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Abstract: Cancer cachexia is a syndrome experienced by many patients with cancer. Exercise can
act as an autophagy modulator, and thus holds the potential to be used to treat cancer cachexia.
Autophagy imbalance plays an important role in cancer cachexia, and is correlated to skeletal and
cardiac muscle atrophy and energy-wasting in the liver. The molecular mechanism of autophagy
modulation in different types of exercise has not yet been clearly defined. This review aims to
elaborate on the role of exercise in modulating autophagy in cancer cachexia. We evaluated nine
studies in the literature and found a potential correlation between the type of exercise and autophagy
modulation. Combined exercise or aerobic exercise alone seems more beneficial than resistance
exercise alone in cancer cachexia. Looking ahead, determining the physiological role of autophagy
modulated by exercise will support the development of a new medical approach for treating cancer
cachexia. In addition, the harmonization of the exercise type, intensity, and duration might play a key
role in optimizing the autophagy levels to preserve muscle function and regulate energy utilization
in the liver.

Keywords: cancer; cachexia; autophagy; combined exercise; aerobic; resistance

1. Introduction

Patients with cancer usually experience cachexia; cancer cachexia is a multifactorial
syndrome correlated with cancer, characterized by skeletal muscle decline that cannot
be fully recovered by nutritional support, and eventually leads to dysfunction of the
muscle [1,2]. This syndrome manifests in clinical symptoms, such as weight loss, muscle
atrophy, anorexia, fatigue, anemia, and edema, which might influence the patient’s quality
of life, decrease their sensitivity to treatment, and finally shorten their survival rate [3,4].
According to the international consensus, three criteria can be used to diagnose cancer
cachexia: a weight loss > 5% over the past six months, a body mass index < 20 and any
degree of weight loss > 2%, or an appendicular skeletal muscle index consistent with
sarcopenia and any degree of weight loss > 2%. The consensus also distinguishes three
stages of cancer cachexia: precachexia, cachexia, and refractory cachexia [1].
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Research shows that the size of cancerous tissue is not associated with the presence of
cachexia, but that the stage of cancer can affect the severity of cachexia. The prevalence
of cancer cachexia is approximately 50% in all patients with cancer, increasing to 80%
according to the disease progression [5]. Almost 80% of patients with gastric or pancreatic
cancer and 50% of patients with lung, prostate, or colon cancer experience cachexia. This
syndrome also thrives in 40% of patients with breast tumors and some with leukemia [6].

The pathogenesis of cancer cachexia is systemic inflammation caused by the inter-
action between tumor and organ tissues, resulting in alterations to the metabolism and
homeostasis in different parts of the body [5]. Cancer cachexia ultimately affects the skeletal
muscle, but its effect is also found in other tissues, such as the cardiac muscle and liver [7].
In the process of cancer cachexia, an imbalance between the synthesis and degradation of
protein in the skeletal muscles’ activated signaling pathways potentially provokes muscle
atrophy [2]. Autophagy plays an important role in protein degradation, along with two
other main pathways (the ubiquitin–proteasome system (UPS) and Ca2+) [2]. Autophagy is
also an important regulator of the metabolism and homeostasis in many organs. Therefore,
its involvement in skeletal muscle atrophy, cardiac remodeling, and the liver metabolism
of cancer cachexia should be taken into consideration.

Studies have shown the complicated and changing role of autophagy in cancer [8–10]. In
the early stage of cancer, autophagy acts as a tumor suppressor; thus, increasing autophagy
could prevent cancer initiation [8]. However, in the advanced stages of cancer, autophagy
is used by cancer cells to improve their fitness; therefore, inhibiting autophagy in cancer
cells might serve as an option to improve cancer therapy [10]. As such, understanding the
phase of cancer is important for recognizing the importance of autophagy activity. For
cancer cachexia, which more prominently occurs in the later stages of cancer, the disbalance
of autophagy causes uncontrolled cytokine production and secretion by inflammatory cells
in the tumor and other organs [5]. Until recently, it has been debated whether using an
autophagy modulator for cancer therapy is a wise decision, considering that autophagy
also plays an important role in physiological functioning to maintain homeostasis [10].

Exercise, which is also well-known to modulate autophagy, is one of the best treatment
options to support the recovery of patients with cancer cachexia [11]. The American College
of Sports Medicine recommends 150 min (three to five days a week) of moderate-intensity
aerobic exercise, two to three days a week of resistance exercise, and daily stretching for
cancer survivors [12]. Preclinical studies in rodents concluded that exercise does not affect
cancer cachexia, but could reduce the severity of cachexia in the later stages of cancer [13].
Human studies, on the other hand, have shown improvement of body weight and muscle
mass in cachexia patients with lung and pancreatic cancer [14]. A combined exercise
program might be a better choice for improving muscle wasting in cancer cachexia [15].
Recent studies have sought to delve deeper into the molecular mechanisms that occur in
exercise before and after the development of cancer cachexia, especially those related to
autophagy [16–24]. Therefore, understanding autophagy modulation in the skeletal muscle,
cardiac muscle, and liver after exercise in cancer cachexia is of the utmost importance for
suggesting exercise as an autophagy modulator in different stages of cancer.

2. Changes of Autophagy in Organs Related to Cancer Cachexia

Autophagy is a physiological intracellular process that consists of the destruction and
elimination of substances, such as misfolded proteins or organelles, to adapt or maintain
cellular homeostasis. This process is mediated by an autophagosome, which comprises
a double-layer vesicle and undergoes fusion of the autophagosome to the lysosome [25].
Autophagy is a mandatory mechanism to maintain cell survival [26,27]. Many factors can
induce autophagy, such as fasting, exercise, aging, disuse, and cancer [28–32]. Cancer and
inflammatory cells might induce cytokine release, which influences the autophagy balance,
mitophagy, and other signaling pathways in skeletal and cardiac muscles and the liver, as
shown in Figure 1.
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Figure 1. Autophagy modulation and its correlated effects in cancer cachexia. Cancer and inflammatory cells induce
cytokines release which then results in an imbalance of autophagy and other effects in skeletal muscle, cardiac muscle, and
the liver, which eventually lead to cancer cachexia.

2.1. Autophagy Modulation in the Skeletal Muscle of Cancer Cachexia

Two main pathways induce protein degradation in cancer cachexia: UPS and au-
tophagy [2]. UPS requires enzymes called E1, E2, and E3 to be activated and docked to a
protein that will be degraded. E3 binds to a specific protein that soon will be docked to
ubiquitin and transported to the proteasome. Two kinds of E3 have been recognized to be
involved in muscle atrophy: MuRF1 and Atrogin-1. The skeletal muscles in cancer cachexia
also expressed MuRF1 and Atrogin-1, which activate E3 enzymes, thus stimulating UPS
pathways [33]. Autophagy also occurs through the process of engulfing ubiquitinated
proteins via phagosomes and fusing them with a lysosome [34].

Hentilä et al. reported higher levels of lipidated LC3, LC3II/LC3I ratio, LC3b mRNA,
and Beclin-1 in the skeletal muscle of C26 tumor-bearing mice. These findings were
followed by increased p62 protein and unchanged p62 mRNA levels, suggesting a reduction
in autophagosome clearance. These findings imply that autophagy, in conjunction with
the UPS, leads to muscle atrophy [35]. Penna et al. measured the level of autophagy in the
gastrocnemius muscle of C26 tumor-bearing mice and found that the levels of microtubule-
associated protein 1 light chain 3B isoform I (LC3BI) remained unchanged, although the
lipidated form (LC3BII) dramatically increased. Beclin-1, a key upstream regulator of
autophagic sequestration, was significantly higher, implying that autophagy activation is a
key to the early event in tumor-induced muscle depletion; p62 accumulated in a similar
manner to Beclin-1 and LC3BII, which could indicate either the induction of autophagic
sequestration or reduced autophagosome clearance [32].
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2.2. Autophagy Modulation in the Cardiac Muscle of Cancer Cachexia

In addition to skeletal muscle atrophy, cardiac remodeling is also induced by cancer
cachexia, causing a condition known as cardiac cachexia [34,36]. Cancer cachexia might
also induce cardiac remodeling that might disturb cardiac function, which is characterized
by microscopic changes displaying cardiac atrophy because of the progressive loss of
cardiac muscles [36,37].

The molecular mechanism underlying cardiac muscle atrophy is slightly different
from the one that induces skeletal muscle atrophy in cancer cachexia [34,38]. Some studies
showed an increase of UPS in the cachectic heart, although another study demonstrated
that UPS did not increase, while autophagy did [38–41]. Cancer-induced cachexia implies
a nutrient imbalance and cytokine production that affect cardiac muscle gene expression,
causing an imbalance in cellular metabolism, inflammation, and necrosis [42]. In such
conditions, cardiac muscles express transforming growth factor (TGF) and BNIP3, which
induce autophagy, and then necrosis and fibrosis development [20]. Other markers, such
as TRAF6, which is involved in apoptosis, and Beclin-1, which induces autophagy, are
increased in cardiac muscle undergoing remodeling [34].

Cosper and Leinwand proved that the proteins of cathepsin L, Beclin, and LC3 were
increased during cardiomyocyte atrophy in cancer, suggesting increased autophagy. They
found a two-fold increase of cathepsin L mRNA in both male and female atrophic hearts,
a 1.5-fold increase of LC3 mRNA, and a seven-fold increase of LC3II protein levels in
male atrophic hearts, but only a three-fold increase in females [39]. Another study found
a decrease of cardiac mass in the ApcMin/+ mouse model of colorectal cancer, together
with an increase of Beclin-1 protein level, without a change of ubiquitination or apoptosis
protein in the cardiac tissue. This result showed an increased autophagy process in cardiac
cachexia, with no change of UPS stimulation and apoptosis [43].

2.3. Autophagy Modulation in the Liver of Cancer Cachexia

Liver metabolism is also affected by cachexia via insufficient energy expenditure,
phosphorylation oxidation, and lipid metabolism. The liver in cancer cachexia undergoes
energy wasting by employing metabolic futile cycles that dissipate energy without anabolic
or catabolic function [44]. Tumor cells induce the liver to produce energy via gluconeo-
genesis of lactate that is derived. The lactate is produced by tumor cells through aerobic
glycolysis, known as the “Warburg effect” [45,46]. The liver also releases acute-phase pro-
teins that alleviate inflammation and increase muscle protein breakdown [47,48]. Amino
acids produced by skeletal muscle protein degradation provide further gluconeogenesis
in the liver [44]. Energy wasting in cancer cachexia also decreases the phosphorylation
oxidation capacity in mitochondria, which is marked by an increase of cardiolipin me-
diated by TNFα [49,50]. Recent research also showed that mitochondrial quality control
(mitophagy and fission) was altered in cancer cachexia, in line with the development of
hepatic fibrosis [51]. The liver cells in patients with cachexia have a decreased capability to
distribute fat via very low-density lipoprotein (VLDL), along with an inability to oxidize fat
production and deposition in liver cells, thus leading to liver steatosis [48]. These changes
in liver metabolism are correlated with autophagy function, especially lipid droplet clear-
ance, damaged mitochondria, protein aggregate removal, and liver fibrosis prevention [52].
Previous research strongly demonstrated that autophagy is critical to liver function, with
lower autophagy linked to poorer results [53–55].

Rosa-Caldwell et al. showed that there was no link between the Beclin mRNA content
and cancer progression. It was also observed that the LC3II/LC3I ratio, which acted as a
surrogate measure of autophagosome production, showed a quadratic connection with
cancer progression, with a 40–50% decrease in the LC3II/LC3I ratio at weeks one, two,
and three, subsequently increasing at week four. The level of p62 mRNA did not change
between the cancer groups, whereas the level of p62 protein increased over time as the
disease progressed. In addition, it was also found that mitophagy and fission are altered
before hepatic fibrosis occurs [51]. Another study found that the level of LC3II and the
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LC3II/LC3I ratio, as well as Beclin-1, increased in the liver of C26 tumor-bearing animals.
In contrast to the skeletal muscle, an animal model of C26 colon cancer only showed
elevated LC3I in the liver, with no change in p62, suggesting increased autophagosome
formation without increased or decreased autophagic flux [35].

3. Exercise Modulates Autophagy in Cancer Cachexia

Exercise can increase muscle fibers through several mechanisms, such as mTOR,
AMP-activated protein kinase (AMPK), and autophagy. [15] Exercise increases AMPK and
triggers mTOR activity, increasing protein production, and thus resulting in a spike of
protein quantities. MuRF1 and Atrogin-1 are suppressed by exercise, restoring protein
degradation to its basal concentration, and thus decreasing muscle fiber breakdown. These
mechanisms are correlated with each other, in which autophagy also has a crucial role.
Autophagy is restored by exercise into a physiological condition, causing decreased muscle
fiber degradation; however, it still maintains its function in degrading substances that may
have a detrimental effect on cells [16].

Patients suffering from cachexia have engaged in different types and intensities of
exercise. Studies on exercise intensity proved that high-intensity interval training was
better than low- to moderate-intensity exercise, because it took a shorter time to achieve
the expected results and patients endured less fatigue after exercise [56–59]. Aerobic and
resistance exercises also have different benefits. Aerobic exercise is better at increasing
capillarization, whereas resistance exercise is better at increasing the number of muscle
fibers [60]. In the case of duration, a longer duration of exercise before cancer initiation
provides better prevention of cancer cachexia than a shorter one [13]. These types and
intensities of exercise can also be implemented in conjunction with chemotherapy [57,60].

The detailed mechanism for the correlation between the intensity, type, duration of
exercise, and autophagy modulation in cancer cachexia remains far from being understood.
In this review, we explored nine studies on the role of autophagy modulated by exercise
in cancer cachexia. Eight studies were performed on animals [16–21,23,61], and one study
was performed on humans [22], as summarized in Table 1.

3.1. Aerobic Exercise Modulates Autophagy in the Skeletal Muscle of Cancer Cachexia Animals

Endurance exercise has been proven to induce autophagy modulation in healthy
skeletal muscles [62–64], but studies in cancer cachexia are still limited. Pigna et al. tailored
a study using seven-week-old BALB/c female mice, which experienced cachexia induced
by colon cancer and then died 19 days after. The study proved that aerobic exercise, AMP
analog 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), and AMPK
as “exercise mimetics” modulated autophagy in cancer cachexia induced by colon cancer.
Voluntary wheel running in this study had the capability of restoring autophagy to its
basal level, thus maintaining muscle homeostasis that eventually recovered muscle mass
and function. A restored autophagy level was found in the tibialis anterior muscles of
mice with colon cancer after voluntary wheel running, demonstrated by a reduction of
the LC3II/LC3I and p62/GAPDH protein ratio. In healthy muscle, there is a balance in
the physiological autophagic system between LC3 (autophagosome production) and p62
(clearance) that prevents muscle wasting. A dysregulated autophagic system is found in the
C26 muscle, demonstrated by increased LC3 and p62 that might be correlated with muscle
wasting. As a potent inducer of autophagy, exercise restores the physiological autophagic
system by balancing the production and clearance, resulting in preserved muscle mass in
cancer cachexia. Exercise was shown to rescue the muscle mass, fiber size, morphology
of the basement membrane, fatigue time, and even the distance of voluntary running,
correlated with the life span of cancer mice [16].
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Table 1. Summary of autophagy modulation by exercise in cancer cachexia.

No Study Model Tumor Type/Induction
Model Exercise Modality Exercise Prescription Exercise Initia tion Results Reference Organs

1 Pigna et al.,
2016

Seven-week-old
BALB/c female mice

Colon adenocarcinoma
cells CT26 Voluntary running Ad lib voluntary wheel

running

Since day one of
implantation in

tumor-bearing mice

Restored atrogin1, murf1, LC3,
and p62 in tibialis anterior

muscle to its physiological level
[16] Tibialis anterior

muscle

2 Morinaga
et al., 2021

Female 10–11 week
old, wild type
BALB/c mice

Colon carcinoma cells
C26 Treadmill exercise

Treadmill running
12 m/min, 20 min/day,

5 days/week.

Treadmill habituation
4–5 days, continued with

exercise from the day after
injection until four weeks

after injection

No change of LC3-II protein
synthesis (pAkt, pmTOR, p70S6,

and 4EBP-1), and
adiponectin-related genes
(adiponectin, AdioR1, and

APPL1) increased.

[21]

Tibialis anterior,
gastrocnemius,

and soleus
muscles

3 Das Neves
et al., 2016

14-week-old Wistar
rats

Walker 256 tumor cells
in the bone marrow

Resistance exercise
training

Eight sessions of RET
(each session included

three sets of repetition at
the intensity of 65%

maximum lifted weight
(1-RM)

11 days before tumor
injection until 15 days post

tumor injection

Increased p62 protein content
and LC3 II/I ratio were found in

EDL muscles of the tumor
groups when compared to the
control and exercise groups.

[23]
EDL (extensor

digitorum longus)
muscle

4 Ranjbar et al.,
2019

Six-week-old male
BALB/c mice Colon cancer cells C26

Combined
(resistance and

endurance training)

Resistance: climbing a
1-m ladder with 1.5-cm
grid steps and inclined

85◦ , aerobic using a
motorized wheel 25 min

from 5–9 m/min

Four weeks before tumor
implantation until 11 days
after injection of C26 cells

Decreased LC3BII/I ratio in
exercise C26 tumor-bearing mice

compared to C26 hosts, p62
steadily increased in C26 tumor

hosts and exercised C26
tumor-bearing mice

[18] Gastrocnemius
muscle and tumor

5 Ballaro et al.,
2019

Six-week-old male
BALB/c mice Colon cancer cells C26

Treadmill exercise
(mix resistance and
endurance training)

Custom motorized wheel
(radius = 16 cm), 45 min a

day, moderate speed
(11 m/min)

Adapted to motorized
wheel five days before

implantation, exercise three
days out of four, until

12 days after injection of
C26 cells

Decreased LC3BII/I ratio, p62
protein levels in gastrocnemius
muscles, and Map1LC3B, sqtm1,

ctsl1, and mRNA relative
expression in tibialis muscles of

exercised C26 tumor-bearing
mice compared to C26 hosts.

[17]
Gastrocnemius

and tibialis
muscles

6 Møller et al.,
2019 10 cancer patients

Seven breast cancer
patients, one head and
neck cancer, one rectal

cancer, one sarcoma
cancer patient

Combined
(resistance and

aerobic exercise)

Three 90-min sessions per
week: six resistance

exercises (knee extension,
leg press, lateral

pull-down, chest press,
back extension, and

sit-ups); aerobic:
ergometer bicycles

4–7 weeks after
chemotherapy until

10 weeks after a
combination of

chemotherapy and exercise

No change of LC3BII/I ratio,
p62, ULK1, and ATG5 in vastus

lateralis between the
combination of exercise and

chemotherapy alone, but they
all leveled off after exercise

[22] Vastus lateralis
muscle
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Table 1. Cont.

No Study Model Tumor Type/Induction
Model Exercise Modality Exercise Prescription Exercise Initia tion Results Reference Organs

7 Ballaro et al.,
2019

Female and male
six-week-old
BALB/c mice

Colon carcinoma cells
C26

Treadmill exercise
(mix resistance and
endurance training)

Custom motorized wheel
(radius = 16 cm), 45 min a

day, moderate speed
(11 m/min)

Adapted to motorized
wheel five days before

implantation, then:
exercise three days out of

four until 12 days after
injection of C26 cells;

exercise two days, rest one
day (chemo); and three
days, rest one day, until
28 days after injection

Decrease autophagy (Beclin-1,
LC3BI, and II, p62) in exercised
C26-bearing and C26 oxfu mice.

Improve mitochondrial mass
(PGC-1α, cytochrome c, and

SDHA, SDH activity, ATP
content), decrease mitophagy
(BNIP3 and PINK1, Park2) in

exercised C26 oxfu mice.
Increase fusion (Mfn2), no
change of Fis1 and Mfn1

(fission)

[61] Gastrocnemius
muscle

8 Fernandes, 2020 6–12-week-old male
BALB/c mice

Colon adenocarcinoma
cells CT26 Treadmill running Moderate AET 60 min

per day, five times/week
30 days before + 15 days

after injection

Increased BNIP3, LAMP2, and
ATG12 in CT26 mice, reduced

BNIP in cardiac muscles of CT26
exercise tumor-bearing mice

[19] Cardiac

9
Parry and
Hayward,

2018

Twelve-week-old
female Fischer

344 rats

A rat mammary gland
tumor cell line,
13762 MatBIII

Voluntary running Ad lib voluntary wheel
running

Four weeks before until two
weeks after tumor

implantation

Reduction of LC3II protein level
in wheel running tumor-bearing

rats compared to sedentary
tumor-bearing rats, but no

change in p62 protein levels

[20] Cardiac
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The study also investigated the potential therapeutic use of AICAR as an AMPK
activator that might induce autophagy by inhibiting mTOR while activating FoxO3A
and rapamycin as a specific inhibitor of mTOR; thus, these two drugs mimic the effects
of exercise [65–68]. AICAR and rapamycin were given by peritoneal injection to two
groups, one of C26 tumor-bearing mice and one of controls, and the result showed that
the two drugs prevented skeletal muscle wasting and reduction of body weight in C26
tumor-bearing mice. The role of autophagy in this process was ruled out by the finding
of increased LC3II/LC3I and p62/GAPDH protein levels, as well as an in vitro study
using C2C12 myotubes treated with C26 cells and chloroquine, which showed worsening
muscular atrophy as a result of inhibited autophagy [16].

It was concluded that autophagy directly induced atrophy of the skeletal muscle
in cancer cachexia [16], a finding that was supported by other studies that claimed that
increased autophagy is correlated with muscular atrophy and the deleterious effect of
blocking autophagy in cancer cachexia [32,69]. Voluntary wheel running and treatments
with AICAR and rapamycin were suggested to counteract cachexia by correcting the
previously disturbed autophagic flux [16].

Morinaga et al. designed a study using 10–11-week-old female wild-type BALB/c
mice injected with C26 colon cancer. Treadmill running was performed 30 min/day, five
days/week, 12 m/min, until four weeks after tumor injection. Aerobic exercise increased
the cross-sectional area and improved muscle atrophy in the tibialis anterior and gastrocne-
mius muscles; however, it failed to decrease weight reduction in the soleus muscle. The
difference in effect might be influenced by the dominant fibers in each skeletal muscle.
Protein synthesis signaling (p-Akt, p-mTOR, p70S6, and 4EBP-1) and adiponectin-related
genes (adiponectin, AdioR1, and APPL1) were found to have significantly increased after
aerobic exercise; meanwhile, LC3II was not significantly decreased, suggesting that aerobic
exercise might not be sufficient to restore autophagy to the basal level in the early stage
of cachexia. Adiponectin is a hormone produced by adipose tissue that plays important
roles in lipid metabolism, vascular remodeling, and insulin sensitivity [21,70,71]. Research
confirmed the role of adiponectin in cancer cachexia through an in vitro study by admin-
istering recombinant adiponectin on C2C12 myotubes with an added C26-conditioned
medium. This recombinant adiponectin treatment resulted in increased p-Akt, p-mTOR,
and p70S6, and decreased LC3II expression. It was suggested that adiponectin plays a
potential role in decreasing autophagy by activating mTOR. Pigna et al. and Morinaga et al.
showed a slight difference in autophagy modulation by aerobic exercise depending on the
exercise protocols and cachexia stage [21].

3.2. Resistance Exercise Training Modulates Autophagy in the Skeletal Muscle of Cancer
Cachexia Animals

As a well-known type of exercise that stimulates muscle hypertrophy, resistance
training is predicted to be more beneficial than aerobic exercise for counteracting cachexia;
however, further investigation is needed to support this hypothesis [13]. Resistance training
is proven to upregulate the phosphorylation of the Akt-mTOR/p70 pathway [72,73] and
synthesis of myofibrillar protein, thus increasing the contractility property of skeletal
muscle [74,75]. One study compared aerobic and resistance training in cancer cachexia,
but found no difference in the effect for preventing body mass reduction or improving the
skeletal muscle fiber area in the C26 mouse model of cancer cachexia, despite its effect in
increasing the mRNA levels of IGF-1 and myogenin [76].

Neves et al. designed a short-term resistance exercise training (RET) plan, using a
canvas jacket to fix rats to the apparatus while performing a “squat-like movement” with
electrical stimulation. The intensity was a 65% maximum lifted weight and three sets
of 10 repetitions in the period of the “survival window” (±18 days). The overload was
decreased 20% during tumor progression if the animal was incapable of finishing the
RET set. The tumor was induced by injecting Walker 256 cells into the bone marrow of
male Wistar rats, and the plantaris and extensor digitorum longus (EDL) muscles’ atrophy
was detected 15 days after the injection. The study concluded that RET was not effective
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in improving skeletal muscle wasting caused by cancer cachexia. Atrogin-1 and MuRF1
protein levels were unchanged between the control and tumor groups, but the p62 protein
and LC3II/LC3I ratio were increased in tumor groups compared with control and exercise
groups. These effects suggest an imbalance or dysregulation of autophagy during cachexia
progression. For intensity, this study failed to perform a high-intensity RET protocol on
tumor-bearing rats. Nevertheless, this study succeeded in confirming that the mortality of
rats with cancer cachexia was associated with the loss of strength capacity [23].

3.3. Combined Exercise Modulates Autophagy in the Skeletal Muscle of Cancer Cachexia Animals

Considering the different effects of various exercise types on cancer cachexia, a combi-
nation of different types of exercise could provide a better result for counteracting cancer
cachexia. Combined exercise downregulates inflammation, improves body composition,
and increases the strength of skeletal muscle, more than resistance or aerobic exercise
alone [18,77–80].

Ranjbar et al. investigated the effect of combined exercise (resistance and endurance
exercises) on tumor-bearing male BALB/c mice that had been inoculated with C26 carci-
noma cells. The combined exercise consisted of aerobic and resistance exercise sessions,
conducted from four weeks before until 11 days after tumor inoculation. Resistance exer-
cise in the study was conducted using a one-meter ladder and 85◦ inclination, with three
sets of two repetitions without electrical stimulation. A motorized wheel was used in the
aerobic exercise, 3 × 10 min per day, with five meters/min. The results showed a decreased
LC3BII/LC3B1I ratio of protein levels and an increased mRNA relative expression of LC3B
in the tibialis muscles of combined exercised C26 tumor-bearing mice compared with
C26 hosts. The research showed that combined exercise was effective in modulating the
sequestration of autophagy. As for the p62 levels, there was no change between sedentary
C26 hosts and combined exercised C26 tumor-bearing mice, and the protein levels and
mRNA relative expression of p62 remained high in both groups. However, the changes of
Atrogin-1 and MuRF1 mRNA relative expression found in gastrocnemius muscles were
only marginal; the researchers only found a reduction that was close to significant between
C26 hosts and combined exercised C26 tumor-bearing mice [18].

Another factor contributing to cancer cachexia is an impaired redox balance that
might influence mitochondrial function [17,81]. A low level of reactive oxygen species
(ROS) is needed to maintain skeletal muscle function and homeostasis, but a high level of
ROS induces cellular damage that leads to dysfunction and disrupted homeostasis in the
skeletal muscle [82,83]. Increased ROS was found in animals with cancer cachexia, which
proved to be correlated with protein degradation in the skeletal muscle [84–86]. Studies
have shown that ROS induces autophagy and that autophagy delivers negative feedback
for ROS production [83]. After ROS is produced in mitochondria and by Nox isoform
2, it activates or inhibits autophagy through PIK3K/Akt/mTORC1, p38/p53, AMPK,
and FOXO3-BNIP [83,87–90]. Autophagy impairment in cancer cachexia induces protein
accumulation that promotes mitochondrial damage and finally increases ROS production
even more [83,91].

The effects of exercise on restoring the redox balance depend on the type, intensity,
and timing of the exercise [17]. Moderate-intensity exercise induces metabolic adaptation
in correlation with antioxidant capacity, thus decreasing systemic inflammation [17,92,93].
Ballaro et al. designed a study using male BALB/c mice injected with C26 colon carcinoma
cells and engaged in combined moderate exercise using a custom motorized wheel with
11 m/min speed, uphill, for 45 min a day, three days out of four, until 12 days after
tumor inoculation. They studied the effects of exercise on relieving muscle wasting and
function and on the redox imbalance, autophagy, mitochondrial mass, and mitophagy. The
results showed a decrease in LC3BII, the LC3II/LC3I ratio, and p62 protein levels in the
gastrocnemius muscles of exercised C26 tumor-bearing mice, although the p62 protein
level did not significantly differ from that in C26 hosts; this might be caused by the high
variability intragroup. The same pattern was also observed for Map1lc3b, sqtm1, and
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Ctsl1 mRNA’s relative expressions in the tibialis muscles of exercised C26 tumor-bearing
mice; however, no effects for the Lamp2 and Beclin-1 mRNA’s relative expressions were
found. An increase of the Beclin-1 protein level in C26 hosts was observed when compared
with the sedentary controls, although there was no difference when compared with the
exercised C26 tumor-bearing mice [17]. The study also found that ROS levels were reduced,
the Nrf2/Keap1 ratio steadily unchanged, and GSH levels altered in exercised C26 tumor-
bearing mice compared with controls, suggesting that moderate exercise only partially
restored the redox and autophagy dysregulation [17].

Oxidative stress damaged mitochondria, the degradation of which was mediated
by mitophagy [94]. Increased PINK1, as a mitophagy marker in C26 hosts, confirmed
the increased level of mitophagy in cancer cachexia, although exercise did not change
it. BNIP3, another mitophagy marker, was found upregulated only in exercised healthy
mice, although there were no differences in C26 tumor-hosts and exercised C26 tumor-
bearing mice when compared with sedentary controls [17]. The degradation process of
mitochondria must be followed by mitochondrial biogenesis to achieve mitochondrial
homeostasis [95]. Mitochondrial biogenesis and mass were found to be increased by
exercise in C26 tumor-bearing mice, confirmed by increases of the PGC1α and cytochrome
c protein levels, which suggested effective mitochondrial turnover [17].

3.4. Exercise Modulates Autophagy in the Skeletal Muscle of Chemotherapy-Induced
Muscle Wasting

As one of the anticancer treatments, chemotherapy is correlated with well-known
side effects such as nausea, vomiting, fatigue, and anorexia. Its molecular mechanism
increases protein catabolism, damages the mitochondria, and induces skeletal muscle
wasting [96–98]. Autophagy modulation by exercise in cancer cachexia patients treated
with chemotherapy should be considered as a means to improve their quality of life. Ballaro
et al. designed exercises that were mentioned previously in this paper to compare the effect
of 28 days of chemotherapy with or without combined moderate exercise after C26 tumor
injection in female and male six-week-old BALB/c mice. The chemotherapy regimens used
were oxaliplatin and 5-fluorouracil (oxfu), with protocols based on previous studies that
prolonged the survival rate in an animal model [99,100]. Exercise improved muscle wasting
in C26 tumor-bearing and C26 oxfu mice; meanwhile, at six to eight weeks after tumor
inoculation (late phase of cancer cachexia), exercise intolerance correlated with a shorter
survival rate was provoked. Exercise also decreased proteolysis, which was confirmed
by decreased autophagy (Beclin-1, LC3BI, and LC3BII gene expression, and p62 protein
level) without an increase in protein synthesis (p-Akt, S6, p-AMPK) in C26 tumor-bearing
and C26 oxfu mice. A further change in mitochondrial homeostasis was also investigated,
and exercise was found to improve the mitochondrial mass (PGC-1α, cytochrome c, SDHA
protein levels, SDH activity, and ATP content) and decrease mitophagy (BNIP3 and PINK1
protein levels and Park2 gene expression) in C26 oxfu mice. Improved mitochondrial
function was also supported by an increase in Mfn2 gene expression indicating fusion,
with no change in Fis1 and Mfn1 gene expression indicating fission, in exercised C26 oxfu
mice [61].

Another study in patients with different types of cancer treated with chemotherapy
attempted to investigate the molecular signaling pathways behind combined exercise to
prevent muscle wasting. Ten female patients with cancer in comparison with ten healthy
subjects were biopsied three times. The exercise protocol consisted of aerobic and resistance
exercises (knee extension, leg press, etc.) and an aerobic exercise (ergometer bicycles) with
progressively increased intensities. The results showed an increase of type II muscle fibers,
but no change in type I muscle fibers, found together with increased strength of the knee
and elbow extensor muscles. Exercise increased metabolism (GLUT4); however, there was
no change in mitochondrial proteins (p-AMPK, Cyt-C, COX-IV, PDH, SDHA, and VDAC).
Autophagy (LC3BII/LC3BI, ATG5, ULK1), the UPS system (FOXO3, MURF1, ATROGIN-
1), and protein synthesis (mTOR, 3EBP1, S6rp) were dysregulated during chemotherapy,
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but exercise leveled off their levels, proving its potential benefit in preventing further
disruption by chemotherapy and cancer cachexia [22].

3.5. Exercise Modulates Autophagy in the Cardiac Muscle of Cancer Cachexia Animals

Cancer cachexia induces wasting not only in the skeletal muscle but also in the
cardiac muscle because cardiac remodeling leads to cardiac dysfunction [34]. Cardiac
wasting occurs because of cytokines released by the tumor, the release of danger-associated
molecular patterns, decreased insulin signaling, and autophagy [34,101–103]. Cardiac
cachexia might be prevented by modulating those mechanisms. Aerobic exercise training
has been proposed as a part of strategic plans against cardiac cachexia, for prevention and
treatment [104]. Limited studies have proven the benefits of aerobic exercise for treating
cardiac cachexia in cancer animal models [19,20,105–107].

Using CT26 (colon adenocarcinoma) injected in the right flank of male BALB/c mice,
Fernandes et al. explored the impact of aerobic exercise with moderate intensity on tumor-
bearing mice. Aerobic exercise was performed for 60 min per day, five times a week, at
a 60% maximum speed, from 30 days before until 15 days after tumor injection. Cardiac
cachexia was found in CT26 tumor-bearing mice, which was confirmed by the decrease
of cardiomyocyte diameter, left ventricle ejection fraction, necrosis, and fibrosis that was
attenuated by aerobic exercise. Fibrosis attenuation was shown by a decrease in TGF-
β1 mRNA levels in exercised CT26 tumor-bearing mice. As for autophagy, the study
found an upregulation of ATG7, BNIP3, and LAMP2 mRNA levels in the cardiac tissues
of CT26 mice [19]. BNIP3 plays the main role in regulating autophagy, mitochondrial
function, and necrosis, especially in cardiac cells [19,108,109]. After 45 days of moderate
treadmill exercise, there was a reduction in the mRNA levels of BNIP3, which supported
the hypothesis that aerobic exercise training might be beneficial in reducing the cardiac
remodeling of cancer cachexia by modulating autophagy [19]. The study also found
restoration of mitochondrial complex II and IV after aerobic exercise, which proved its
benefits for mitochondrial homeostasis, leading to better control of protein quality in heart
failure that may evoke in cardiac cachexia [19,110].

Parry and Hayward used mammary adenocarcinoma MAT-B-III to induce cardiac
cachexia in female Fischer 344 rats. Aerobic exercise in the form of voluntary wheel running
was performed four weeks before until two weeks after tumor injection. At the end of the
study, sedentary tumor-bearing rats displayed cardiac atrophy and impairment of cardiac
function, accompanied by a shift from αMHC to βMHC and increased autophagy flux (an
increase of LC3II and a decrease of p62 protein levels). Exercised tumor-bearing rats showed
no cardiac atrophy, preserved cardiac function, decreased shifting from αMHC to βMHC,
and reduced LC3BII with no change of p62 protein levels, which emphasized a decrease
in autophagosome formation that might be correlated with autophagy attenuation [20].
The upregulation of autophagy under specific conditions, such as cardiac ischemia, has a
positive impact on cardiac function, but maladaptive autophagy in cancer can induce fibro-
sis and cardiac dysfunction that eventually lead to heart failure [20,111,112]. Considering
the different effects of exercise type on cancer cachexia, a combination of different types of
exercise could provide a better result for counteracting cancer cachexia. Combined exercise
downregulates inflammation, improves body composition, and increases the strength of
skeletal muscle, more than resistance or aerobic exercise alone [18,77–80].

3.6. Exercise Modulates Autophagy and Potentially Influences Liver Metabolism in
Cancer Cachexia

As cancer cachexia induces muscle wasting in the skeletal and cardiac muscles, it
induces energy-wasting in the liver. A study by Donatto et al. showed that eight weeks
of RET improved the plasma profile, reduced steatosis by increasing liver fat oxidation,
decreased the TNF-α/IL-10 ratio, and increased the levels of anti-inflammatory myokines
such as IL-6 and IL-10 [113]. Endurance training also showed similar results in the liver
and adipose tissue [113–116]. For intensity, moderate and high intensities are suggested
to modulate liver metabolism [114–117]. The study by Guarino et al. proved that exer-



Life 2021, 11, 781 12 of 17

cise could increase autophagy (increase of LC3BII/LC3BI ratio and PINK1 and tendency
toward mTOR and ATG5 downregulation) in the liver. They also found that impeded
tumorigenesis leads to hepatocellular carcinoma, as confirmed by a decrease in liver nod-
ules found after exercise plus NASH (Nonalcoholic Steatohepatitis) [118]. Nevertheless,
autophagy modulation after exercise in the liver of cancer cachexia remains unclear. Fur-
ther investigation might reveal the best type, intensity, and duration of exercise to cope
with dysregulation of lipid metabolism that might induce liver steatosis in cancer cachexia
through autophagy modulation.

4. Conclusions

Exercise modulates autophagy in skeletal and cardiac muscles and its potential to
influence liver metabolism in cancer cachexia is presented in Figure 2. Careful evaluation
and personalization before choosing the type, intensity, and duration of exercise to cope
with cancer cachexia might leverage the benefits of exercise. Research into the molecular
mechanism of autophagy modulation by exercise based on different exercise types has
shown that combined or aerobic exercise alone is better at restoring the disbalance of
production and the clearance of autophagy, which is believed to induce muscle wasting.
Restoring autophagy was also correlated with increased anti-inflammatory responses
and mitochondrial dynamics related to mitophagy; it prevented further disruption by
chemotherapy, improved cardiac cachexia, and could potentially interfere with steatosis
prevention and energy-wasting in the liver. Further studies into the molecular mechanism
behind autophagy modulation after exercise in cancer cachexia are still needed. Using
exercise mimetics for those who experience exercise intolerance might be considered as
an alternative for treating cancer cachexia. In conclusion, “tailor-made” exercise for each
patient experiencing cancer progression seems to be the best option to counteract cancer
cachexia in the future.
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