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Background: Magnetic resonance imaging is a key diagnostic and monitoring tool in

multiple Sclerosis (MS). While the substrates of motor and neuropsychological symptoms

in MS have been extensively investigated, nystagmus-associated imaging signatures are

relatively under studied. Accordingly, the objective of this study is the comprehensive

characterisation of cortical, subcortical, and brainstem involvement in a cohort of MS

patients with gaze-evoked nystagmus.

Methods: Patients were recruited from a specialist MS clinic and underwent multimodal

neuroimaging including high-resolution structural and diffusion tensor data acquisitions.

Morphometric analyses were carried out to evaluate patterns of cortical, subcortical,

brainstem, and cerebellar gray matter pathology. Volumetric analyses were also

performed to further characterize subcortical gray matter degeneration. White matter

integrity was evaluated using axial-, mean-, and radial diffusivity as well as fractional

anisotropy.

Results : Whole-brain morphometry highlighted considerable brainstem and cerebellar

gray matter atrophy, and the tract-wise evaluation of white matter metrics revealed

widespread pathology in frontotemporal and parietal regions. Nystagmus-associated

gray matter degeneration was identified in medial cerebellar, posterior medullar, central

pontine, and superior collicular regions. Volume reductions were identified in the

putamen, thalamus and hippocampus.

Conclusions: Multiple sclerosis is associated with widespread gray matter pathology

which is not limited to cortical regions but involves striatal, thalamic, cerebellar, and

hippocampal foci. The imaging signature of gaze-evoked nystagmus in MS confirms the

degeneration of key structures of the neural integrator network.
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INTRODUCTION

Magnetic resonance (MR) imaging plays a central role in the
diagnosis and monitoring of multiple sclerosis (MS) and is
a key outcome measure of phase III clinical trials. While
clinical radiology continues to focus on the estimation of white
matter (WM) lesion load, recent imaging studies have been
increasingly successful in capturing progressive cortical gray
matter (GM) degeneration (1). Cortical pathology in MS has
been evaluated by a variety of imaging techniques, including
quantitative susceptibility mapping, (2) perfusion MR, (3, 4)
magnetisation transfer ratio imaging, (5) proton spectroscopy
(6) and functional network analyses (7). The drawback of these
techniques is that they require carefully optimized sequences,
time consuming data acquisitions and complex post-processing
pipelines which make them better suited for research purposes
than everyday clinical applications.While subcortical graymatter
degeneration in MS has been associated with a number of non-
motor symptoms, such as fatigue, (8–10) memory impairment,
(11, 12) and depression, (13) these structures are difficult to
evaluate qualitatively in a clinical setting. Cerebellar imaging in
MS has also overwhelmingly focused on white matter metrics,
even though cerebellar gray matter degeneration have been
linked to motor disability, (14) impaired information processing,
(15), and falls (16).

The pathological substrate of non-motor features of MS,
such as pseudobulbar affect, fatigue, apathy, eye-movement
disturbances, and neuropsychological deficits are relatively
poorly characterized in contrast to the plethora of imaging
studies focusing on motor disability and gait impairment. It
is widely recognized that white matter pathology alone does
not account for the heterogeneity of clinical manifestations in
MS and that cortical and subcortical gray matter pathology
contribute substantially to extra-motor deficits (17). While gaze-
evoked nystagmus (GEN) is a common manifestation of MS,
it is seldom evaluated specifically in dedicated imaging studies
(18, 19). Nystagmus has considerable quality of life implications,
it impacts on rehabilitation efforts, ability to work, reading,
using computers, watching television, driving, and operating
machinery (20). Additionally, nystagmus in MS has been linked
to headaches, difficulties with concentration, and distractibility.
GEN is widely regarded as a specific manifestation of neuronal

Abbreviations: AD, Axial diffusivity; BG, Basal ganglia; CST, Corticospinal tract;

DTI, Diffusion tensor imaging; EBN, Excitatory burst neurons; EDSS, Expanded

Disability Status Scale; EPI, Echo-planar imaging; EPN, End-point nystagmus;

FA, Fractional anisotropy; FAST, FMRIB’s Automated Segmentation Tool; FDR,

False discovery rate; FLAIR, Fluid-attenuated inversion recovery; FLIRT, FMRIB’s

Linear Image Registration Tool; FOV, Field-of-view; FEW, Familywise error;

GEN, Gaze-evoked nystagmus; GM, gray matter; HC, Healthy control; MD, mean

diffusivity; MLF, Medial longitudinal fasciculus; MNI152, Montreal Neurological

Institute standard space; MS, Multiple sclerosis; MVN, Medial vestibular nucleus;

NIN, Neural integrator network; NPH, Nucleus prepositus hypoglossi; PPMS,

Primary progressive MS; PPRF, Paramedian pontine reticular formation; RD,

Radial diffusivity; ROI, Region-of-interest; RRMS, Relapsing-remitting MS;

SBM, Surface-based morphometry; SC, Superior colliculus; SPMS, Secondary

progressive MS; TBSS, Tract-based spatial statistics; TE, Echo time; TFCE,

Threshold-free cluster enhancement; TI, Inversion time; TR, Repetition time;

T1WI, T1-weighted imaging; VBM, Voxel-based morphometry; WM, White

matter.

integrator dysfunction, which provides insufficient discharge
to fixate at an eccentric position, resulting in a drift to the
primary gaze position and triggering a corrective saccade (21).
Traditionally, an upper, middle and lower saccade pathway is
distinguished, where the upper pathway contributes to saccade
initiation and target setting (22, 23). The middle saccade pathway
originates from the superior colliculus (SC) and innervates
the lower saccade pathway which triggers the excitatory burst
neurons (EBNs) in the paramedian pontine reticular formation
(PPRF). The horizontal neural integrator is primarily located in
the nucleus prepositus hypoglossi (NPH), and to a lesser extent in
the medial vestibular nucleus (MVN) (22, 24). Pharmacological
treatment options for GEN are limited (25). Baclofen is thought
to increase the action potentials of Purkinje cells, thus enhancing
neural step integrator firing (26, 27). Other drugs, such as
Clonazepam, Gabapentin and memantine are often tried with
varying efficacy (28, 29). Despite its high incidence, limited
therapeutic options and quality of life implications, GEN inMS is
surprisingly under investigated in MRI studies. Accordingly, we
have undertaken a prospective imaging study of a cohort of MS
patients who all had horizontal gaze-evoked nystagmus to assess
cerebellar, brainstem, and subcortical gray matter degeneration
in addition to white matter alterations.

METHODS

Participants
A prospective multimodal neuroimaging study was undertaken
with the participation of 31 multiple sclerosis patients and 20
age-matched healthy controls. Patients with multiple sclerosis
were recruited from a specialist MS clinic in a tertiary referral
center in St James’s Hospital Dublin. Inclusion criteria included
an established diagnosis of MS and persistent horizontal gaze-
evoked nystagmus on clinical assessment. Patients were only
included if they had had horizontal gaze-evoked nystagmus
(GEN), (30) sustained, large amplitude, non-pendular, jerk
nystagmus while attempting to maintain an eccentric eye
position (30, 31). GEN and is easily distinguishable from
physiological end-point nystagmus (EPN) and to ensure
assessment uniformity all patients were assessed by the
same experienced neurologist. Exclusion criteria included
internuclear ophthalmoplegia, intracranial pathology other
than MS, previous cerebrovascular events, prior neurosurgical
intervention, uncontrolled hypertension, in addition to standard
MR safety exclusion criteria. Based on the above criteria one
healthy control was excluded due to an incidental intracranial
finding; a meningioma, and one control’s T1-weighted structural
data could not be included due to movement artifacts. Nine MS
patients have been excluded from diffusion tensor analyses due
to poor quality raw data. All participants provided informed
written consent in accordance with the ethics (IRB) approval of
this study. The clinical and demographic profile of participants is
summarized in Table 1.

MRI Data Acquisition
Magnetic resonance (MR) data were acquired on a 3 Tesla
Philips Achieva system using an 8-channel receive-only head
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TABLE 1 | Demographic and clinical characteristic of patients and healthy controls.

Neuroimaging data 3D structural T1-weighted data 32 Direction diffusion tensor imaging data

Imaging analyses Voxel based morphometry

morphometry (cortical thickness)

Subcortical gray matter volumes

Axial diffusivity (AD)

Radial diffusivity (RD) Mean diffusivity (MD)

Fractional anisotropy (FA)

Cohort Controls MS Controls MS

n 18 31 19 22

Mean age ± SD (y) 46.556 ±

12.6036

42.774 ±

8.6360

p = 0.219 47.211 ±

13.8547

43.955 ±

8.0621

p =0 .355

Gender, Male, n (%) 3 (16.7%) 8 (25.8 %) χ
2
= 0.148

p = 0.701

4 (21.1 %) 5 (22.7 %) χ
2
= 0.00

p = 1

Handedness, Right, n (%) 16 (88.88 %) 28 (90.32 %) χ
2
= 0.00

p = 1

17 (89.47 %) 20 (90.9 %) χ
2
= 0.00

p = 1

EDSS Median

Range

Interquartile range

N/a 3.5

1 – 6.5

2 - 6

N/a 4

1 – 6.5

2 - 6

Bidirectional/Unidirectional

nystagmus

18 / 13 13 / 9

Mean disease duration ±

Std. Deviation (y)

N/a 7.548

± 4.2177

N/a 8.273 ±

4.1768

Type of MS n (%) N/a RRMS 27 (87.1 %)

SPMS 4 (12.9 %)

N/a RRMS 20 (90.9 %)

SPMS 2 (9.1 %)

PPMS, primary progressive MS; ROI, Region-of-interest; RRMS, relapsing-remitting MS; SPMS, secondary progressive MS.

coil. T1-weighted images were acquired using a 3D volumetric
fast gradient echo sequence with, spatial resolution = 1 ×

1 × 1 mm3, field-of-view (FOV) of 240 × 240 × 163mm,
TR/TE = 25/2.1ms, flip angle = 30◦, SENSE factor = 2.
Following file conversions and quality assessments, T1-weighted
structural data were analyzed for 31MS patients and 18 healthy
controls. The parameters for fluid attenuated inversion recovery
(FLAIR) imaging were the following: TR/TE, 11000/125ms;
TI: 2,800ms; turbo factor: 31; refocusing angle; 120◦; spatial
resolution: 0.5 × 0.5 × 4mm; SENSE: no. Diffusion tensor
images (DTI) were acquired using a spin-echo planar imaging
(SE-EPI) sequence with a 32-direction Stejskal-Tanner diffusion
encoding scheme: FOV = 140 × 244 × 244mm, 70 slices
with no inter-slice gap, spatial resolution = 2 × 2 × 2 mm3,
TR/TE = 12285/55ms, SENSE factor = 2, b-values = 0, 1000
s/mm2, with SPIR fat suppression and dynamic stabilization in
an acquisition time of 8min 16 s. Following file conversions and
quality assessments, diffusion tensor data was pre-processed for
22MS patients and 19 healthy controls.

Gray Matter Analyses
In order to reduce the effect of white matter (WM) lesions on
tissue-type segmentation (32–34) and subsequent volumetric and
morphometric analyses, lesion mapping and lesion filling was
implemented on each participant’s imaging data. White matter
lesions were segmented by a single rater on FLAIR images
and individual lesion masks were created for each participant
using FMRIB’s FSLeyes. Each subject’s FLAIR image was co-
registered onto their 3D T1-weighted structural image using
FMRIB’s Linear Image Registration Tool (FLIRT) (35, 36) and
the resulting transformation matrix was then applied to the

lesion map for registration onto the 3D T1-weighted image.
The FSL lesion filling tool (34) was used to reduce intensity
contrast within known lesion areas and thereby improve the
accuracy of brain segmentation. This method uses the original
T1-weighted structural image and the co-registered lesion mask
to fill lesions with intensities matching the surrounding normal-
appearing WM and has been shown to reduce tissue-type
misclassification and improve the accuracy of subsequent brain
volume measurements (34).

A dual approach was undertaken to comprehensively evaluate
patterns of gray matter pathology; surface-based morphometry
was carried out to identify focal cortical thinning and voxel-
based morphometry (VBM) was performed to explore regional
density alterations. For cortical thickness measurements, the
FreeSurfer image analysis suite was used (37). The pre-processing
pipeline included the removal of non-brain tissue, segmentation
of the subcortical white matter and deep gray matter structures,
intensity normalization, tessellation of the gray matter-white
matter boundary, and automated topology correction (38).
False Discovery Rate (FDR) corrections were used for group
comparisons, statistical threshold set at p < 0.05 and contrasts
were adjusted for both age and gender. The FMRIB’s software
library (FSL) (39) was used to perform VBM (40). Subsequent
to brain extraction and tissue-type segmentation, gray-matter
partial volume images were aligned to the MNI152 standard
space using affine registration. The gray matter partial volume
estimates were non-linearly co-registered to a study-specific
template, modulated by a Jacobian field warp and smoothed
with an isotropic Gaussian kernel with a sigma of 3mm. The
threshold-free cluster-enhancement (TFCE) method (41) and
permutation-based nonparametric inference were used for the
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comparison of MS patients and healthy controls controlling
for age and gender (42, 43). The statistical significance was
set at p < 0.05 family-wise error (FWE). Total intracranial
volume (TIV) was estimated for each participant by linearly
aligning the subject’s skull-stripped brain to the MNI152 space,
computing the inverse of the determinant of the affinematrix and
multiplying it by the size of the template. Following registration
to template with FSL-FLIRT (35, 36), tissue type segmentation
was undertaken using FSL-FAST (44).

Subcortical Gray Matter Analyses
In order to comprehensively evaluate subcortical gray matter
degeneration, structures which exhibited density reductions
on VBM were further evaluated by volumetric analyses using
subcortical segmentation. Following standard pre-processing
steps, the subcortical segmentation and registration tool FIRST
(45) of the FMRIB’s Software Library was used to estimate
volumes of the thalamus, hippocampus, putamen, and brainstem.
Pipelines for subcortical segmentation and volume estimations
were previously described (46). Briefly, FSL-FIRST uses a two-
stage affine registration algorithm to register input T1 data sets
to the Montreal Neurological Institute 152 (MNI152) standard
space and a model-based approach is then implemented for
the segmentation of subcortical structures. Subcortical mesh
and volumetric outputs are generated following automatic
boundary corrections. Exploratory comparative statistics were
carried out with IBM’s SPSS Statistics version 22. Analyses of
covariance (ANCOVA) were conducted to compare volumes
of subcortical structures between study groups. Assumptions
of normality, linearity and homogeneity of variances were
verified. Volumes of subcortical gray matter structures were
included as dependent variables, and study group allocation as
the categorical independent variable. Age at the time of MRI
scan, gender, and total intracranial volume (TIV) were used as
covariates. Following Bonferroni corrections, a p < 0.0125 was
considered significant. Effect-sizes were calculated using partial
Eta squares (η2). For illustrative purposes, boxplots of volumes
were generated to highlight inter-group volumetric differences
for each structure.

White Matter Analyses
Total lesion load volume was estimated based on skull-striped
FLAIR images using the pipeline described by Wetter et al.
(47) in FMRIB’s FSL environment. Pre-processing of raw
diffusion tensor imaging (DTI) datasets included eddy current
corrections, motion corrections and brain-tissue extraction using
FSL (48). Subsequent to fitting a diffusion tensor model,
maps of axial diffusivity (AD), radial diffusivity (RD) mean
diffusivity (MD), and fractional anisotropy (FA) were generated.
Tract-based spatial statistics (TBSS) and permutation-based
nonparametric inference was used to compare the white
matter profile of controls and patients applying the threshold-
free cluster enhancement (TFCE) method (41, 49). Voxels
from spatially co-registered binary lesion masks were excluded
from the TBSS analyses. Design matrices included age and
gender as covariates, and statistical significance was set at

p < 0.0125 FWE to correct for testing for four diffusivity
parameters.

In addition to the above quantitative analyses and whole-
brain lesion load estimation, infratentorial lesion patterns were
also evaluated visually based on FLAIR hyperintensities and
the percentage of patients with lesions in the mesencephalon,
pons, medulla, cerebellar peduncles, cerebellar hemispheres were
documented.

RESULTS

Gray Matter Analyses
While surface-based morphometry did not identify statistically
significant cortical thickness alterations in our MS cohort,
voxel-based morphometry highlighted a pattern of gray
matter degeneration involving bilateral cerebellar, brainstem,
and medial thalamic regions. Additional subcortical gray
matter pathology was identified in the left putamen and left
hippocampus. At p < 0.05 FWE, no frontal, parietal, or temporal
cortical changes have been captured (Figure 1).

White Matter Analyses
The mean lesion load volume was 0.86 ± 0.34% of brain
tissue volume (9.78 ± 4.07mL) in the 31MS patients who had
structural data and 0.81 ± 0.32% of brain tissue volume (9.31 ±
4.04mL) in the 22MS patients who had diffusion tensor imaging
data.

Tract-based spatial statistics confirmed widespread multi-
lobar white matter degeneration for all four diffusivity metrics
at p < 0.0125 FWE, defining the statistical threshold based
on Bonferroni adjustments (Figures 2–5). The most widespread
diffusivity changes were identified by axial diffusivity (AD)
analyses (Figure 2). Statistical maps of fractional anisotropy
(FA) only identified relatively focal changes confined to the
body of the corpus callosum, left superior corticospinal tract,
and the occipital lobe at this threshold (Figure 3). Maps of
mean diffusivity (MD) highlighted symmetric frontal, parietal,
temporal, and occipital white matter alterations (Figure 4)
which were more widespread than those observed on radial
diffusivity (RD) maps (Figure 5). Interestingly, none of the
four diffusivity metrics captured infratentorial white matter
changes in the brain stem or cerebellum at the above statistical
thresholds.

FLAIR hyperintensities were detected in the mesencephalon
in 22.5% of the patients, in the pons in 25.8% of the patients, in
the medulla in 19.3% of the patients, in the cerebellar peduncles
in 29% of the patients, in the cerebellar hemispheres in 35.4%
of the patients. No obvious infratentorial FLAIR hyperintensities
were visible in 54.8% of the patients.

Subcortical Gray Matter Volumes
Subcortical structures highlighted by voxel-based morphometry
were further evaluated by volume estimations. Post-hoc
comparisons of subcortical gray matter volumes (ANCOVA)
highlighted significant putamen volume reductions in MS
patients compared to controls. Considering the Bonferroni
corrected threshold of p < 0.0125 a trend of thalamic (p= 0.017)
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FIGURE 1 | Patterns of gray matter atrophy in multiple sclerosis patients with gave-evoked nystagmus compared to healthy controls identified by voxel-based

morphometry at p < 0.05 FWE adjusted for age and gender. Representative axial, coronal, and sagittal views are presented with corresponding MNI coordinates.

FIGURE 2 | Patterns of increased axial diffusivity (AD) in multiple sclerosis patients with gave-evoked nystagmus compared to healthy controls at p < 0.0125 FWE

adjusted for age and gender following tract-based spatial statistics. Representative axial, coronal, and sagittal views are presented with corresponding MNI

coordinates.
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FIGURE 3 | Patterns of decreased fractional anisotropy (FA) in multiple sclerosis patients with gave-evoked nystagmus compared to healthy controls at p < 0.0125

FWE adjusted for age and gender following tract-based spatial statistics. Representative axial, coronal, and sagittal views are presented with corresponding MNI

coordinates.

FIGURE 4 | Patterns of increased mean diffusivity (MD) in multiple sclerosis patients with gave-evoked nystagmus compared to healthy controls at p < 0.0125 FWE

adjusted for age and gender following tract-based spatial statistics. Representative axial, coronal, and sagittal views are presented with corresponding MNI

coordinates.
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FIGURE 5 | Patterns of increased radial diffusivity (RD) in multiple sclerosis patients with gave-evoked nystagmus compared to healthy controls at p < 0.0125 FWE

adjusted for age and gender following tract-based spatial statistics. Representative axial, coronal, and sagittal views are presented with corresponding MNI

coordinates.

and hippocampal (p = 0.014) atrophy was also identified.
Table 2. The volumetric profiles of the four subcortical gray
matter regions are further illustrated by box plots in Figure 6.

DISCUSSION

Our findings highlight extensive cerebellar, brainstem and
subcortical gray matter degeneration in a cohort of MS
patients with gaze-evoked nystagmus. We also show extensive
supratentorial white matter degeneration using four diffusivity
measures. Cerebellar and brain stem degeneration in our
cohort is dominated by gray matter pathology which was
readily identified by standard, whole-brain analysis pipelines.
Our supplementary volumetric analyses have captured thalamic,
putaminal, and hippocampal pathology.

Gray Matter Findings
Our standard morphometry analyses revealed bi-thalamic,
bi-cerebellar and brainstem density reductions consistent
with established nystagmus-associated anatomical foci.
Additional gray matter degeneration was identified in
the left putamen and left hippocampus. “Whole-brain”
morphometry did not identify additional cortical pathology
in either hemisphere. Similarly, surface-based morphometry
did not identify cortical thickness alterations over the cerebral
convexities.

Brainstem density reductions in the mesencephalon included
the superior colliculus, a key structure in horizontal saccade
control. The pontine changes incorporated the paramedian
pontine reticular formation. The posterior medullary changes are
consistent with the location of the nucleus prepositus hypoglossi
and vestibular nuclei including the medial vestibular nucleus.
The lack of significant cortical pathology suggests that the
superior saccade pathway in our cohort is relatively intact and
that the observed clinical signs are primarily driven by neural
integrator network pathology in the brainstem (23, 50). The
extensive brainstem gray matter pathology detected by VBM
was not associated with volume reductions, (Table 2) tract-wise
diffusivity alterations, (Figures 2–5) or widespread infratentorial
lesion load on FLAIR.

Our gray matter analyses also map nystagmus-associated
foci to medial cerebellar gray matter structures with relative
sparing of the lateral and posterior aspects of the cerebellum.
Pathology of specific cerebellar regions has been associated with
specific types of nystagmus. Pathology of the flocculus and
paraflocculus is traditionally linked to impaired suppression of
the horizontal vestibulo-ocular reflex (VOR) during combined
eye-head tracking (51). Nodulus and uvula pathology can result
in positional nystagmus, periodic alternating nystagmus, or
downbeat nystagmus. Gaze-evoked nystagmus is widely regarded
as a manifestation of neural integrator network dysfunction
(52, 53). In saccadic control a “pulse” and a “step” command is
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TABLE 2 | The volumetric profile of subcortical gray matter structures and the brainstem in MS patients and controls.

Healthy Controls Multiple Sclerosis p-value partial η2

Est. marg. mean Std. error Est. marg. mean Std. error

Thalamus (mm3) 14954.89 432.196 13529.48 315.558 0.017 0.123

Putamen (mm3 ) 8571.63 368.478 7072.19 269.036 0.004 0.176

Hippocampus (mm3 ) 7326.01 234.217 6534.98 171.008 0.014 0.128

Brainstem (mm3) 17409.65 345.504 16817.92 252.262 0.203 0.036

Estimated marginal means, standard error, comparative p-values and effect sizes are shown following corrections for age, gender and total intracranial volume. The statistical threshold

was set at p < 0.0125 following Bonferroni corrections for multiple testing.

FIGURE 6 | Total thalamus, putamen, hippocampus and brain stem volumes in healthy controls (green) and multiple sclerosis patients with gaze-evoked nystagmus

(orange). P-values are corrected for age, gender and total intracranial volume. A statistical threshold of p < 0.0125 is considered significant following Bonferroni

corrections for multiple testing.

typically distinguished for neuronal discharge (54). The nucleus
prepositus hypoglossi and to a lesser extent the medial vestibular
nucleus contribute the “step” phase of neuronal activity. The
superior colliculus in the midbrain controls saccade generation
through pontine and midbrain pulse–step generator circuits and
receives feedback from the brainstem burst generators (54). The
role of midline cerebellar circuits is also well established in
providing feed-back to burst generation (54). The etiology of
GEN is linked to the inadequate “step” component, resulting in
the eyes drifting back to their primary position and triggering a
corrective saccade (22).

White Matter Findings
Tract-based spatial statistics (TBSS) demonstrated extensive
bilateral supratentorial white matter degeneration in our cohort
of patients. The divergent patterns of FA, AD, MD, and RD
alterations highlight the value of multiparametric diffusion
tensor imaging in contrast to relying on a single diffusivitymetric.
In our cohort, FA analyses highlighted anatomically limited white

matter degeneration compared to the more extensive patterns
identified by AD, MD, and RD. FA and MD are composite
proxies of white matter integrity defined based on the three
eigenvalues. While axial diffusivity is often regarded as an axonal
marker, (55, 56) and radial diffusivity as amyelin relatedmeasure,
(57, 58) this may be a simplistic interpretation especially in
the absence of spatially matched histopathological data (59).
The identification of the principle eigenvector and the accurate
estimation of the three eigenvalues are particularly challenging in
crossing fibers, low signal-to-noise sequences and in the presence
of focal pathology (60, 61). Therefore, while AD and RD adds to
the characterisation of GEN-associated white matter changes, the
categorical interpretation of AD and RD alterations as axonal- vs.
myelin-related pathology is not justified.

Our standard, “whole-brain” TBSS analyses have not
captured cerebellar or brainstem white matter changes
(Figures 2–5). Given the sensitivity of multiparametric
(AD, MD, RD, FA) white matter imaging to detect white
matter alterations, this may suggest that in our cohort of
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patients, infratentorial pathology is dominated by gray matter
degeneration. (Figure 1) The qualitative appraisal of lesion
patterns also revealed that 54.8% percent of our patients had
no visible infratentorial FLAIR hyperintensities and only 22.5%
of the patients had mesencephalic and 25.8% pontine lesions.
The discrepancy between the limited infratentorial pathology
seen on visual inspection and the considerable gray matter
degeneration detected by VBM highlights the limitation of
qualitative assessments. In our sample, we cannot attribute
eye-movement abnormalities to gray matter pathology alone, as
the infratentorial white matter lesions undoubtedly contribute
to the clinical profile of our patients. The contribution of
infratentorial white matter lesion patterns to specific eye-
movement abnormalities has been studied across multiple
conditions, including stroke, Arnold-Chiari malformations and
multiple sclerosis (9, 62).

Subcortical Gray Matter Findings
We identified a trend of thalamic volume reduction in our MS
cohort and VBM enabled the localisation of thalamic pathology
to bilateral posterior-medial foci. There is accruing radiological,
clinical and pathological evidence that thalamic changes can
be detected early in the course of MS and may be associated
with a range of clinical manifestations including fatigue, pain
syndromes, cognitive, oculomotor, and motor disturbances (63–
65). Whereas volumetric analyses only highlight global atrophy,
our VBM analysis revealed focal medial thalamus, posterior
hippocampus and lateral putamen pathology.

The involvement of putamen and hippocampus illustrates
the spectrum of extra-motor degeneration in MS and signals
two candidate regions-of-interest which could be specifically
explored in longitudinal studies and clinical trials. Hippocampal
atrophy has been previously linked to cornu ammonis
degeneration and associated with learning and memory
encoding difficulties (11, 12, 66). Putamen pathology is relatively
rarely reported in imaging studies of MS (67) and extrapyramidal
symptoms may be particularly difficult to ascertain clinically in
the presence of extensive upper motor neuron signs. Despite
extensive brainstem density alterations on VBM, no brainstem
volume reductions were detected by our segmentation approach,
which highlights the benefit of using multiple complementary
imaging modalities.

Implications for Clinical Applications and
Pharmacological Trials
In a clinical setting, scans of a given patient are often
only qualitatively reviewed and lesion load is mostly visually
estimated. The addition of 3D structural sequences without slice
gaps and diffusion tensor sequences to clinical protocols may
enable quantitative assessments and the accurate measurement
of longitudinal change in the same patient. Magnetic resonance
imaging is a key outcome measure in pharmaceutical trials,
(68) and lesion load estimation based on T2-weighted imaging
traditionally serves as a secondary endpoint for phase III clinical
trials (69). In accordance with consensus guidelines, (70) recent
clinical trials increasingly include cortical gray matter measures
(71, 72). With very few exceptions however, (73) gray matter

metrics of subcortical gray matter structures and the cerebellum
are seldom utilized in clinical trials. The considerable cerebellar
and deep gray matter degeneration highlighted by our study
suggest that measures of these regions should also be evaluated
as candidate biomarkers in MS. Cerebellar pathology is often
exclusively linked to deficits in coordination and nystagmus, but
its role in pseudobulbar affect and a range of cognitive functions
is increasingly acknowledged (74, 75). An additional benefit of
using quantitative metrics stems from their potential use in
deep-learning and machine-learning applications which rely on
advanced pattern recognition algorithms to aid diagnosis, patient
stratification, and prognostication (76).

Limitations
The main limitations of this proof-of-concept study lie in its
small cohort size and the lack of eye movement recordings
which would have allowed more detailed eye movement
analyses and clinico-radiological correlations. Despite the
stringent recruitment criteria, our patients inherently exhibit
a degree of clinical heterogeneity as evidenced by their EDSS
and disease-duration profile. While we cannot claim clinical
homogeneity in our sample, the “common denominator” from a
symptoms-perspective is the presence of gaze-evoked nystagmus.
Accordingly, an important expansion of this study would be the
inclusion of an MS cohort without nystagmus as a “disease-
control” group to confirm the specificity of our infratentorial
findings as a GEN-associated neuroimaging signature. Another
obvious expansion of this study would be the longitudinal
follow-up of the study participants to characterize patterns of
progressive gray matter degeneration, response to therapy and
rate of decline.

CONCLUSIONS

Gaze-evoked nystagmus in multiple sclerosis is associated
with multifocal gray matter pathology involving cerebellar,
subcortical, and brainstem regions. White matter alterations
in MS patients with gaze-evoked nystagmus are not limited
to commissural tracts but involve widespread bi-hemispheric
supratentorial regions. The imaging signature of gaze-evoked
nystagmus in MS includes key structures of the oculomotor
neural integrator network.
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