The unstable balance between the expression of
these two types of responses could explain the inconsistencies
of drug effects in males, mainly 5-HT-modulating compounds,
frequently reported for the EPM (87–89). To circumvent the
ambiguities of the EPM Graeff and coworkers (90, 91) developed
the elevated T-maze (ETM). The ETM differs from the EPM by
sealing the entrance to one of the enclosed arms (Figure 2). As a

result, it consists of three arms of equal dimension, one enclosed
and two open, all elevated above the floor.

The test allows the measurement in the same rat, of
an approach-avoidance conflict-type response: inhibitory
avoidance, which is related to anxiety, and an escape response
which is related to fear/panic. When placed at the end of
the enclosed arm, the rat cannot see the open arms until its
head is poked beyond the walls of the enclosed arm. Because
the open arms are aversive, the animal will learn inhibitory
avoidance when repeatedly placed at the end of the enclosed
arm and allowed to explore the maze. On the other hand, when
the rat is placed at the end of one of the open arms it can
move toward the safer enclosed arm, performing an escape
response, termed one-way escape, which is associated with
fear/panic attacks. Contrary to what happens in the enclosed
arm, the latency to leave the open arm usually does not change
with successive trials. Anxiolytic drugs (e.g., diazepam and
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FIGURE 2 | Schematic diagrams to illustrate tests based on unconditioned threatening stimuli (top row) and conditioned threatening stimuli (Bottom row).

buspirone) impair inhibitory avoidance acquisition, while
leaving escape expression unaltered. Antipanic drugs such as
the antidepressants fluoxetine or imipramine, or high potency
benzodiazepines (e.g., alprazolam and clonazepam) inhibit
escape expression [for a full account of the test see (92)].

The limited comparisons made between male and female rats
in this test show no sex-differences for inhibitory avoidance
acquisition or escape expression inWistar rats (93–95). However,
female Long-Evans or Sprague-Dawley rats show a deficit in
avoidance learning compared to males, indicating a less anxious
phenotype (96). Therefore, it seems that performance in the test
may vary between different strains of rat.

With regard to the influence of estrous cycle phases, one
study reported that female Wistar rats in diestrus II are slightly
more reactive to the open-arms than males (i.e., they take
longer to leave the enclosed arm but only in the first trial),
indicating a higher anxiety level (93). However, this subtle
effect was not replicated in a recent study with the same
rat strain (95).

Open Field Test
Individual laboratory-based anxiety tests, which by their nature
are artificial, probably reflect different facets of emotionality (97)
and viewed in isolation, cannot provide a complete picture of an
animal’s emotional profile. To overcome this limitation, it has
been proposed that using a battery of tests may provide a more
reliable measure, at least in males (98, 99).

Behavior in an open field or more correctly, a walled arena
(Figure 2), is often paired with other tests and used as a measure
of locomotor activity as well as anxiety. The former is typified as

the total distance traveled in a given time, whilst time to re-enter
the center of the arena, or time spent in the central portion of
the arena is used as a surrogate for anxiety, reflecting the choice
made by the animal as it pits the novelty of exploring a new
environment against the risk of danger posed by leaving a safe
area next to the walls.

Overall, female rats have been reported to be more active in
the open field compared to males, showing greater ambulatory
and rearing activity and defecating less than males (100–103)
and appearing to be less anxious about entering the central
zone. However, the literature is far from consistent, with several
examples of no difference in behavior between sexes. In mice
too, a retrospective analysis of performance in the open field
concluded the performance of female and male mice was
equivalent (104). In male mice strain differences have been
reported in locomotor activity in the open field as well as anxiety
using the EPM (97, 105); sex differences in responding are
evident within some strains although not others (97).

Pooling data from all females risks masking possible effects of
estrous cycle stage on responding. Even so, when estrous cycle has
been taken into account, the findings are equivocal. For example,
rats in proestrus showed greater anxiolytic behavior than at
other stages (66). Conversely, no differences were detected in
anxiety-like or fear behaviors between proestrus and diestrus rats
(106). Similarly in mice, some workers report proestrus wildtype
mice BALB/cBy to make more entries and spend longer time
in the central zone of the open field compared to their diestrus
(stage not subdivided) counterparts (26, 68) whilst others using
C57BL/6J mice found that behavior in the open field remained
stable across 4 phases of cycle (26, 107).
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A recent insightful study assessing behavior in the open field
in rats has demonstrated how multiple variables can acutely
modulate each other in different contexts, and highlights the
importance of considering each of these factors. Miller et al.
(108) observed independent interactions between the estrous
cycle and novelty (experiencing the open field for the first
time), estrous cycle and light, and novelty and light wherein
each factor is concurrently influencing behavior. Novelty was
found to obscure estrous cycle effects. Similarly estrous cycle-
linked effects were not evident in experiments carried our under
white light, which rats find aversive, but could be observed in
experiments conducted under dim red lighting (108). Another
factor that appears to influence responding is the size of the
field. Female rats in a large open field (129 × 120 × 60 cm,
dim red light 18lux) spent more time in the central zone and
made more central zone entries than males (60). However,
using smaller arenas [70 × 70 × 70 cm arena, light level not
specified (58) and 54.5 × 80 × 33 cm arena, dim red light 18lux]
(61) no sex difference was observed in either distance traveled
or entries into the central zone. These apparently conflicting
findings are a concern. However, given the limited visual acuity
of laboratory rats, large arenas may be perceived to pose more
of a threatening challenge than small ones. The higher level of
exploratory behavior displayed by females compared to males in
large arenas may therefore reflect a real sex difference in terms of
intrinsic level of anxiety.

When the open field test is incorporated into a battery of tests
designed to assess fear and anxiety, conflicting findings have been
reported regarding sex differences and estrous cycle-linked effects
on anxiety-like behavior in the same animals exposed to the EPM
and to the large open field (59, 61, 97, 102, 109–113). Importantly,
an estrous cycle-related influence on behavior in the open field
does not necessarily predict the behavior of the same animal in
the EPM (58, 60, 61, 68, 114).

The aforementioned studies present a confusing picture.
Given the numerous factors that can influence responding in
the open field and the EPM, it is likely that methodological
differences between laboratories are major factors that contribute
to the lack of consensus regarding sex differences or the effect
of the estrous cycle. What is evident is that females behave in a
qualitatively similar manner to males in both the open field and
elevated plus maze tests but whether there are sex differences in
responding remains an open question. In the studies that have
found sex differences, females have generally displayed lower
anxiety levels compared to males. This finding is in complete
contrast to humans in whom the incidence of anxiety-related
pathological states is not only higher in women compared to
men but also the symptoms experienced by women are often
menstrual cycle-related.

Light-Dark Transition Test
The light-dark transition model was developed by Crawley
and Goodwin (115, 116), based on the exploratory behavior
of rodents in a two-compartment box, where one chamber is
brightly lit and the other dark (Figure 2). In such conditions,
mice and rats have a clear preference for the dark side of the
box and the number of transitions made by them between the

two compartments and the time spent in the brightly lit side have
most commonly been used as indices of anxiety.

Although a reasonable number of studies in the literature
has compared the behavior of males and females in these tests,
very few have explored the impact of the cycle phases on
the female response. The majority of the studies performed
either with rats (117–123) or mice (63, 124–130) have failed
to show sex-differences in this test. In some of these studies
direct comparisons among strains (97, 131, 132) and/or age of
the animals (133, 134), which are critically-relevant variables,
were performed but no sex-related effect was found. There are
however, a few reports showing that females are more (135–138)
or less (139–143) anxious than males.

Regarding the cycle phases, female rats in proestrus or in
estrus+proestrus are less anxious compared to the other phases
(18, 144, 145), or withmales (144, 146). In the only study available
in mice a lower anxiety level was detected in the proestrus and
estrous phases compared to diestrus or to males (114). It is
clear that pooling data from females can mask significant sex
differences due to the influence of a changing hormonal profile
during the estrous cycle.

22 kHz Ultrasonic Vocalizations
Rodents use a range of ultrasonic calls to communicate the
presence of positive or negative emotional states and to
coordinate social interactions (147). In male rats in a semi-
naturalistic environment (visible burrow system) the presence
of a predator (domestic cat) stimulates animals to emit high
frequency ultrasonic vocalizations (USV) at around 22 kHz (148).
The 22-kHz USVs are thought to act as a warning to conspecifics
since far fewer calls are made if the confrontation with the
predator occurs when the rats are remote from their social group
(149, 150). Female rats also emit 22 kHz USVs but their calls are
longer and more frequent than those made by males (149, 151).
Interestingly mice, which are also prey for cats, do not emit
such cries in similar threatening situations (150). Adult mice do
communicate utilizing USVs but at other frequencies, primarily
in the context of social interaction (152).

In rats in the laboratory setting a number of stimuli have
been identified that evoke innate defensive escape behaviors that
include emission of 22 kHz USVs. These include mild restraint
stress (153) (Figure 2); air puff (154, 155); forced swimming
(156); overhead looming stimuli simulating aerial attack (157)
and unavoidable acute or repeated footshocks (158). The 22 kHz
USVs emitted in these settings are widely believed to reflect a
negative affective state akin to anxiety and fear (159).

Compared to the extensive literature on 22 kHz USVs made
by male rats in laboratory-based tests, USVs in females remain
largely overlooked. The limited available information suggests
that females may be less responsive than males. In response to
air puff stress females emit fewer 22 kHz calls than male rats
although interestingly, freezing evoked by the same stimulus did
not differ between sexes (9, 155). Female Wistar rats submitted
to a short period non-noxious restraint stress also emitted far
fewer 22 kHz calls than male rats (153). However, within the
female cohort used in this study there was a marked effect of
estrous cycle stage. Females in their proestrus, estrus and early
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diestrus (diestrus I) phases emitted very few calls, but during
the late diestrus stage (comparable to diestrus II) calls increased
5-fold, reaching a level comparable to males (153). In the air
puff test Inagaki and Mori (9) also failed to detect differences
between the 22 kHz USVs emitted by rats in proestrus and
diestrus I. However, since responsiveness in other stages of the
cycle was not investigated, it is not possible to conclude whether
the estrous cycle impacted on this test. These findings do however
contrast with reports that female Long Evans rats living in a semi-
naturalistic environment (the visible burrow system) made more
frequent cries in the presence of a predator than males (149).
Whether this reflects a strain difference, or an influence of the
living environment is not clear.

CO2 and Hypoxia Challenges
A wealth of evidence shows that respiratory challenges such
as exposure to a high concentration of CO2 or a low
concentration of O2 evoke panic attacks in humans (160–
162); these stimuli have frequently been used as experimental
tools to study panic disorder (161, 163). Although the
pathophysiological mechanisms of panic disorder remain
unclear, there is compelling evidence linking this psychiatric
condition to respiratory disturbances [for a review see (164)].

The use of respiratory challenges to model panic attacks in
experimental animals has been less straightforward, and the
results obtained raise doubts that a panic-like state was indeed
evoked in these non-human subjects. Broadly speaking, in these
analyses, conducted mostly in male rats and mice, different
parameters, primarily autonomic indexes (i.e., arterial blood
pressure and heart and respiratory rates) have been used to infer
that an extreme fear response, and hence a panic-like state, was
evoked (165–169). Investigation of the behavioral consequences
induced by CO2 inhalation or hypoxia has also been carried out
in some cases but curiously, this has habitually been done after,
and not during, exposure to the respiratory challenges [e.g., (170–
174)]. Efforts have been made to investigate whether changes in
these cardio-respiratory indices are sex-dependent, or influenced
by the estrous cycle, but their results, as recently reviewed (175),
have not been conclusive.

Our laboratory reported that Wistar male rats submitted to
acute hypoxia (7% O2) display a panic-like escape response (i.e.,
upward jumps to the border of the experimental cage) (Figure 2),
which is reduced by treatment with standard panicolytic drugs
such as fluoxetine and alprazolam (176). We also observed that
these drugs are equally effective in reducing the number of
escape attempts made by mice during exposure to a high CO2

concentration (20%) (177), validating these two behaviorally-
oriented tests for the study of panic-attacks in male rodents.

Recently, we have also validated the hypoxia model for use
in females. We observed that exposure to 7% O2 evokes panic-
like escape behavior in both male and in female Sprague Dawley
rats. However, in females, reactivity to this respiratory challenge
was clearly dependent on the stage of the estrous cycle, being
significantly higher in diestrus II, compared to other cycle stages
or to males (178). This finding has an important translational
value since women with panic disorder experience an increase
in anxiety and panic symptoms during the premenstrual phase of

the menstrual cycle (179, 180), which corresponds to diestrus II
in rodents.

Predator-Prey Interaction
Exposure to predators or stimuli related to them (e.g., predator
odor) has been widely used to assess defensive behavior in
rodents. The influential ethoexperimental studies conducted by
Caroline and Robert Blanchard have long guided research in
this field. Through the use of two ingenious test batteries,
the Fear/Defense Test Battery (F/DTB) and Anxiety/Defense
Test Battery (A/DTB) (149, 150, 181, 182), these researchers
addressed the pattern of defensive behavior expressed by male
and female rodents exposed to these naturalistic threats. While
the former battery has given information on the defensive
behaviors displayed by rats to present, approaching predators (a
live cat) (Figure 2), such as flight/escape, freezing and defensive
attack, the latter investigates reactions to potential threat (e.g., cat
odor), such as risk-assessment behaviors.

Overall, their results have shown that females are more
defensive than males when confronted by these stimuli, and
this is particularly common in situations involving potential, as
opposed to actual and present, threat (148, 183). Females, for
instance, display more risk-assessment and avoidance behaviors
than males do in response to cat odor (148).

It is noteworthy, however, that conflicting results have also
been reported by other groups. Perrot-Sinal et al. (184) observed
that exposure to cat odor increased the expression of risk-
assessment behaviors in both male and female rats, but with a
significantly lower frequency in females. However, when animals
were submitted to chronic restraint stress prior to testing,
females displayed a higher incidence of these behaviors than
males. This indicates that the anxiety/stress basal state of the
animals before the test can influence the way they respond to
predatory stimuli. On the other hand, exposure of rats to an odor
stressor of a different predator (trimethyl thiazoline; the main
component of fox feces) increased, in a sex-independent manner,
the expression of defensive behaviors, such as risk-assessment
activities and defensive burying (185). Interestingly, the similarity
in behavioral responsiveness masked sexually dimorphic changes
in cell proliferation and death in the hippocampal dentate
gyrus (185).

More recently, Pentkowski et al. (186) investigated the
impact of estrous cycle phases on the unconditioned and
conditioned defensive responses of female rats to cat odor. They
observed that rats in diestrus 2 displayed significantly higher
levels of risk assessment responses during exposure to a cloth
impregnated with cat odor than in estrus or proestrus phases.
When 24 h later, the animals were reintroduced to the cage
where the odor was presented (now having a control cloth,
without cat odor, which served as a stimulus-paired cue) in
order to explore the conditioned responses to the experimental
context/cue, a significant increase in the defensiveness was
observed in the animals previously exposed to cat-odor (i.e.,
increased time spent in risk-assessment activities and avoiding
the cue), demonstrating aversive learning. In contrast to the
initial exposure (unconditioned response), there was no influence
of the cycle phases on the learned response.
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Finally, it is noteworthy that besides the effects of predator
odors on defensive behaviors, it has been shown that exposure
of weanling female rats to cat odor, for 10 consecutive days,
interferes with the maturation of the hypothalamic-pituitary
gonadal axis, leading to a delayed vaginal opening and first estrus,
besides disrupting estrous cyclicity (187).

Tests Based on Conditioned Threatening
Stimuli
Vogel Conflict Test
The Vogel test is based on the approach-avoidance conflict
generated in rodents between an appetitive drive: to drink water
after a period of water-deprivation, and the fear of doing so as
water consumption is punished by electric shocks delivered either
to the animal’s paws or tongue (Figure 2). Since its introduction
in 1971 (188), this test has been widely used for the screening
of anxiolytic drugs and to unveil the pathophysiological bases of
anxiety (189–193). As mostly inferred from studies with males,
anxiolytic drugs, such as the benzodiazepines diazepam and
chlordiazepoxide, consistently increase the number of punished
responses (190, 194).

As with other models, few studies have directly compared
the behavior of male and females in this test. Overall, female
rats (59, 194–196) and mice (197) exhibit a reduced number
of punished responses compared to males, suggesting a higher
anxiety level. However, this conclusion has been questioned by
evidence showing that female rats may have increased sensitivity
to pain, a lower shock threshold perception and exhibit reduced
unpunished drinking responses compared to males. The latter
effect, which indicates a different baseline water intake, was
observed after controlling for body weight of both sexes, an
important and normally overlooked confounding variable [for a
review of these findings see (194)].

To date, only one study has addressed the impact of the cycle
phase on female behavior. Basso et al. (194) failed to find any
significant difference between cycle phases in the number of
punished responses exhibited by adult Wistar female rats. They
also reported that the cycle phases had no impact on the effects of
the anxiolytic drugs tested in their study.

Conditioned Fear and Fear Potentiated Startle
Two commonly used indices of fear responses inmale animals are
based on the association of specific stimuli (cued or contextual)
with stressful and often painful events (e.g., electric footshock)
(52, 53). In conditioned fear responses (CF) (198), rats are trained
to associate a conditioned stimulus (CS), (typically light or
sound) with an aversive unconditioned stimulus (US; footshock).
The animals are then re-exposed to the CS alone in a different
context. Freezing in response to the CS is then taken as an index
of conditioned fear (Figure 2). Fear potentiated startle (FPS) is
a related test that measures the potentiating effect on the startle
response to a loud sound, of presentation of a CS that has
previously been paired with an aversive US (footshock) (199)
(Figure 2). As a whole, female rats perform in a qualitatively
similarmanner tomales in both tests and, although someworkers
find females less responsive than males (200–203), others have
failed to detect sex differences (107, 153, 204–207).

Similarly, inconsistent findings have been reported in mice.
For example, depending on strain and precise experimental
protocol, no sex difference in contextual fear conditioning (208);
stronger context fear conditioning and more generalization to
a similar context have been reported in females compared
to males (209), whilst extinction of conditioned freezing to a
tone was faster in males than in females (210). Using a serial
compound conditioned stimulus (tone and white noise that
elicits clear transitions between freezing and flight behaviors
within individual subjects) females exhibited more freezing
behavior than males although there was no difference between
the sexes in flight behavior (211).

When estrous cycle phase has been considered, the consensus
from the limited number of available studies is that it does
not influence expression of fear-potentiated startle (106, 107)
although a more recent study presents a conflicting view (212),
nor does it impact on conditioned fear to context (153, 204, 205,
213). In contrast, in tests of cued fear (conditioned freezing)
Milad et al. (206) found that extinction training during the
proestrus phase (high estrogen/progesterone) was more fully
consolidated, as evidenced by low freezing during a recall test.
Others reported weaker extinction during training in rats in
diestrus II (212), or in the diestrus phase [not subdivided
(213)] compared to proestrus i.e., rats continued to respond to
presentations of the unreinforced CS for longer during the test
session compared to rats in proestrus in which the response
extinguished rapidly.

A consideration when using tests that involve a learning
element, is that they take several days to complete and typically
involve two or more sessions. This means that females may
be conditioned in one stage of their estrous cycle but tested
on another day, when they are in a different stage. There is a
possibility that cycle stage during conditioning (or during the test
session) may impact on responsiveness during the test session,
and vice versa. In the limited studies that have addressed this
question, estrous cycle phase seems not to impact significantly
on the training or testing components in the conditioned fear
paradigm (204, 212). On the other hand, gonadal status does
affect fear potentiated startle. Females tested in proestrus after
conditioning in proestrus or diestrus II of the previous cycle,
appeared initially to fail to distinguish between a positive and
neutral conditioned stimulus, although performance improved
as the test session progressed (212). Circulating estrogen levels
are high in proestrus and estradiol has been shown to promote
fear generalization to context (214–216). An apparent failure in
discriminatory learning of rats tested during proestrus, may in
fact reflect generalization to positive and negative conditioned
stimuli, rather than a failure of learning (212). In another
recent study employing startle, but in a fear safety conditioning
paradigm, female rats in diestrus I or II had significantly reduced
safety memory compared to females in the proestrus or estrus
phase (217).

It is interesting to speculate why some tests of conditioned
fear are affected by estrous cycle stage and not others. Fear
potentiated startle differs from other commonly used tests of fear
by measuring enhancement rather than suppression of ongoing
behavior (199). It may be that this factor renders the test more
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sensitive to the effects of hormonal fluctuations in females. The
above examples do, however, emphasize not only the importance
of drug testing in both males and females, but also the choice
of behavioral test. In addition, they highlight that neglecting the
influence of the estrous cycle in females may lead to erroneous
interpretation of data in some behavioral tests.

Tests Based on Fear Extinction
In recent years much attention has been focussed on extinction
of conditioned fear responses. In humans, deficits in extinction of
conditioned fear during repeated presentation of an unreinforced
CS are considered a contributory factor underlying anxiety
disorders (218, 219). Anxious individuals show more elevated
fear responding to a CS during extinction relative to healthy
controls (220). Patients with posttraumatic stress disorder
(PTSD) also continue to exhibit a robust conditioned fear
response even after undergoing extinction training (221).
In animals, fear extinction: the decrement in conditioned
fear responses that occurs with repeated presentation of an
unreinforced conditioned fear stimulus (Figure 2), may therefore
provide a useful model to help understand the underlying
psychopathology of anxiety states (222). Deficits in the extinction
of fear memory and the way this impacts on subsequent
interpretations of and reactivity to sensory events may be at
the core of PTSD. It is worth noting however, that in classical
Pavlovian terms, extinction implies gradual waning of the
conditioned response as a consequence of non-reinforcement of
the conditioned stimulus (CS). In PTSD, the individual does not
usually experience the exact CS again. Rather, they appear to
generalize to the original traumatic event so that other stimuli act
as a CS and trigger an aversive reaction. Nevertheless, the use of
extinction recall/retention following fear conditioning has gained
currency in conditioned fear models of PTSD.

PTSD is twice as common in women than in men (223);
moreover in women, menstrual cycle phase has been reported
to influence extinction retention (224). The importance of
incorporating females into animal tests of fear extinction cannot
be overstated. In rats, the phase of the estrous cycle prior to
extinction training (testing the response to the unreinforced CS
24 h after training) can influence extinction recall 24 h later.
Rats that underwent extinction learning in diestrus I displayed
poorer retention of extinction compared to animals undergoing
extinction learning in proestrus (206).

As females are gradually incorporated into experimental
protocols, it is becoming clear that even when sex differences
in behavior are not detected, the same outward behavioral
response may be mediated by different mechanisms. A pertinent
study utilizing conditioned fear in mice reported similar levels
of fear extinction in males and females (215). However, the
similarity in behavior between the sexes belied differences in
the underlying pharmacology. Whilst in males, extinction and
subsequent renewal of fear were enhanced by administration of a
presynaptic GABAB receptor antagonist, females were unaffected
(215). In a similar vein, although no sex differences could be
distinguished in freezing recall in rats tested in a contextual
fear paradigm, significant upregulation of the early gene ARC
was detected in the bed nucleus of stria terminalis in males but

not in females (225). Sexual dimorphism with respect to the
involvement of endocannabinoid pathways in conditioned fear
extinction has also been reported in rats (226).

The Risky Closed Economy
The classical tests of fear and anxiety behavior in rodents assess
specific behaviors (e.g., freezing) during brief sampling periods
and in an artificial laboratory setting, providing only a “snapshot”
of fear and anxiety-related behaviors. This limitation has driven a
search for more ethologically relevant settings in which to study
fear and anxiety-like behaviors. In the Risky Closed Economy
(RCE) (227) animals live undisturbed, although individually
housed, in a semi-naturalistic environment where they are free
to acquire their food and water by lever-pressing in a designated
foraging zone (Figure 2). An unsignaled, unpredictable threat
(footshock) is introduced into the foraging zone to model the risk
of predation.

Arguably, this test should afford amore holistic understanding
of the effects of fear and anxiety on a day-to-day basis since
data from a multitude of variables can be collected automatically
and continuously over several weeks to months (228). When
applied to females, the RCE also has the advantage of being able
to follow the same animal at different stages of its estrous cycle.
In terms of foraging behavior in the RCE, female rats were more
fearful thanmales. Moreover, estrous phase appeared to influence
risky foraging decisions, with increased risk taking associated
with the proestrus phase (227). This finding is significant since
unlike most of the behavioral tests employing less ethologically
relevant scenarios, the increased level of fear or anxiety seen in
female rats in the RCE during the diestrus phase parallels the
human experience.

SEX DIFFERENCES IN RESPONSES TO
PSYCHOACTIVE DRUGS

It is becoming increasingly clear that male and female brains do
not necessarily utilize the same neural mechanisms to achieve
the same behavioral output. Moreover, as females are gradually
introduced into drug testing protocols, evidence is accumulating
showing sex differences in drug responsiveness as well as a
differential responsiveness within females depending on the stage
of the estrous cycle. Sex differences in responding to the classical
anxiolytic benzodiazepines have been recognized for many years.
Females are generally considered to be less responsive thanmales.
However, the results must be viewed with caution. For example,
the absence of female responses to the effects of diazepam in
the EPM was found to be due to the high baseline activity levels
seen with females, rather than a differential response to the drug
(229). Such findings highlight the need to consider sex differences
in baseline behaviors to allow for unambiguous extrapolation of
results. In addition, sex and strain differences in metabolism of
benzodiazepines have been reported, which can also bias results
(230) although no sex difference in brain concentration was
found, at least in Long Evans rats (231).

The estrous cycle also impacts on responsiveness to
benzodiazepines, although once again, findings are equivocal.
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Most workers fail to investigate all stages of the cycle, which
leads to incomplete data sets. Some studies in rats were unable to
detect any estrous cycle linked differences in responsiveness to
diazepam (72, 232). However, in the EPM the overall consensus
is that rats and mice are more sensitive to diazepam during the
proestrus/estrus phases compared to diestrus, especially diestrus
II (16, 19, 233–235). Similarly, in the light-dark transition test
Rodriguez-Landa and coworkers (18) found that diazepam
caused anxiolytic effects in female Wistar rats in proestrus or
estrus phases, but not in their diestrus phase. This may be a
consequence of higher binding of diazepam to brain membranes
in proestrus compared to the other cycle stages (236).

Sex and estrous cycle-linked differences in responsiveness to
other anxiolytic drugs have also been reported in other behavioral
tests. Whereas, no sex difference was observed in the effect of
the serotonin and noradrenaline reuptake inhibitor sibutramine
in rats tested in the EPM, sibutramine impaired inhibitory
avoidance (withdrawal from the enclosed arm) in the ETM in
males but not females, but inhibited escape expression (latency
to leave the open arm) in both sexes (95). When the estrous
cycle was taken into consideration, the antipanic-like effect of the
drug on escape performance was found to be absent in females in
diestrus II but preserved in the other cycle phases (95).

Females and male rats also differ in their sensitivity to the
effects of anxiolytic drugs in the Vogel conflict test. Whereas,
an increase in punished responding was observed to be equal
in both sexes after acute administration of diazepam and
chlordiazepoxide, anxiolysis caused by buspirone, fluoxetine,
paroxetine, or propranolol was evident only in males. Moreover,
female rats seem to be more sensitive to the sedative effects of
buspirone and chlordiazepoxide than males (194). In another
recent study employing startle in a fear safety conditioning
paradigm, female rats in diestrus I and II had significantly
reduced safety memory compared to females in the proestrus
or estrus phases. This difference could be reversed by intranasal
application of oxytocin (217) although interestingly, oxytocin
had no effect in males (217).

Sex and estrous cycle stage also impact on responsiveness to
the widely used serotonin reuptake inhibitor fluoxetine. Chronic
fluoxetine impaired inhibitory avoidance in a one-trial step-
through task in male but not female mice (237). In rats chronic
(14 day) administration reduced fear responses during extinction
learning and extinction recall in female rats in diestrus I and II
but not in proestrus/estrus females or in males (15).

Chronic administration of fluoxetine is normally required for
anxiolytic effects to develop. In contrast, acute administration
evokes anxiogenic effects independent of sex (15, 193). However,
at low doses that are subthreshold for its effects on 5-HT
systems, fluoxetine can be anxiolytic in females, and this
effect is dependent on estrous cycle stage. Administration
of low dose fluoxetine in diestrus 2 was able to completely
reverse the increase in unconditioned fear that characterizes
this stage of the cycle. Thus, fluoxetine in diestrus 2 reversed
the increase in restraint stress-induced ultrasonic vocalizations;
hypoxia-induced escape behavior and vibration stress-induced
hyperalgesia that characterize this stage of the cycle (33, 154,
178a) but had no effect when administered at other stages cycle

(33). Fluoxetine also normalized the increased excitability of the
panic circuitry in the periaqueductal gray matter that occurs
during diestrus 2 (33) and restored responsiveness to diazepam
in the EPM (19). These effects are thought to be related to the
rapid steroid-stimulating properties of fluoxetine, which raises
brain concentration of allopregnanolone and offsets the natural
sharp decline that occurs at diestrus 2 (33, 238).

DISCUSSION AND CONCLUSION

The available data indicates that females respond in a
qualitatively similar way to males in the majority of behavioral
tests used to assess fear and anxiety in male animals. The
overall conclusion from the behavior of females in “male”
models of fear and anxiety is that females show lower levels
of anxiety compared to males (Table 1). Yet this finding is in
direct contrast to the clinical experience where the prevalence
of anxiety-linked disorders is higher in women than men. It is
worth remembering however, that the commonly used animal
tests model the adaptive states of fear and anxiety and not the
psychopathology which characterizes human anxiety states like
panic disorder, generalized anxiety disorder and post traumatic
stress disorder. It may be that a lower intrinsic (baseline) level
of anxiety in females compared to males is normal in rodent
societies and should not be a concern when investigating the
biological basis of anxiety behavior.

Since the readout of animal tests is mainly locomotor based,
the overall higher level of activity in females could bias the
result. However, recent careful analysis of locomotor activity in
three tests of anxiety: EPM, open field and social interaction
failed to detect an influence (61). It may be that instead of
expressing less anxiety, female rats express different forms of
anxiety-like behaviors that are not well-captured by the testing
procedures that have been developed and characterized using
male rodents. The readouts of many common behavioral tests
developed and validated in male animals, may therefore need
to be adjusted in order to assess the same emotional states in
females. A case in point is the classic fear conditioning paradigm
whereby animals freeze in response to a conditioned stimulus or
to a context signaling footshock. Overall, males froze more than
females, but a subset of females were more likely to engage in
“darting” behavior (226, 239, 240), which could not be attributed
to overall hyperactivity.

A caveat to analysis of female behavior in the traditional
“male” animal tests should be a consideration of the extent
to which the current animal models of fear and anxiety do
actually model these emotions in humans (241). Indeed, it has
been questioned whether current fear conditioning studies in
rodents operate in the natural world (228) since unnatural tasks
performed by rodents living in standard laboratory conditions
may not model their behavior in the wild, where the living
environment and challenges to survival are quite different. For
example the impact of housing conditions on rodent brain and
behavior (242) is well-established and has led to the adoption of
various degrees of enrichment into laboratory housing conditions
for rodents. In humans, an ethological approach to fear has been
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successfully incorporated into experimental research paradigms
(243). Animal studies lag behind in this respect, although
the use of the visible burrow system, first demonstrated 30
years ago (148), which enables observation of behavior of rats
living in mixed sex colonies, was an early pointer to the
effect of environment on fear-associated behaviors. A major
concern in terms of translational validity of most currently used
tests is that females display lower levels of anxiety in “male”
models, whereas anxiety-related psychopathology is far more
common in women than men. However, in more ethologically
relevant situations such as the risky closed economy, in an
open field with cover, or when housed in a visible burrow
system, females appear more anxious and risk averse than males
(148, 183, 227, 244).

In women with anxiety disorders including panic and PTSD,
anxiety, fear, and avoidance symptoms tend to increase during
the premenstrual phase when progesterone is declining rapidly
and estrogen is low (245, 246). In this respect the observation
that responsiveness in tests of unconditioned fear behavior in
rats mimics the clinical experience is pertinent, especially in the
light of findings that the menstrual cycle in women influences
principally emotion with limited effect on cognitive function
(247). In female rats, unconditioned fear is significantly enhanced
in diestrus 2 (33, 155, 179, 187) (similar to the premenstrual
phase in women) whilst the cycle has inconsistent effects in
tests employing conditioned threatening stimuli, which involve
a learning component. The adverse symptoms experienced in
the late luteal (premenstrual) phase may be considered an
inappropriate over-reaction to everyday psychological stressors,
which at other stages of their cycle do not trigger an adverse
response. The clinical literature supports the hypothesis that
premensrul dysphoric disorder pathophysiology is rooted in
impaired GABAA-receptor response to dynamic fluctuations
in allopregnanolone across the menstrual cycle, manifesting as
affective symptoms and poor regulation of the physiologic stress
response (245).

The importance of including females in all drug discovery
protocols from the level of basic science using animal models
to clinical trials in humans cannot be overstated. Greater
standardization of experimental psychopharmacology protocols
is required, in order to facilitate the search and characterization
of novel anxiolytic agents for both sexes.Whilst females appear to
respond in a qualitatively similar manner in most behavioral tests
developed tomodel fear or anxiety inmale rodents, it is becoming
increasingly clear that male and female brains do not necessarily
utilize the same neural mechanisms to achieve the same
behavioral output. Moreover, behavioral responsiveness and drug
action in females may be influenced by the changing chemical
milieu of the brain during the estrous cycle. Drug development
must be tailored to include female psychopharmacology with
careful consideration of appropriate behavioral tests.
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