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Abstract

Background: In genome-wide association studies (GWAS) for complex diseases, the association between a SNP and
each phenotype is usually weak. Combining multiple related phenotypic traits can increase the power of gene search
and thus is a practically important area that requires methodology work. This study provides a comprehensive review
of existing methods for conducting GWAS on complex diseases with multiple phenotypes including the multivariate
analysis of variance (MANOVA), the principal component analysis (PCA), the generalizing estimating equations (GEE),

the trait-based association test involving the extended Simes procedure (TATES), and the classical Fisher combination

test. We propose a new method that relaxes the unrealistic independence assumption of the classical Fisher
combination test and is computationally efficient. To demonstrate applications of the proposed method, we also
present the results of statistical analysis on the Study of Addiction: Genetics and Environment (SAGE) data.

Results: Our simulation study shows that the proposed method has higher power than existing methods while
controlling for the type | error rate. The GEE and the classical Fisher combination test, on the other hand, do not
control the type | error rate and thus are not recommended. In general, the power of the competing methods
decreases as the correlation between phenotypes increases. All the methods tend to have lower power when the
multivariate phenotypes come from long tailed distributions. The real data analysis also demonstrates that the
proposed method allows us to compare the marginal results with the multivariate results and specify which SNPs are
specific to a particular phenotype or contribute to the common construct.

Conclusions: The proposed method outperforms existing methods in most settings and also has great applications
in GWAS on complex diseases with multiple phenotypes such as the substance abuse disorders.

Keywords: Genome-wide association study, Fisher combination function, Multivariate permutation, Principal

component analysis

Background

In the past decade, genome-wide association studies
(GWAS) have produced rich single-nucleotide polymor-
phism (SNP) data available to researchers. Among them,
the large scale studies including the HapMap project [1]
and the 1000 Genomes project [2] have provided publicly
accessible databases of reference ancestral populations
for imputation and quality control purposes. The idea
of GWAS is to conduct fast SNP-based association tests
to scan the whole genome using case-control samples.
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Yet, many complex diseases such as mental health disor-
ders may have multiple phenotypic traits with continuous
outcomes [3]. This pleiotropy in complex traits [4] pro-
vides several potential advantages to the direct modeling
of pleiotropic associations. First, a model search for loci
that are simultaneously associated with multiple pheno-
types would likely have higher power than a model search
that only considers each phenotype individually. Second,
more exact modeling may yield more accurate prediction
of either or both phenotypes. Third, pleiotropic genes may
tend to have a more central role in the relevant functional
pathways.
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Existing statistical methods for complex diseases with
multivariate phenotypes can be categorized into three
types of approaches. The first approach is to conduct a
GWAS for each marginal phenotype and then aggregate
the results. The major issue with this approach is that it
does not make use of the correlation structure among phe-
notypes. The second approach is to summarize multiple
phenotypic traits into a composite score and then con-
duct a GWAS on the score. This approach, however, may
have difficulty in identifying proper summary scores. The
third approach involves multiple phenotypic traits simul-
taneously. Thus, it may gain power as well as avoid the
issue of multiple testing. However, it is based on stronger
assumptions that may not be satisfied in some practical
settings.

In this study, we provide a comprehensive review of
existing statistical methods for conducting GWAS on
complex diseases with multiple phenotypic traits. We also
propose a new statistical method based on the Fisher
combination function. The performance of competing
methods is evaluated by a simulation study. In order to
demonstrate applications of the proposed method, we
conduct statistical analysis on the database of the Study of
Addiction: Genetics and Environment (SAGE).

Methods

Let X;(= 0,1,2) be the number of reference alleles cor-
responding to a candidate SNP and Y; = (Yj1,..., Yin)'
be the measures of multiple phenotypes for the individ-
ual i. In this study, we conduct a comprehensive review
of existing statistical methods that can be used to test the
association between X; and Y.

Existing methods

Multivariate analysis of variance (MANOVA)

When the phenotype is univariate, we can use the one-
way analysis of variance (ANOVA) with three levels of the
genotype for GWAS. When we have correlated multivari-
ate phenotypic traits, the natural extension of the one-way
ANOVA is the one-way multivariate analysis of variance
(MANOVA) [5]. Similar to ANOVA, MANOVA tests
the equality of mean phenotypic vectors by comparing
the within genotypes and between genotypes variance-
covariance matrices. The strength of MANOVA is that
the multivariate normal distribution provides many good
statistical properties for testing and estimation [6]. How-
ever, in practice, multivariate phenotype data are very
unlikely to meet the multivariate normal assumption.
Furthermore, MANOVA is most powerful when the phe-
notypes are negatively correlated and yet this situation
is also unlikely in practice, especially when the number
of phenotypes is larger than 2. With respect to its rele-
vant applications, this method has been used in GWAS on
dose-response [7] and facial morphology [8].
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Principal component analysis (PCA)

The principal component analysis (PCA) [9, 10] is another
classical statistical method for multivariate analysis. The
primary objective of PCA is to find a small set of lin-
ear combinations of the original variables (i.e. principal
components) that account for the most variability in the
original variables. Thus, it can be employed to reduce
the dimension of multivariate phenotypes. The PCA has
been used in gene-based studies to increase the power
of statistical testing [11, 12]. Furthermore, He et al. [13]
has used PCA to combine four highly correlated obesity
phenotypes for a whole genome linkage scan. When the
phenotypes are highly correlated, the first principal com-
ponent (corresponding to the largest eigenvalue) contains
most information about the phenotype data. Thus, test-
ing the association between a SNP and the first principal
component is a commonly adopted approach to effectively
change the multivariate setting associated with multi-
ple phenotypes in GWAS to the univariate setting (e.g.
Zhang et al. [14] and Karasik et al. [15]). In this study, we
investigate the statistical properties of this approach.

Generalized estimating equations (GEE)

The method of generalized estimating equations (GEE)
[16] was developed for analyzing correlated multivari-
ate outcomes primarily from longitudinal studies. It can
be applied to test the association between a candidate
SNP and multivariate phenotypes. The GEE only requires
specification of the link function and the working corre-
lation matrix. The former depends on the measurement
scale of the outcomes (e.g. the identify link for continuous
outcomes). The latter assumes the correlation structure
among multivariate outcomes. The estimation of GEE is
usually robust against this assumption. GEE was widely
used in GWAS. For example, GEE was proposed as one
of the multivariate approaches in Solovieff et al. [4]. For
another example, Liu et al. [17] proposed to use GEE
for bivariate association analyses for the mixture of con-
tinuous and binary traits. However, to the best of our
knowledge, none of the existing studies have conducted
simulations to investigate whether GEE can control the
type I error rate when multivariate traits are involved
in GWAS. To fill in this knowledge gap, we conduct a
simulation study to examine the statistical properties of
this approach. In this study, we only consider the iden-
tity link because we are mainly interested in continuous
phenotypic traits. We also assume the working correlation
matrix to be compound symmetry because it only requires
us to estimate one additional parameter.

Trait-based association test involving the extended Simes
procedure

Recently, van der Sluis et al. [18] developed a trait-based
association test involving the extended Simes procedure
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(TATES). The TATES calculates a global p-value based on
individual p-values of association tests for marginal phe-
notypes. Specifically, for m-variate phenotypic traits, one
can conduct m tests of the association between a candi-
date SNP and each marginal phenotypic trait and derive
m p-values: p1,...pu. Let pay,...pun) be the ordered
p-values from the smallest to the largest. The Simes mul-
tiple procedure declares significance between a SNP and
multivariate phenotypic traits at the « level if any of the p-
values satisfy p(j < ja/m [19]. Hence, the global p-value
based on the Simes procedure is ptraits = min{mp; /j,j =
1,...,m}. The TATES improves this procedure by replac-
ing m and j with the effective number of independent
traits, m, and j,, which are estimated from the eigenval-
ues of the correlation matrix [20, 21]. Since m, < m,
this new adjusted global p-value, defined as piraits =
min{mepj)/je,j = 1,...,m} is smaller than the Simes
global p-value. Therefore, the TATES is more powerful
than the Simes. A simulation study also showed that the
TATES is more powerful than MANOVA. In this study,
we conduct a comprehensive simulation study to compare
this method with not only the classical methods reviewed
above but also the proposed methods.

Proposed methods

The methods based on the Fisher combination function
Combining independent tests of significance to form a
join statistic has been used as an alternative approach
to tackling complex multivariate location problems [22].
This approach is quite popular in practice because it is
much easier to develop a univariate association test statis-
tic than a multivariate association test statistic. Birnbaum
[23] discussed various combination functions among
which the Fisher combination function has been proven
to be asymptotically Bahadur optimal [24, 25]. Thus, we
focus on the Fisher combination function in this study.

Fisher combination test with the independence assumption

Based on the Fisher combination test [22], to test the asso-
ciation between a SNP and multivariate phenotypic traits,
we only need to test the association between the SNP and
each marginal phenotypic trait individually. Thus, for m-
multivariate phenotypes, we have m marginal p-values:

P1,- .., Pm- The Fisher combination statistic is defined as
m
T = Z —2log(p)). 1)
j=1

T is used to infer the association between the SNP
and multivariate phenotypic traits. When the marginal
p-values are independent, the statistic 7 follows a chi-
squared distribution with 2m degrees of freedom so the
p-value of T can be obtained straightforwardly. In real-
ity, however, the phenotypic traits are always correlated so
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the chi-squared distribution with 2m degrees of freedom
tends to underestimate the variance of the T statistic. The
resulting chi-squared test is, therefore, too liberal.

The permutation method

Because of the negative consequence of the independence
assumption, it is desirable to conduct the Fisher combina-
tion test without the assumption. Ideally, we could calcu-
late the exact p-value of the T statistic in Eq. (1) using the
permutation method, which does not require the unreal-
istic assumption and also controls for the type I error [26].
Yet, the permutation method is a very time-consuming
procedure, particularly in a genome-wide context. Thus,
an improvement in computational efficiency is warranted.

The proposed efficient method
For correlated phenotypic traits, T is the sum of depen-
dent chi-squared statistics. Brown [27] and Yang [28] have
shown that, under the null hypothesis of no association
between a SNP and multivariate phenotypic traits, the
distribution of T statistic follows a scale chi-squared dis-
tribution (y x2), or equivalently, a gamma distribution
with the shape parameter v/2 and the scale parameter 2y .
Therefore, to calculate the global p-value of T statistic, we
only need to estimate the parameters v and y. Suppose
that the mean of T is i and the variance of T is o2. Using
the first and second moments of 7, the values of v and
y can be calculated as v = 2u?/0? and y = ¢%/2u).
The following are technical details of the derivation of the
mean and variance of T statistic when the marginal p-
values are based on two-sided tests (see Brown [27] and
Yang [28] for the case of one-sided marginal tests):
Without loss of generality, we assume that the associa-
tion test statistic for the jth phenotypic trait is z; where
j = 1,...,m. The corresponding two-sided p-value is
defined as p; = 2@ (—|z;|), where ® is the standard Gaus-
sian distribution function. Under the null hypothesis of no
association between a SNP and multivariate phenotypic
traits, the distribution of T statistic is approximated by a
Gaussian distribution with the mean of 7" as

w=E[T]=2m

and the variance of T as

o2 = Var[T]
m
= Var Z—2log(pj)
j=1

= > Var{—2log(pj)}+ ) _ cov{—2log(p;),—2log(p}

j=1 j#k

= 4m + Z cov{—2log(p;), —2log(pi)}.
2k
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Therefore, in order to calculate the variance of T, we
need to calculate the covariance for each pair (j, k) which
can be expressed as

cov{—2log(p;), —2log(pi)}
= E{[—-2log(p)][—2log(pi)]} — E{—2log(p))}E{—2log(pi)}

S f f logl28 (— 1)} log(2® (— |z )} (2, 21) — 4,

where F is the standard bivariate Gaussian distribution.
Let

8jx = cov{—2 log(p;), —2log(pi)}.

Thus, §j is a function of the correlation between z; and
zk: pjk- We explore the relationship between 8; and p;«
by calculating §; numerically for the values of p;x from -
0.99 to 0.99 with the step of 0.01. The results are shown in
Fig. 1. Since the curve of Fig. 1 is a convex curve symmet-
ric about the y-axis, we can approximate the relationship
between 8 and p;« using a tenth-order polynomial:
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Using the adapt function in the R package fCopulae [29],
we obtained the following estimates: ¢; = 3.9081, ¢; =
0.0313, ¢c3 = 0.1022, ¢4, = —0.1378 and ¢5 = 0.0941; the
maximum residual was less than 0.0001.

To estimate 8 in Eq. (2) accurately, we have taken two
steps to remove potential biases. First, since the sample
correlation p; is not an unbiased estimator of p; x [30], we
estimate p; x by the bias-corrected sample correlation 7;:

1- 0%
ik = Pjk (1 "=, (3)

+ 2(n — 3)
where 7 is the samples size used to calculate p; . Now, let’s
define the right hand side of Eq. (2) as

F(r) = err? + coar* + ¢3r® + car® + 5110,

The estimate f(7;) is still a biased estimator of &j.
Thus, we propose a second step to remove the bias. Using
the Taylor series expansion, we can estimate the bias as

C1 ~2 2
. 2 4 6 8 10 —_— _
Bjc = c1pju + capj + espyp+ capjp +espie (2) P (1=7)
Il Il Il Il Il
4 L
8 ..o o: B
O 2 -

Fig. 1 The relationship between the covariance § (y-axis) and the correlation p (x-axis)
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Therefore, the proposed unbiased estimator of §j is

2
flw = (172" @

Hence, based on Egs. (3) and (4), the variance of T can
be estimated as

. . c1 22 \?
o2 = Var(T) = 4m + Z <f(r,;k) - (1 - rfk) ) .
j#k
Given the proposed estimators of 1 and o2, the global

p-value of T statistic can be computed efficiently using the
gamma distribution function as follows:

the global p-value = 1 — I (u?/02, 0% /1),

where I'(v/2, 2y) is the gamma distribution function with
the shape parameter v/2 and the scale parameter 2y .

In this study, we compare two alternative methods to
calculate ;4 the Pearson sample correlation coefficient
and the rank correlation coefficient of Kendall’s . Kendall
and Gibbons [31] have shown the relation between p and
T as

. (77.'1')
=sm\i{\—).
P 2
ﬂf/,k

Thus, we can use Kendall’s 7 to derive p; as sin <T>

In the simulation study, we evaluate the robustness of
Kendall’s T in comparison to Pearson’s sample correlation
coefficient.

Results

Simulation study

We conducted a simulation study to evaluate the per-
formance of the four methods reviewed (MANOVA,
PCA, GEE, and TATES) as well as the methods based
on the Fisher combination function. In the simulation,
we adopted four different approaches to calculating the
p-value of the Fisher combination test:

1. FC- X22m1 the chi-squared distribution with 2m
degrees of freedom under the independence
assumption.

2. FC-Permutation: the permutation method based on
1000 permutes.

3. FC-Pearson: the proposed method with the
correlation 0« being estimated by the Pearson’s
sample correlation coefficient.

4. FC-Kendall: the proposed method with ;s being
estimated by the Kendall’s 7.

Simulation configurations
For each subject, the relationship between the SNP, x, and
the multivariate phenotypes, Y, was defined as

Y =x8+c¢,
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where B is the effect of the SNP on the phenotypes and
€ is the error term. In this simulation study, we simulated
x based on a minor allele frequency of 0.25. We evalu-
ated the performance of competing methods under three
different settings of effect sizes:

Null hypothesis (no effects) 8 = (0,0,0,0,0)".
Moderate equal effect sizes 8 = (0.3,0.3,0.3,0.3,0.3)’.
Varied effect sizes 8 = (0.1,0.2,0.3,0.4,0.5)".

For the error term, we considered two cases. In the first
case, the error term was simulated from a multivariate
normal distribution with the mean 0 and the variance-
covariance X, which is a compound symmetry matrix
with the value of 1 on the diagonal and the value of
o = 0,0.25,0.5, or 0.75 on the off-diagonal. In the sec-
ond case, the error term was simulated from a mixture of
two multivariate normal distributions: 90 % from the same
multivariate normal distribution in the first case and 10 %
from the multivariate normal distribution with the mean
0 and the variance-covariance matrix 5%. The purpose of
the second case was to simulate long tailed distributions
of phenotypic traits which are common in real data. We
generated simulated data of 100 subjects under each con-
figuration. In addition, each configuration was repeated
10,000 times. The nominal type I error rate was set at
0.05 and the power was calculated as the proportion of
p-values less than 0.05.

Simulation results

Table 1 presents the simulation results when the mul-
tivariate phenotypes come from a multivariate normal
distribution with the value of the correlation g varied from
0 to 0.75. The numbers in each cell are the mean (stan-
dard deviation) of the indicator variable for p-value < 0.05
among the 10,000 replications. The top panel corresponds
to the case of 8 = (0,0,0,0,0)’ (i.e. when the null hypoth-
esis is true) and thus can be used to evaluate if each of the
competing methods was able to control the type I error.
The results indicate that GEE and the Fisher combination
test with x3,, did not control the type I error rate when
o > 0 while all the other methods did quite well under
all values of o. We, thus, did not find it meaningful to fur-
ther compare these two methods with the other methods
in terms of the statistical power.

The middle panel of Table 1 compares the power of
competing methods under the situation that the SNP has
the same level of association with each of the phenotypic
traits: 8 = (0.3,0.3,0.3,0.3,0.3)". The power of MANOVA
decreased rapidly as the correlation ¢ increased. When
o = 0.75, for instance, all the other methods had the
power of at least 0.4 but the power of MANOVA was
only 0.2. Further, PCA and TATES had higher power
than MANOVA when ¢ > 0. Yet, none of these three
methods can beat the three Fisher combination tests
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Table 1 Simulation results when the multivariate phenotypes come from a multivariate normal distribution

0 MANOVA PCA GEE TATES FC-x3,, FC-Permutation FC-Pearson FC-Kendall

B =1(0,0,0,0,0)

0 0.0477 0.0514 0.0109 0.0487 0.0468 0.0455 0.0455 0.0451
(0.0021) (0.0022) (0.0010) (0.0022) (0.0021) (0.0021) (0.0021) (0.0021)

0.25 0.0477 0.0499 0.0763 0.0498 0.0631 0.0488 0.0482 0.0477
(0.0021) (0.0022) (0.0027) (0.0022) (0.0024) (0.0022) (0.0021) (0.0021)

05 0.0477 0.0496 0.1518 0.0506 0.0942 0.0473 0.0482 0.0484
(0.0021) (0.0022) (0.0036) (0.0022) (0.0029) (0.0021) (0.0021) (0.0021)

0.75 0.0477 0.0496 0.2202 0.0494 0.1263 0.0467 0.0489 0.0485
(0.0021) (0.0022) (0.0041) (0.0022) (0.0033) (0.0021) (0.0022) (0.0021)

B =1(03,03,03,03,03)

0 0.7595 0.5679 0.9333 0.7359 0.9067 0.9058 0.9047 0.9040
(0.0043) (0.0050) (0.0025) (0.0044) (0.0029) (0.0029) (0.0029) (0.0029)

0.25 04086 0.7075 0.8570 0.6406 0.8076 0.7748 0.7749 0.7749
(0.0049) (0.0045) (0.0035) (0.0048) (0.0039) (0.0042) (0.0042) (0.0042)

0.5 0.2655 0.5295 0.8113 0.5668 0.7411 06314 0.6420 0.6421
(0.0044) (0.0050) (0.0039) (0.0050) (0.0044) (0.0048) (0.0048) (0.0048)

0.75 0.2011 04144 0.7827 0.4949 0.6927 05169 0.5272 05278
(0.0040) (0.0049) (0.0041) (0.0050) (0.0046) (0.0050) (0.0050) (0.0050)

B =(0.1,02,03,04,0.5)

0 0.8550 0.6646 0.9272 0.8731 0.9457 0.9454 0.9448 0.9445
(0.0035) (0.0047) (0.0026) (0.0033) (0.0023) (0.0023) (0.0023) (0.0023)

0.25 0.6334 0.7243 0.8500 0.8237 0.8864 0.8604 0.8631 0.8621
(0.0048) (0.0045) (0.0036) (0.0038) (0.0032) (0.0035) (0.0034) (0.0034)

0.5 0.6203 0.5437 0.8043 0.7758 0.8283 0.7252 0.7334 0.7333
(0.0049) (0.0050) (0.0040) (0.0042) (0.0038) (0.0045) (0.0044) (0.0044)

0.75 0.8177 04227 0.7756 0.7512 0.7721 0.5821 0.5942 0.5941
(0.0039) (0.0049) (0.0042) (0.0043) (0.0042) (0.0049) (0.0049) (0.0049)

The three different effect sizes are: no effect 8 = (0,0,0,0,0)’; moderate effects 8 = (0.3,0.3,0.3,0.3,0.3)’; and varied effects B = (0.1,0.2,0.3,0.4,0.5)". The correlation
between genes is o ranging from 0 to 0.75. The competing methods are MANOVA (Multivariate analysis of variance), PCA (Principal component analysis), GEE (Generalized
estimating equations), TATES (Trait-based association test involving the extended Simes procedure), FC—xzzm (the chi-squared distribution with 2m degrees of freedom under
the independence assumption), FC-Permutation (the permutation method based on 1,000 permutes), FC-Pearson (the proposed method with the correlation p;x being
estimated by the Pearson’s sample correlation coefficient), and FC-Kendall (the proposed method with g;x being estimated by the Kendall's 7). The numbers in each cell are
the mean (standard deviation) of the indicator variable for p-value < 0.05 among the 10,000 replications

(FC-Permutation, FC-Pearson, and FC-Kendall) that per-
formed equally well.

The bottom panel of Table 1 evaluates the perfor-
mance of competing methods under the situation that
the strength of association between the SNP and pheno-
typic traits varies from 0.1 to 0.5. Similar to the previous
situation, the three Fisher combination tests had almost
identical performance and their power decreased as the
correlation ¢ increased. Furthermore, the Fisher combi-
nation tests had higher power than the other three meth-
ods (MANOVA, PCA, and TATES) in most conditions.
MANOVA only beat the Fisher when o = 0.75; TATES
had higher power than the Fisher when o > 0.5.

Table 2 shows the simulation results when the multivari-
ate phenotypes come from a mixture of two multivariate
normal distributions. In comparison to the correspond-
ing settings under the multivariate normal distributions in
Table 1, all the competing methods tended to have lower
power under these long tailed distributions. Yet, Table 2
demonstrates similar patterns to the ones observed in
Table 1 in general.

Real data analysis

The Study of Addiction: Genetics and Environment(SAGE)
The National Center for Biotechnology Information
(NCBI) has been managing and distributing the large
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Table 2 Simulation results when the multivariate phenotypes come from a mixture of two multivariate normal distributions

Ie} MANOVA PCA GEE TATES FC-x3, FC-Permutation FC-Pearson FC-Kendall
B =1(0,0,0,0,0)
0 0.0535 0.0543 0.0135 0.0481 0.0487 0.0482 0.0461 0.0477
(0.0023) (0.0023) (0.0012) (0.0021) (0.0022) (0.0021) (0.0021) (0.0021)
0.25 0.0553 0.0514 0.0771 0.0496 0.0627 0.0465 0.0458 0.0469
(0.0023) (0.0022) (0.0027) (0.0022) (0.0024) (0.0021) (0.0021) (0.0021)
0.5 0.0537 0.0501 0.1505 0.0522 0.0895 0.0480 0.0491 0.0501
(0.0023) (0.0022) (0.0036) (0.0022) (0.0029) (0.0021) (0.0022) (0.0022)
0.75 0.0525 0.0538 0.2206 0.0481 0.1296 0.0493 0.0526 0.0513
(0.0022) (0.0023) (0.00471) (0.0021) (0.0034) (0.0022) (0.0022) (0.0022)
B =1(03,03,03,03,03)
0 0.5943 0.3299 0.8172 0.5683 0.7677 0.7633 0.7595 0.7619
(0.0049) (0.0047) (0.0039) (0.0050) (0.0042) (0.0043) (0.0043) (0.0043)
0.25 0.3038 0.5414 0.7487 0.5003 0.6779 0.6330 0.6333 0.6332
(0.0046) (0.0050) (0.0043) (0.0050) (0.0047) (0.0048) (0.0048) (0.0048)
0.5 0.2073 0.3981 0.7135 04402 0.6168 0.4989 0.5083 0.5082
(0.0041) (0.0049) (0.0045) (0.0050) (0.0049) (0.0050) (0.0050) (0.0050)
0.75 0.1601 03135 0.6847 0.3870 05779 0.4038 04111 04116
(0.0037) (0.0046) (0.0046) (0.0049) (0.0049) (0.0049) (0.0049) (0.0049)
B =1(0.1,02,03,04,0.5)
0 0.6972 0.4002 0.8087 0.7328 0.8451 0.8425 0.8379 0.8408
(0.0046) (0.0049) (0.0039) (0.0044) (0.0036) (0.0036) (0.0037) (0.0037)
0.25 0.4766 0.5579 0.7427 0.6698 0.7656 0.7269 0.7236 0.7259
(0.0050) (0.0050) (0.0044) (0.0047) (0.0042) (0.0045) (0.0045) (0.0045)
0.5 04728 04083 0.7073 0.6237 0.7036 0.5766 0.5855 0.5862
(0.0050) (0.0049) (0.0046) (0.0048) (0.0046) (0.0049) (0.0049) (0.0049)
0.75 0.6576 03172 0.6799 0.5976 0.6394 0.4532 04624 04617
(0.0047) (0.0047) (0.0047) (0.0049) (0.0048) (0.0050) (0.0050) (0.0050)

The three different effect sizes are: no effect B = (0,0,0,0,0)’; moderate effects B = (0.3,0.3,0.3,0.3,0.3)’; and varied effects 8 = (0.1,0.2,0.3,04,0.5)". The correlation
between genes is o ranging from 0 to 0.75. The competing methods are MANOVA (Multivariate analysis of variance), PCA (Principal component analysis), GEE (Generalized
estimating equations), TATES (Trait-based association test involving the extended Simes procedure), FC—xzzm (the chi-squared distribution with 2m degrees of freedom under
the independence assumption), FC-Permutation (the permutation method based on 1,000 permutes), FC-Pearson (the proposed method with the correlation p;x being
estimated by the Pearson'’s sample correlation coefficient), and FC-Kendall (the proposed method with g« being estimated by the Kendall's 7). The numbers in each cell are
the mean (standard deviation) of the indicator variable for p-value < 0.05 among the 10,000 replications

database of Genotypes and Phenotypes (dbGaP) for
scientific investigation of various human diseases [32].
In order to demonstrate the application of the proposed
method, we conducted statistical analysis on the Study of
Addiction: Genetics and Environment (SAGE) data [33],
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.
cgi?study_id=phs000092.v1.pl. The institutional review
board of the University of Michigan has approved this sec-
ondary data analysis project (HUMO00084927). The SAGE
is a case-control study that aggregated together the data
from three large scale studies in the substance abuse field:
the Collaborative Study on the Genetics of Alcoholism
(COGA), the Family Study of Cocaine Dependence

(FSCD), and the Collaborative Genetic Study of Nicotine
Dependence (COGEND). The total number of individuals
with individual level data available is 4121. Each individ-
ual was genotyped using the Illumina Human 1M-Duo
beadchip which contains over 1 million SNP markers.

We selected unrelated individuals that passed the qual-
ity control measures according to the Gene Environment
Association Studies Initiative (GENEVA) quality con-
trol report. The final number of unrelated individuals
is 3,741 (1,732 male, 2,079 female) and the total num-
ber of SNP markers is 917,694. Because the purpose of
our analysis is to identify the genes that are associated
with addiction, we used the symptomatology variables


http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000092.v1.p1
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000092.v1.p1
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Fig. 2 The distributions of phenotypes for alcohol, nicotine, marijuana and cocaine dependence. The x-axis is the number of symptoms, and the

of four highly comorbid substance use disorders as the
phenotype outcomes: the number of alcohol dependence
symptoms endorsed (alc_sx_tot), the number of nico-
tine dependence symptoms endorsed (nic_sx_tot), the
number of marijuana dependence symptoms endorsed
(mj_sx_tot), and the number of cocaine dependence
symptoms endorsed (coc_sx_tot).

SAGE data analysis results

The values of phenotype variables range from 0 to 7.
Figure 2 shows the frequency distributions of the 4 pheno-
type variables. Since they are not normally distributed, we
calculated their correlations using the Kendall rank corre-
lation. Table 3 shows moderate correlations ranged from
0.34to 0.51.

For each trait, we conducted a genome-wide association
test using the hurdle model [34] because of the discrete
nature and excess zero values associated with the symp-
tom counts. The hurdle regression model assumes the
observed data are generated from two processes: one gen-
erates zero and the other generates positive values. Since

our interest is in the severity of symptomatology, the p-
values from the positive component of the hurdle model
were used for further analysis. For each phenotype of
addiction, the estimated p-values are summarized using
QQ-plots in Fig. 3. The diagonal straight lines have the
slope 1 and intercept 0. When the curve of the p-values
deviate far away from the diagonal line, it indicates that
there are many SNPs significantly associated with the cor-
responding phenotype trait. By examining the 4 plots in
Fig. 3, we obtain the following two findings: (1) For the
nicotine symptoms, the p-values fall on the diagonal line

Table 3 The Kendall rank pairwise correlations between alcohol,
nicotine, marijuana, and cocaine outcomes

Alcohol Nicotine Marijuana Cocaine
Alcohol 1 04554 04236 0.5029
Nicotine 1 03373 03375
Marijuana 1 0.5067
Cocaine 1
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and this indicates that there is no SNP associated with
nicotine symptoms; (2) For the symptoms of the other
three substances, all the p-values deviate from the diago-
nal lines (except for 0 and 1), with the p-values of alcohol
symptoms furthest away from the diagonal line and the
p-values of the remaining two symptoms closer to the
diagonal line. Since the four symptomatology variables are
moderately correlated and they all measure the common
construct of addiction, we used them as the multivariate
phenotype and applied the proposed Fisher combination
approach (FC-Kendall) to identify the SNPs associated
with it. The QQ-plot of the p-values for this multivariate
analysis is shown in Fig. 4 indicating that some SNPs are
associated with addiction across substances.

To identify the SNPs associated with the phenotypes, we
adopted the commonly used significance level for GWAS
of 107° to account for multiplicity. Based on the results
of the marginal tests, the numbers of SNPs identified
to be associated with the individual phenotypes are 917

for alcohol dependence symptoms, 0 for nicotine symp-
toms, 9 for marijuana symptoms, and 0 for cocaine symp-
toms. Using the proposed Fisher combination method
(FC-Kendall), on the other hand, we identified 6 SNPs
associated with the multivariate phenotype of addiction.
Among them, 5 SNPs were also identified by the marginal
test for alcohol symptoms. This implies that if we ignore
the correlations among the 4 phenotypic traits and con-
duct the marginal tests, we would identify many SNPs
that may be specific to alcohol dependence. Thus, if our
goal is to identify the genes associated with the construct
of addiction that contributes to the 4 types of substance
dependence symptomatology, the proposed method is a
better approach.

Discussion

In GWAS for complex diseases, the association between
a SNP and each phenotype is usually weak. Combining
multiple related phenotypic traits can increase the power
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of gene search and thus is a practically important area
that requires methodology work. This study provides a
comprehensive review of existing methods for conduct-
ing GWAS on complex diseases with multiple phenotypes
including MANOVA, PCA, GEE, TATES, and the classical
Fisher combination test. Built upon the Fisher combina-
tion test, we proposed a new method that relaxes the unre-
alistic independence assumption and is also computation-
ally efficient. Particularly, in an exploratory study where
multiple sets of phenotypes may be of interest, when the
set is changed, our proposed methods only require re-
calculation of the correlation between phenotypes and
then the available marginal p-values for each SNP can be
re-used. The competing methods which do not involve
marginal p-values such as the PCA, MANOVA, and GEE,
on the other hand, would require a complete re-analysis.
We conducted a simulation study to compare the per-
formance of the competing methods. The GEE and the
Fisher combination test with the independence assump-
tion did not control the type I error rate and thus

are not recommended. In general, the power of the
methods decreased as the correlation between pheno-
types increased. Furthermore, all the competing methods
tended to have lower power when the multivariate pheno-
types come from long tailed distributions. The proposed
method (with the correlation being estimated by the Pear-
son’s sample correlation coefficient or the Kendall’s 7)
performed as well as the permutation method and yet
only required 10~2 computational time. In most settings
of the simulation, these three Fisher combination tests
outperformed the other methods. The real data analysis
also demonstrated that the Fisher combination tests allow
us to compare the marginal results with the multivariate
results and specify which SNPs are specific to a particular
phenotype or contribute to the common construct.

In our simulation study, we only considered continuous
multivariate phenotypes. Future studies may extend the
methodology work to the case of correlated discrete phe-
notypes. For example, in the substance abuse field, many
outcomes are zero-inflated count data [35] or ordinal data
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[36]. A future direction that is particularly challenging
is how to analyze multivariate phenotypes with different
measurement scales.
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