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Cocaine-mediated circadian reprogramming
in the striatum through dopamine D2R and
PPARγ activation
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Pierre Baldi 3, Paolo Sassone-Corsi 2✉ & Emiliana Borrelli 1✉

Substance abuse disorders are linked to alteration of circadian rhythms, although the

molecular and neuronal pathways implicated have not been fully elucidated. Addictive drugs,

such as cocaine, induce a rapid increase of dopamine levels in the brain. Here, we show that

acute administration of cocaine triggers reprogramming in circadian gene expression in the

striatum, an area involved in psychomotor and rewarding effects of drugs. This process

involves the activation of peroxisome protein activator receptor gamma (PPARγ), a nuclear

receptor involved in inflammatory responses. PPARγ reprogramming is altered in mice with

cell-specific ablation of the dopamine D2 receptor (D2R) in the striatal medium spiny neu-

rons (MSNs) (iMSN-D2RKO). Administration of a specific PPARγ agonist in iMSN-D2RKO

mice elicits substantial rescue of cocaine-dependent control of circadian genes. These find-

ings have potential implications for development of strategies to treat substance abuse

disorders.
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A large variety of fundamental biological processes,
ranging from the sleep-wake cycle and metabolism, to
immune responses and behavior, is regulated by the

circadian clock1,2. In mammals, the central clock is located in
the suprachiasmatic nucleus (SCN) within the hypothalamus
that is entrained by light as an external zeitgeber (time-giver)3.
As master regulator of organismal circadian rhythms, the SCN is
thought to orchestrate the phase of oscillation of extra-SCN
clocks4. Peripheral clocks are present in virtually all organs and
cells within the body and recent findings have revealed that
clocks communicate in order to achieve systemic homeostasis5,6.
Diverse environmental cues, such as feeding behavior, also act as
robust zeitgebers for peripheral clocks in metabolic tissues
through mechanisms that appear SCN-independent7,8. From a
molecular standpoint, the circadian clock drives oscillations in
expression of a large number of genes through transcriptional-
translational feedback loops composed of cycling activators and
inhibitors9.

Drugs of abuse have been shown to induce severe perturba-
tion of circadian rhythms10–12, such as disruption of the sleep/
wake cycle, eating habits, blood pressure, hormone secretion and
body temperature13,14. Importantly, desynchronization of cir-
cadian rhythms has been linked to the switch from recreational
consumption to addictive behavior15. Cocaine, as well as other
psychoactive drugs, affects the function of brain circuits such as
the basal ganglia by increasing neurotransmitter release to the
medium spiny neurons (MSNs), which are the principle striatal
neurons and the striatum’s only output neurons. This is the case
for cocaine-mediated activation of dopamine (DA) signaling in
MSNs that leads to long-term adaptations of cellular programs
and behavioral responses16,17. Importantly, there are indications
that DA signaling impacts central and peripheral circadian
rhythms18,19. In the striatum, DA levels oscillate in a circadian
manner20,21 and are involved in the regulation of the neuronal
circadian clock gene expression22,23. To date, however, char-
acterization of the molecular mechanisms by which drugs
of abuse alter circadian rhythms in a tissue-specific manner
remains incomplete.

Under physiological conditions, the endogenous clocks coor-
dinate transcriptional and metabolic cycles in distinct organs7,8.
The capacity of peripheral clocks to be highly flexible through
transcriptional and metabolic reprogramming is highlighted by
experiments involving nutritional challenges such as fasting, high
fat diet, ketogenic diet or caloric restriction24–26. It is unclear
whether neuronal clocks are capable of similar reprogramming.
We hypothesized that the short and long-term adaptation of
neuronal circuits in response to cocaine would involve changes
in circadian rhythmicity within the ventral striatum and in par-
ticular the Nucleus Accumbens (NAcc).

Our recent findings show that D2R-mediated signaling in
MSNs critically modulates striatal responses to cocaine27,28.
These results indicate that D2R signaling plays a critical role in
the mechanisms by which drugs of abuse affect striatal physio-
logical responses. Thus, we explored how the circadian program
of striatal neurons is influenced by acute administration of
cocaine in WT mice and in mutants with D2R ablation exclu-
sively in D2R-expressing MSNs (iMSN-D2RKO mice)27,29. Our
results show that cocaine induces a drastic reprogramming of the
diurnal transcriptome in the NAcc. There is a remarkable dif-
ference in the number, type and cycling profiles of cocaine-driven
oscillatory genes in iMSN-D2RKO mice. Using combined meta-
bolomic and transcriptomic approaches, we show that D2R in
iMSNs contributes to cocaine-induced activation of peroxisome
protein activator receptor gamma (PPARγ), a nuclear receptor
implicated in inflammatory responses30,31. PPARγ drives a sig-
nificant fraction of de novo cocaine-induced transcriptional

response, which is impaired in the absence of D2R signaling in
iMSNs. Pharmacological activation of PPARγ by pioglitazone32

in iMSN-D2RKO mice leads to restoration of the cocaine-
induced profile of circadian gene expression. Our findings unveil
a D2R signaling-PPARγ connection in circadian regulation linked
to cocaine-mediated rewiring in striatal neurons.

Results
Response of core clock genes to cocaine in both WT and iMSN-
D2RKO mice. We previously reported that iMSN-D2RKO mice
display reduced motor activity in basal conditions29 and absence
of cocaine-induced hyperlocomotion27. We sought to study the
effects of cocaine in WT and iMSN-D2RKO mice by analyzing
circadian motor activity along the daily cycle, four days before
and four days after acute cocaine administration (Fig. 1a, b).
Circadian motor activity was quantified as infrared beam breaks
per minute at each circadian time in mice housed in home cages.
Interestingly, acute cocaine does not affect the diurnal pattern of
locomotor activity either in WT or iMSN-D2RKO mice, indi-
cating that D2R deletion in iMSNs does not alter the physiology
and function of the SCN central clock (Fig. 1c). Nevertheless,
circadian motor activity of iMSN-D2RKO mice was decreased
with respect to WT mice in the active phase before (p < 0.0001)
and after (p= 0.0004) cocaine administration (Fig. 1d, e), con-
sistent with results obtained in non-circadian behavioral set-
tings27,29,33. To determine the effect of cocaine challenge on
the striatal expression of clock genes, WT and iMSN-D2RKO
mice received an intraperitoneal (i.p.) injection of either cocaine
(Coc 20 mg kg−1) or saline (Sal), shortly after the beginning of the
resting phase (zeitgeber time, ZT3). Animals from both groups
were sacrificed every 4 h (n= 5 or 6/time point) and tissue
punches from the NAcc collected at six time points to cover the
full circadian cycle (Fig. 1f). To investigate the direct effect of
cocaine in the NAcc of WT and iMSN-D2RKO mice on the core-
clock machinery, we analyzed the expression of Bmal1, Cry1, Dbp
and Per1 in saline and cocaine-treated mice (Fig. 1g). We
observed a significant effect of time for all tested core-clock genes
(p ≤ 0.0005), indicating that expression of all genes follows the
typical circadian cycle in both genotypes. There was no sub-
stantial alteration in the expression profiles of these clock genes
upon cocaine treatment (Bmal1: p= 0.7389; Cry1: p= 0.7529;
Per1: p= 0.6765), as well as a clock output gene, as exemplified by
Dbp expression profile (p= 0.1495) (see Supplementary Table 1).
A slight but nevertheless significant difference was found in
Per1 expression level between WT and iMSND2RKO mice
(p= 0.0022). Thus, acute cocaine treatment, whether in the
presence or absence of D2R in iMSNs, does not alter the rhythmic
expression of this group of circadian genes.

Reprogramming of the striatal circadian transcriptome by
cocaine. Cocaine intake induces an increase of DA accumulation
in the synaptic cleft through blockade of the DA transporter
prolonging activation of postsynaptic neurons34,35. The dopa-
minergic mesolimbic pathway connecting the ventral tegmental
area to the NAcc and cortex is critically involved in the effects of
drugs of abuse36.

To analyze the acute cocaine-dependent genome-wide rhyth-
micity, RNAs were extracted from NAcc punches from brains
harvested every four hours throughout a full circadian cycle
(Fig. 1f) and processed for RNA-seq analyses. Rhythmic
transcripts were identified using the non-parametric test
JTK_CYCLE37, an algorithm that includes Bonferroni-adjusted
multiple comparisons and incorporates a window of 20-28 h for
the determination of diurnal periodicity. Out of a combined 2314
cycling transcripts identified, 1157 (50%) were rhythmic only in
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the saline condition. An additional 294 (~13%) were cycling in
both saline- and cocaine-treated mice and, notably, 863 (~37%)
de novo oscillating transcripts were identified upon cocaine
challenge (Fig. 2a). The phases of oscillation of genes diurnal
in both conditions were similar (Fig. 2b, c). The newly cocaine-

induced oscillating transcripts display a peak at around ZT7,
which is absent in saline condition. Moreover, 13% of the
common oscillating genes showed a decrease in amplitude, while
35% displayed an increase upon cocaine treatment with respect to
saline conditions (Fig. 2d). Thus, the circadian program of cycling
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genes in the NAcc is profoundly modified upon acute cocaine
administration.

Pathway analyses were performed using Database for Annota-
tion, Visualization and Integrated Discovery (DAVID) (Fig. 2e)
and Reactome (Supplementary Fig. 1a–c). Both approaches
identified analogous pathways in the common rhythmic tran-
scripts between saline- and cocaine-treated NAcc. Gene Ontology
(GO) annotation revealed clusters in the protein folding and

rhythmic process pathways in both treatments. The saline-only
specific circadian transcripts were enriched in RNA splicing, cell
projection, and protein monoubiquitination pathways. Conver-
sely, the cocaine-only specific transcripts were highly enriched in
the transmembrane transport, ER to Golgi vesicle mediated
transport and cell projection pathways (see Fig. 2e and
Supplementary Fig. 1a, b). These results highlight the effect of a
single, acute cocaine challenge on circadian function in the NAcc.
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Cocaine-driven circadian reprogramming is dependent on D2
receptors. Both D1R- and D2R-mediated signaling play a fun-
damental role in the psychomotor and rewarding properties of
cocaine38. Importantly, mice carrying selective ablation of D2R in
the iMSNs display impaired cellular and motor response to acute
cocaine administration27. To determine the role of D2R-mediated
signaling in the regulation of circadian gene oscillation in the
NAcc, iMSN-D2RKO mice were treated with saline or cocaine
(as shown in Fig. 1f), as previously described for their WT
counterparts. RNA-seq analyses along the circadian cycle showed
a substantial difference in the number of oscillatory genes as
compared to WT mice in the saline condition (Fig. 3a). Indeed,
we observed a drastic decrease in the number of genes oscillating
in iMSN-D2RKO mice (359 transcripts) as compared to the same
condition in WT mice (1399 transcripts); 53 oscillating genes
were common to both genotypes (Fig. 3a). The phase of the
overlapping genes was similar in both genotypes (Supplementary
Fig. 2a, b) with a higher percentage of genes with greater
amplitude in iMSN-D2RKO mice (Supplementary Fig. 2c).
Moreover, transcripts exclusively diurnal in iMSN-D2RKO had
phase distributions at approximately ZT4 and ZT16 (Fig. 3b, c).
Genes oscillating only in iMSN-D2RKO mice clustered in GO
annotations including transmembrane transport and steroid
metabolic process (Fig. 3d and Supplementary Fig. 2d, e). It is
relevant that annotation analyses of genes oscillating in both WT
and iMSN-D2RKO mice include classic terms required for nor-
mal neuronal function (Supplementary Fig. 2f, g).

Acute cocaine treatment revealed a unique circadian signature
in the NAcc of iMSN-D2RKO mice. Notably, a total of 1131
cycling genes were found in the cocaine-treated WT. Of these, 25
were common to iMSN-D2RKO mice. An additional 171 genes
were rhythmic in iMSN-D2RKO mice only (Fig. 3e). Phase
distribution analyses also revealed unique features of cocaine-
induced reprogramming of circadian gene expression in WT and
iMSN-D2RKO mice. Notably, a unique phase distribution peak
observed at ~ZT18 in WT mice was almost completely absent in
iMSN-D2RKO mice (Fig. 3f, g). On the other hand, genes
oscillating in both conditions display a peak at ZT6-ZT8
(Supplementary Fig. 3a, b) and maintain similar amplitudes
(Supplementary Fig. 3c). GO term analyses revealed unique
pathways enriched in WT vs iMSN-D2RKO mice (Fig. 3h and
Supplementary Fig. 3d, e), such as protein folding, transport, cell
projection in WT, and transcription, negative regulation
of apoptotic process, positive regulation of cytosolic Ca2+

concentration in iMSN-D2RKO. Moreover, GO annotation
analyses showed a common enrichment of genes that belong to
the circadian regulation of gene expression in both genotypes
(Supplementary Fig. 3f, g). Taken together our results demon-
strate that D2R signaling in iMSNs is critical for basal and
cocaine-driven circadian oscillations in the NAcc.

Cocaine-induced circadian response of PPARγ-target genes. To
explore the molecular mechanisms by which cocaine induces de
novo oscillations of striatal genes, we used MotifMap39 to identify
transcription factor binding motifs selectively represented in
rhythmic genes under saline conditions and after cocaine chal-
lenge. A profound reorganization in transcription factor pathway
usage was observed upon cocaine challenge, with a significant
enrichment of genes containing PPARγ binding sites for genes
oscillating in WT mice (Fig. 4a). Indeed, 372 out of 863 cocaine-
induced newly oscillating genes are PPARγ targets (Figs. 2a and
4b, c). Importantly, cocaine-induced enrichment of PPARγ
binding sites is not observed in the iMSN-D2RKO cocaine-trea-
ted mice. Thus, ablation of D2R from iMSNs significantly reduces
the cocaine-induced PPARγ oscillatory program observed in WT

mice (Fig. 4b). Among the cocaine-induced PPARγ target genes,
none were common oscillators in both genotypes. The significant
fraction of de novo cycling PPARγ target genes induced by the
first exposure to cocaine in WT mice, prompted us to further
explore the involvement of this nuclear factor. Phase oscillation
analyses of PPARγ cycling targets revealed a specific phase dis-
tribution in cocaine treated WT mice at ZT6-ZT8 and ZT18
(Fig. 4d). GO biological process analyses of the PPARγ-target
genes in WT cocaine-treated mice revealed transport, translation
initiation, positive regulation of apoptotic process, and tran-
scription as key annotations (Fig. 4e and Supplementary Fig. 4a).
Taken together, our data underscore the involvement of PPARγ
signaling pathway in cocaine-induced transcriptional repro-
gramming of the NAcc clock. This unique cocaine-induced
transcriptional feature is absent in mice with ablation of D2R
from iMSNs.

D2R-driven PPARγ nuclear enrichment upon cocaine. PPARγ
localizes in the cytoplasm and upon activation translocates to the
nucleus to activate transcription of specific genes40. We per-
formed immunofluorescence analyses using a nuclear-specific
PPARγ antibody to quantify the induction of nuclear PPARγ
staining in the NAcc of WT and iMSN-D2RKO mice upon
cocaine treatment. For this purpose, mice of both genotypes were
administered either saline or cocaine (20 mg kg−1) at ZT3 and
sacrificed at ZT7. A diffuse nuclear PPARγ staining was observed
in NAcc neurons in saline conditions in both genotypes (Fig. 5a).
After cocaine we observed a significant increase in nuclear
PPARγ staining in WT NAcc neurons, which was absent in
iMSN-D2RKO mice. Quantification of PPARγ nuclear intensity
per cell, as well as of the number of cells with nuclear PPARγ
staining, shows a statistically significant increase of nuclear
PPARγ localization upon cocaine in WT as compared to iMSN-
D2RKO NAcc neurons (Fig. 5b, p= 0.0030; Fig. 5c, p= 0.0124).
To establish the identity of the MSNs showing the heightened
intensity of PPARγ nuclear staining, we performed in situ
hybridization coupled to immunohistochemistry using probes
specific for the two subtypes of MSNs. This allowed for
the unambiguous identification of D2R-expressing iMSNs from
D1R-expressing dMSNs. Double in-situ hybridization/immuno-
histochemistry analyses were performed using riboprobes for
enkephalin (Enk)41, an iMSNs specific marker or the dopamine
D1 receptor (D1R), a dMSN specific marker, together with the
specific PPARγ antibody. These experiments demonstrated that
the cocaine-driven increase in PPARγ nuclear staining occurs in
iMSNs (p= 0.0030) and not in dMSNs (p= 0.9991) (Fig. 5d, e).
Importantly, the increase of PPARγ in iMSNs nuclei after cocaine
was not observed in the NAcc of iMSN-D2RKO mice
(p= 0.8693) (Fig. 5d, e). These results point to a cocaine-
mediated D2R-dependent activation of PPARγ.

Lack of PPARγ activation and function in iMSN-D2RKO mice.
To ascertain whether the metabolic consequences of acute cocaine
treatment may be linked to PPARγ activation, we performed
mass-spectrometry (MS) metabolomics analyses from isolated
NAcc at ZT7 after either saline or cocaine (20 mg kg−1; i.p.)
administration at ZT3. We identified a significant effect of
cocaine on lipid metabolism (Fig. 6a). Among 180 metabolites
analyzed, 145 were lipids including: phospholipids, acylcarnitines
and sphingolipids. In WT, but not in iMSN-D2RKO mice,
phosphatidylcholine levels were significantly decreased after
cocaine treatment while most lysophosphatidylcholines increased.
D2R activation is involved in the conversion of phosphati-
dylcholine into lysophosphatidylcholine and arachidonic acid
(AA)42,43, the latter being a precursor of prostaglandins44,45.
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Importantly, prostaglandins are well-characterized PPARγ nat-
ural ligands46. Interestingly, AA release in the striatum is regu-
lated by D1R and D2R in an opposite manner45,47; D1R signaling
inhibits while D2R signaling increases AA release. Based on these
findings, we reasoned that the efficient turnover of phosphati-
dylcholine levels in response to cocaine would be dampened in
mice with D2R ablation in iMSNs. We thereby analyzed the levels
of the PGJ2-type prostaglandin (15-deoxy-Δ12,14-PGJ2)48, a

prostaglandin that specifically binds and activates PPARγ49, in
the NAcc of WT and iMSN-D2RKO mice. Indeed, we observed
that in response to cocaine, there is a significantly lower level of
15-deoxy-Δ12,14-PGJ2 in the NAcc of iMSN-D2RKO mice as
compared to saline treated mice (p= 0.0153) (Fig. 6b). In con-
trast, WT mice show no significant change in 15-deoxy-Δ12,14-
PGJ2 levels after cocaine treatment, a response that mirrors
results obtained in human cocaine users50. These findings point
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to D2R signaling as a key player in the cocaine-driven pros-
taglandin production involved in PPARγ activation.

We next assessed the downstream effects of PPARγ activation
by analyzing the expression of specific genes from the list of
PPARγ circadian putative targets (Fig. 4c). Among these
genes, Adora2a (Adenosine A2a Receptor), Kcnd1 (Potassium

Voltage-Gated Channel Subfamily D Member 1), and Gabrδ
(Gamma-Aminobutyric Acid Type A Receptor Delta Subunit) are
not oscillatory under normal conditions in WT mice (Fig. 6c).
However, upon cocaine treatment, their expression displayed de
novo oscillatory profiles. In contrast, in cocaine treated iMSN-
D2RKO mice, these genes were not cyclically expressed, their

Fig. 3 D2R ablation from iMSN reorganizes the striatal circadian transcriptome. a Venn diagram of striatal oscillating genes in saline treated WT and
iMSN-D2RKO mice (n= 3, JTK_Cycle, cutoff p < 0.01). b Radar plots displaying the phase analysis of genes whose expression is exclusively circadian in
WT mice (left) or in iMSN-D2RKO saline-treated (Sal) mice (right). c Heat maps of genes significantly circadian (n= 3, JTK_Cycle, cutoff p < 0.01) only in
WT (left) or in iMSN-D2RKO (right) saline-treated mice. White and black bars indicate the light (ZT3, 7, 11) and dark (ZT15, 19, 23) timepoints
respectively. d DAVID Gene Ontology Biological Process analysis of circadian genes oscillating in saline WT only (left) and in saline iMSN-D2RKO only
(right). Bar charts represent the -Log10(p-value) of each enriched term. The number of genes identified in each pathway is shown in parenthesis. e Venn
diagram of striatal oscillating genes in cocaine treated WT and iMSN-D2RKO mice (n= 3, JTK_Cycle, cutoff p < 0.01). f Radar plots displaying the phase
analysis of genes whose expression is exclusively circadian in WT (left) or in iMSN-D2RKO cocaine-treated (Coc) mice (right). g Heat maps of genes
significantly circadian (n= 3, JTK_Cycle, cutoff p < 0.01) only in WT (left) or in iMSN-D2RKO (right) cocaine-treated mice. White and black bars indicate
the light (ZT3, 7, 11) and dark (ZT15, 19, 23) timepoints respectively. h DAVID Gene Ontology Biological Process analysis of circadian genes oscillating in
cocaine WT only or in cocaine iMSN-D2RKO only. Bar charts represent the -Log10(p-value) of each enriched term. The number of genes identified in each
pathway is shown in parenthesis.
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circadian expression parallels that of saline-control mice (Fig. 6c).
Next, we analyzed the molecular mechanism of control at the
promoter level by chromatin immunoprecipitation assays (ChIP)
using NAcc nuclear extracts from both WT and iMSN-
D2RKO cocaine-treated mice harvested at ZT7. Using PPARγ

nuclear-specific antibodies, we show that PPARγ chromatin
recruitment to Adora2a and Kcnd1 promoters was significantly
reduced in iMSN-D2RKO animals as compared to WT (Fig. 6d)
(Adora2a: p= 0.0361 and Kcnd1: p= 0.0252). An analogous
trend was observed for the Gabrδ promoter (p= 0.1549). These
results support a scenario in which PPARγ activation by cocaine
leads to the de novo program of D2R signaling-dependent
circadian genes in the NAcc.

Rescue of PPARγ function using the specific agonist pioglita-
zone. To validate the critical role played by PPARγ in D2R
signaling-dependent circadian reprogramming upon cocaine, WT
and iMSN-D2RKO mice were subjected to oral gavage with
pioglitazone, a specific PPARγ activator51 that crosses the blood
brain barrier52. Pioglitazone or vehicle, were administered at ZT1,
2 h before the acute cocaine injection (Fig. 7a). Expression of the
Adora2a, Kcnd1 and Gabrδ genes was analyzed at ZT7 and at
ZT19 (Fig. 7b). Pioglitazone treatment before cocaine reestab-
lished the induction of Adora2a (p= 0.0388), Kcnd1 (p < 0.0001),
and Gabrδ (p= 0.0019) gene expression in iMSN-D2RKO mice at
ZT7, which nicely paralleled WT expression levels (Fig. 7b). Thus,
PPARγ activation operates as a direct link between cocaine, D2R-
signaling42,43 and downstream gene expression (Fig. 7c). These
results identify PPARγ as a critical factor that intervenes in the
transcriptional reprogramming of the striatal clock upon acute
cocaine treatment.
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F(1, 24) = 0.4260, p= 0.5201; Time: F(5, 24) = 7.429, p= 0.0002;
Interaction: F(5, 24) = 4.363, p= 0.0058; Kcnd1 WT Sal vs WT Coc:
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Discussion
Drugs of abuse, such as cocaine, are known to alter human
physiology and circadian rhythms13. While relevant information
about the molecular mechanisms by which cocaine affects short
or long-term neuronal plasticity has been accumulated53, little is
known about how it interplays with the circadian system. Deci-
phering how cocaine alters circadian regulation may provide
critical knowledge to design strategies aimed at mitigating the
daily dysfunctions of drug addicts. Previous studies have
addressed this question through the analysis of chronically treated
WT mice54 or mutant mice for specific clock genes11,18,55,56. In
this study, we first sought to decipher how a single acute cocaine
treatment affects genome-wide circadian oscillations within the
NAcc, and secondly to dissect the D2R-mediated signaling
pathways in striatal neurons. For this purpose, we exploited

mouse models in which genetic ablation of D2R is targeted
uniquely to striatal iMSNs. We demonstrate that cocaine gen-
erates a profound reprogramming of circadian gene expression
and identified PPARγ as one critical player that elicits the acute
effects of cocaine through D2R-mediated signaling.

D2R is essential for the psychomotor and rewarding effects of
psychoactive drugs such as cocaine27,57,58. Indeed, constitutive
D2R knockout mice self-administer higher amounts of cocaine as
compared to WT littermates58. Importantly, lower striatal D2R
levels have been observed in cocaine abusers as well as in rodent
models59–61. Thus, ablation of D2R from the main striatal
population, as achieved in iMSN-D2RKO mice, represents an
ideal model to study the mechanisms by which cocaine affects
striatal signaling and circuitry. Previous studies revealed the
importance of D2R for intrastriatal connections (i.e. collaterals
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D2RKO n= 7; Pioglitazone and Saline: WT n= 3, iMSN-D2RKO n= 4, Pioglitazone and Cocaine WT n= 4, iMSN-D2RKO n= 4); Gabrδ ZT7 Genotype: F(1,
29) = 7.445, p= 0.0107; Treatment: F(3, 29) = 11.26, p < 0.0001; Interaction: F(3, 29) = 3.378, p= 0.0315 (Vehicle and Saline: WT n= 6, iMSN-D2RKO
n= 5, Vehicle and Cocaine: WT n= 6, iMSN-D2RKO n= 6; Pioglitazone and Saline: WT n= 4, iMSN-D2RKO n= 4; Pioglitazone and Cocaine: WT n= 3,
iMSN-D2RKO n= 3); Adora2a ZT19: Genotype: F(1,30) = 1.352, p= 0.2540; Treatment: F(3, 30) = 2.071, p= 0.1250; Interaction: F(3, 30) = 1.406, p= 0.2603
(Vehicle and Saline: WT n= 6, iMSN-D2RKO n= 6; Vehicle and Cocaine: WT n= 5, iMSN-D2RKO n= 7; Pioglitazone and Saline: WT n= 3, iMSN-D2RKO
n= 3; Pioglitazone and Cocaine WT n= 4, iMSN-D2RKO n= 4); Kcnd1 ZT19: Genotype: F(1, 34) = 1.903, p= 0.1767; Treatment: F(3, 34) = 0.7013,
p= 0.5578; Interaction: F(3, 34) = 0.3919, p= 0.7596 (Vehicle and Saline: WT n= 6, iMSN-D2RKO n= 7; Vehicle and Cocaine WT n= 7, iMSN-D2RKO
n= 7; Pioglitazone and Saline: WT n= 4, iMSN-D2RKO n= 3; Pioglitazone and Cocaine: WT n= 4, iMSN-D2RKO n= 4); Gabrδ ZT19 Genotype: F(1, 32) =
0.09598, p= 0.7587; Treatment: F(3, 32) = 0.8134, p= 0.4959; Interaction: F(3, 32) = 0.8259, p= 0.4893 (Vehicle and Saline: WT n= 6, iMSN-D2RKO
n= 7; Vehicle and Cocaine WT n= 6, iMSN-D2RKO n= 6; Pioglitazone and Saline WT n= 3, iMSN-D2RKO n= 4; Pioglitazone and Cocaine: WT n= 4,
iMSN-D2RKO n= 4)). Tukey’s multiple comparison test p-values as indicated. Data are presented as mean values ± SEM. c Simplified overview depicting
D2R-mediated cocaine effect on circadian transcription of PPARγ target genes through PPARγ activation by prostaglandins (PGJ2). Dopamine (DA)
activation of D2R stimulates Phospholipase A2 (PLA2) converting phosphatidylcholine (PC) to lysophosphatidylcholine (Lyso PC) and arachidonic acid
(AA); AA is later converted into Prostaglandin (PGJ2). PGJ2 induces PPARδ nuclear translocation and transcriptional activation.
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between iMSN and dMSN) necessary for the psychomotor effects
of cocaine27,29,33,62.

Our findings place D2R in a central position in the mod-
ulation of circadian rhythmicity in the striatum. Indeed, D2R
ablation in iMSNs leads to a significant reduction in the
number of oscillating genes in the NAcc. Our data reinforce
emerging evidence suggesting that cocaine-mediated increase of
dopamine is involved in maintaining circadian rhythms in
brain areas including the retina, olfactory bulb, striatum,
midbrain and hypothalamus63. Remarkably, cocaine adminis-
tration is significantly less effective on circadian reprogram-
ming in the absence of D2R.

Previous reports have indicated that D2R-mediated signaling
modulates Clock and Per2 gene expression22,23. Our results
show that D2R also modulates Per1 expression (Supplementary
Table 1). Cocaine treatment does not lead to major alterations
in the circadian oscillation of the core clock genes Bmal1, Cry1
and Dbp in striatal neurons. On the other hand, we observe
induction of newly oscillatory genes. This is remarkable when
considering the extensive changes in circadian gene expression
observed between WT and iMSN-D2RKO mice. Altogether
these observations point to a D2R signaling-driven cocaine-
induced reprogramming of the NAcc. Our study allows the
identification of PPARγ as a key mediator of cocaine-induced
rhythmic transcriptional reprogramming.

While originally characterized for its role in adipogenesis
and glucose metabolism, PPARγ has been recently linked
to neurological disorders such as neurodegeneration and neuro-
inflammation64,65. Importantly, we have demonstrated that D2R
ablation prevents cocaine-driven PPARγ activation and the
consequent de novo oscillation of PPARγ target genes. Depen-
dence on D2R can be circumvented by the administration of the
specific PPARγ agonist pioglitazone. Our results support recent
findings suggesting the involvement of PPARγ in cocaine use
disorder. Indeed, pioglitazone treatment during abstinence has a
positive effect on cocaine addiction by reducing cocaine self-
administration66. GO analyses of the cocaine treated WT and
iMSN-D2RKO NAcc transcriptomes shows that the most sig-
nificant annotation in iMSN-D2RKO is transcription factors
which is absent in WT mice. This notion supports a modulatory
role of D2R signaling in NAcc-dependent molecular responses to
cocaine. Thus, while dMSNs have been critically involved in
cocaine-mediated responses67–72, the modulatory role of D2R
signaling needs to be further highlighted. Along these lines, it is
tempting to speculate that alteration of cocaine-induced circadian
reprogramming in absence of D2R might also occur in cocaine
abusers where the levels of D2R are dampened59. Notably, the full
D2R knockout mice show heightened intake of cocaine as mea-
sured in cocaine self-administration studies58. Since the iMSN-
D2RKO mice show multiple features of the full D2R knockout
mice, it is tempting to speculate that they might also self-
administer higher amounts of cocaine. Future studies will address
this question.

Our findings reveal the fundamental role of D2R in circadian
physiology of the brain’s reward system. D2R signaling plays a
crucial role in the reprogramming of diurnal transcription driven
by acute cocaine in the NAcc. Unsuspected to date, D2R-
mediated signaling triggers a regulatory circuit that leads to
PPARγ activation. This response underlies the cyclic activation of
a large number of de novo oscillatory genes. These results well
exemplify the complexity underlying the effects of cocaine in the
brain by adding a member of the nuclear receptor family to the
molecular circuitry previously implicated in the response to
cocaine73–77. Finally, the identification of the PPARγ pathway as
a mediator of D2R signaling represents an important promising
target for the clinical treatment of drug addiction.

Methods
Animals. iMSN-D2RKO mice were generated by mating D2Rflox/flox mice with
D2Rflox/flox/D1R-CRE+/- mice29. In D2Rflox/flox/D1R-CRE+/- mice, the DA D1R pro-
moter drives the CRE recombinase. The ability of this CRE to eliminate D2R in
iMSNs29 resides in the common expression of D1R and D2R in embryonic MSN
precursors78. Absence of D2R from iMSNs was previously shown by binding
analyses on striatal extracts using a D2R-specific 3H-labeled ligand, as well as by
double in situ hybridization experiments using GAT1 as marker of MSNs and D2R
exon 2 specific probes29.

Mice were maintained on a standard 12 h light/ 12 h dark cycle; food and water
were available ad libitum in ~25 °C and 40–60% humidity. Animals’ care and use
was in accordance with guidelines of the Institutional Animal Care and Use
Committee at the University of California, Irvine. Genotype identification was
performed by Southern blot and PCR analyses of DNA extracted from tails
biopsies.

Drugs. Before pharmacological treatments, mice were handled for at least 3 days
for 5 min. On the day of the test, mice were habituated to the novel home cage for
2 h and then administered either cocaine or saline. Cocaine (Sigma, Cat. #C5776)
was dissolved in saline (NaCl 0.9%) and injected intraperitoneally (i.p.) at the dose
of 20 mg kg−1. Pioglitazone (Cayman Chemical, Cat. # 71745) was dissolved in
DMSO to have a stock solution of 10 mgmL−1. Pioglitazone solution was diluted
1:1 in PBS and administered 2 h prior to either cocaine or saline injection by oral
gavage at a dose of 60 mg kg−1.

Locomotor activity analysis. Activity was measured on individually housed mice
n= 4–5/group for 11 days using Actimetrics optical beam motion detection
(Philips Respironics). Data was collected using Minimitter Vital View v5.0 data
acquisition software and analyzed through Matlab R2013a v9.7.0.1296695 software
and Clocklab software v2.72.

Quantitative RT–PCR. Striatum samples were homogenized in TRIzol lysis
reagent (Thermo Fisher) following manufacturer’s instructions. Total RNA was
reverse-transcribed using iScript Reverse Transcription Supermix (Biorad Cat. N.
1708840). Gene expression was analyzed by Real-Time PCR (BIO-RAD Real-Time
System; BIO-RAD CFX Manager Software v3.1) using SsoAdvanced Universal
SYBR Green Supermix (Biorad Cat. N. 172-5270). The sequences of the primers
used for RT-PCR are Kcnd1 Forward: 5′-TCCGTTTGGCAAAGAGTGGT-3′,
Kcnd1 Reverse: 5′-AGCTCGTCTGTGAACTCGTG-3′; Gabrd Forward: 5′-GGC
GCCAGGGCAATGAAT-3′, Gabrd Reverse: 5′-GTCAATGCTGGCCACCTCTA-
3′; Adora2a Forward: 5′-TTCATCGCCTGCTTTGTCCT-3′, Adora2a Reverse: 5′-
AATGATGCCCTTCGCCTTCA-3′; Bmal1 Forward: 5′-GCAGTGCCACTGAC
TACCAAGA-3′, Bmal1 Reverse: 5′-TCCTGGACATTGCATTGCAT-3′; Per1
Forward: 5′-ACCAGCGTGTCATGATGACATA-3′, Per1 Reverse: 5′-GTGCACA
GCACCCAGTTCCC-3′; Dbp Forward: 5′-AATGACCTTTGAACCTGATCCCG
CT-3′, Dbp Reverse: 5′-GCTCCAGTACTTCTCATCCTTCTGT-3′; Cry1 Forward:
5′-CAGACTCACTCACTCAAGCAAGG-3′, Cry1 Reverse5′-TCAGT-
TACTGCTCTGCCGCTGGAC-3′.

RNA-seq analysis. RNA library preparation and sequencing were performed at
the UCI Genomics High-throughput Facility, University of California, Irvine.
Briefly, total RNA was monitored for quality control using the Agilent Bioanalyzer
Nano RNA chip and Nanodrop absorbance ratios for 260/280 nm and 260/230 nm.
Library construction was performed according to the Illumina TruSeq® Stranded
mRNA Sample Preparation Guide. The input quantity for total RNA was 700 ng
and mRNA was enriched using oligo dT magnetic beads. The enriched mRNA was
chemically fragmented for 3 min. First strand synthesis used random primers and
reverse transcriptase to make cDNA. After second strand synthesis the ds cDNA
was cleaned using AMPure XP beads and the cDNA was end repaired and then the
3′ ends were adenylated. Illumina barcoded adapters were ligated on the ends and
the adapter ligated fragments were enriched by nine cycles of PCR. The resulting
libraries were validated by qPCR and sized by Agilent Bioanalyzer DNA high
sensitivity chip. The concentrations for the libraries were normalized and then
multiplexed together. The multiplexed libraries were sequenced on four lanes using
single end 100 cycles chemistry on the HiSeq 2500. The version of HiSeq control
software was HCS 2.2.58 with real time analysis software, RTA v1.18.64. Sequence
alignment was performed using TopHat v2.1.1 while assembly and expression
estimation was done using Cufflinks v0.12.179. Reads were mapped to the mouse
genome mm10 and expression values were estimated as FPKM.

DETAILS: FASTQ files were obtained from the sequencing facility and
processed through the standard Tuxedo protocol79. Reads were then aligned to the
UCSC mm10 mouse reference genome using TopHat and Bowtie2 v2.3.4.
Assembled transcripts were obtained via Cufflinks with the mm10 reference
annotation file. Genome assembly was obtained using Cuffmerge and expression
levels (summarized to genes) were calculated using Cuffquant and then normalized
via Cuffnorm to FPKM values. For each condition, 24 h time series data from six
time points with three replicates each were collected. In total, expression levels of
24138 unique genes were considered for further analysis. Data was further split to
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pairwise time series format for comparative analysis (e.g. WT Saline vs WT
Cocaine treatment, KO Saline vs KO Cocaine treatment etc).

Bioinformatics and pathway analysis. Bioinformatics analysis was performed on
RNA-seq data using JTK_CYCLE37 v3.1 and pipelines for CircadiOmics (circa-
diomics.ics.uci.edu)80. Pathway analysis was performed using DAVID81 and
Reactome82,83 software.

Details: Statistical and bioinformatics analyses were performed based on
pairwise comparisons, where the effect of cocaine treatment was analyzed while
controlling the genotype or the difference between genotypes (WT or KO) were
compared while controlling the treatment. Dixon’s test was performed on replicates
of transcriptomic data to reduce outlier effects, filtering out up to 1 outlier replicate
from each time point. For transcriptomic data, genes with consistently low
expression values (FPKM < 1) were filtered out from further analysis to reduce
noise. Time series data was then used to determine circadian behavior of genes
using JTK_CYCLE, including the p-value for whether the time series is considered
circadian, its periodicity (between 20–28 h), amplitude and phase. A gene is
considered circadian if its JTK_CYCLE p-value passed the cutoff of 0.01. Heatmaps
of circadian transcripts were generated using the R package gplots v3.0.3, where the
values on each row were normalized and rows were sorted by the
JTK_CYCLE phase.

The Database for Annotation, Visualization and Integrated Discovery (DAVID)
pathway and Reactome analysis tools were used to identify enriched KEGG
pathways for circadian genes in each condition. Pathways were ranked by the
number of genes found annotated with the pathway information or with the
negative natural log of p-values for enrichment, which behave similarly to z-scores
where larger values indicate higher confidence.

Putative TFBS information from MotifMap39 were used to determine the
enriched TFs in each condition. Fisher’s test was conducted comparing the
relative abundance of binding sites in the promoter regions (−10000 bps to
+2000 bps of transcription start site) of circadian genes in each condition, as
opposed to the genomic background (defined as all 24138 genes from the RNA-
seq data with FPKM > 0 at any time point). In addition, a filtering parameter of
BBLS > 1, FDR < 0.25 was used to obtain high quality binding sites while TFs
with motifs that are too short or degenerate (more than 50000 binding sites
under the filtering criteria) were removed as they tend to be unreliable. TFs were
ranked by the negative log of their Fisher p-values. Enrichment results from
different pairwise comparisons were also compared in a meta-analysis to identify
condition-specific TFs, in particular PPARγ which was found to be exclusively
enriched in WT-Cocaine condition.

PPARγ targeted genes were filtered using a combination of MotifMap data and
ChIP-Seq data from GSE6445884. Binding sites were searched within a smaller
promoter region of −3000 bps to +1000 bps of the TSS while filtering parameters
for MotifMap were kept the same as mentioned above. Other visualization and
statistical analyses were performed in R or in python using pandas and scikit-learn.

Metabolomics analysis. Metabolomic analyses were performed using p180 from
the Biocrates facility (Innsbruck, Austria). Metabolite levels were measured at ZT7
after an intraperitoneal injection of saline or cocaine at a dose of 20 mg kg−1 at
ZT3, 5 replicates each.

Statistical and bioinformatics analyses were performed based on pairwise
comparisons, where the effect of cocaine treatment was analyzed while controlling
the genotype or the difference between genotypes (WT or KO) were compared
while controlling the treatment. Dixon’s test was performed to reduce outlier
effects, filtering out up to 1 outlier replicate from each condition. Heatmaps for the
metabolite profiles were generated using the RStudio software. Row z-scores are
displayed and were calculated using the ‘heatmap.2’ function of the gplots package.

Immunohistochemistry and fluorescent in situ hybridization analysis. Single
immunostaining was performed on vibratome sections as described previously85

using anti-PPARγ antibody (1:1000; Novus Biotechnologies Cat. #NB120-19481).
Nuclei staining was obtained using Draq7 (Biostatus, Cat# DR70250). For quan-
tifications, frames of 375×375 µm/image (n= 4) were analyzed. ROIs were drawn
around individual cells using LASX software v3.7.0 (Leica); mean gray values/cell
were obtained and background subtracted. Double immunohistochemistry/in situ
hybridization staining were obtained using striatal sections which were hybridized
with digoxigenin (DIG)-Enkephalin or (DIG)-D1R riboprobes (RNA labeling mix;
Roche, Cat# 11277073910)29. After incubating the probe for overnight (ON) at
60 °C, sections were washed with PBS (Phosphate Buffered Saline) 3 times (5 min),
permeabilized with Triton 0.3% in PBS (15 min), blocked with normal horse serum
5% for 1 h and incubated ON with rabbit PPARγ antibody (1:1000) at 4 °C. On day
3, after 3 washes in PBS, sections were incubated for 1 h with an anti-rabbit
Alexa488 (1:600, Life technologies) followed by an incubation for 1 h with
anti–DIG-AP (1:5000, Roche) antibody. To amplify the signal, the HNPP (2-
hydroxy-3-naphtoic acid-2’-phenylanilide phosphate) fluorescent Detection Set
(Roche) was used. Quantifications were performed on confocal images (SP5, Leica)
of coronal striatal slices (3 slices/animal and 3 brains/genotype/condition) using
LASX v3.7.0. The number of MSNs showing the induction of PPARγ was quan-
tified in frames of 246×246 µm/image (n= 3); iMSNs were defined as the number

of PPARγ+ and Enkephalin+ cells while dMSNs as PPARγ+ and D1R+
colocalizing cells.

Chromatin immunoprecipitation. Chromatin immunoprecipitation (ChIP) pro-
cedure was performed86. Punches of striatum from frozen brains of two mice were
pooled. Tissue was minced and double crosslinked with DSG for 20 min and 1%
formaldehyde for 10 min followed by adding glycine (0.125M final concentration)
at room temperature for 10 min. After homogenizing tissue pellets in PBS, 1 ml of
lysis buffer was added. Samples were sonicated (20 cycles, every cycle: 30 s ON /
30 s OFF, power high) to generate 200-500 base pairs fragments and centrifuged at
14,000 g at 4 °C. Supernatants were diluted in a dilution buffer (1.1% Triton X100,
1.2 mM EDTA, 16.7 mM Tris-HCl, 167 mM NaCl). The diluted chromatin was
incubated with 2 mg of anti-PPARγ antibody (Abcam, Cat. # ab41928), overnight
at 4 °C. To monitor the specificity of ChIP assays, samples were also immuno-
precipitated with a specific-antibody isotype matched control immunoglobulin
(IgG). 10ul of Dynabeads Protein G (Invitrogen, Cat. # 10003D) were added to the
supernatant and incubated for 2 h at 4 °C. Beads were recovered, washed in low salt
buffer, high salt buffer, LiCl buffer, followed by washing in TE for three times.
Elution buffer (300 mM NaCl, 0.5% SDS, 10 mM Tris-HCl, 5 mM EDTA) was
added to the washed beads, treated with RNase at 37 °C for 2 h and Proteinase K at
65 °C overnight. Equal amount of Phenol-Chloroform-Isoamyl alcohol was added
to the samples and the aqueous phase was recovered. DNA was precipitated by
adding 100% Ethanol, NaOAc and glycogen and kept at −20 °C overnight. Samples
were centrifuged at 14,000 g for 30 min at 4 °C and washed with 70% ethanol
followed by centrifugation at 14,000 g for 30 min at 4 °C. Quantitative PCRs were
performed using SsoAdvanced Universal SYBR Green Supermix (Biorad, Cat. no.
172-5270), according to the manufacturer’s protocol. Primers used for ChIP ana-
lysis by RT-PCR: Kcnd1 Forward: 5′-CTCACGAGGCTAGGCAGTTC-3′, Kcnd1
Reverse: 5′-CCTTGATCGGGTGACTTGTT-3′; Gabrd Forward: 5′-CTGTTCA
CCTGCAATCAGGA-3′, Gabrd Reverse: 5′-GGTCTGCCCTTGAGAAATGA-3′;
Adora2a Forward: 5′- AAAGATGTGGGGGAGGAGTC-3′, Adora2a Reverse:
5′-TTGCCCTTTATCGGAGCTAA-3′.

Prostaglandins PGJ2 analysis. 15-deoxy-Δ12,14-PGJ2 Elisa KIT (Enzo Life Sci-
ences, Cat. no. ADI-900-023) was used to determine striatal Prostaglandin J2 con-
centration. ELISA tests were performed following manufacturer’s instructions.
Samples were prepared as follows: striatal punches of the NAcc were minced in
Phosphate buffer and the solution was then acidified by addition of HCl (2M) to pH
3.5. Samples were centrifuged and the supernatant was passed through a C18 column
(Pierce) and eluted with 20 µl of ethyl acetate. After evaporation (O/N, RT), samples
were reconstituted in 250 µl of Assay Buffer and used for the Elisa assay.

Additional statistical analyses. For all non-circadian statistics, data were ana-
lyzed either by Student’s t-test, or by two- or three-way ANOVA (GraphPad
Prism8.3.0), followed by Tukey’s or Bonferroni’s post hoc analyses, as appropriate.
Statistical significance was assigned with p-value < 0.05. For circadian analysis,
JTK_Cycle was used with a p-value < 0.01 cutoff.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The GEO accession number for the RNA-seq data set reported in this paper is
GSE142657. RNA-seq data was used for Figs. 2–4, and Supplementary Figs. 1–4. UCSC
mm10 mouse reference genome was used for alignment. All the transcriptomic data
associated with this work is publicly available on the resource circadiomics.ics.uci.edu.
PPARγ ChIP-seq data used for Fig. 4 was downloaded from GEO, accession number
GSE64458 84. Source data are provided with this paper.
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