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Increasing evidence from animal and human studies indicate that exposure to nicotine
during development, separated from the effects of smoking tobacco, can contribute
to dysregulation of brain development including behavioral deficits. An RNAseq study
of human fetal cerebral cortex demonstrated that 9 out of 16 genes for human
nicotinic acetylcholine (ACh) receptor subunits are selectively expressed between 7.5
and 12 post-conceptional weeks (PCW). The most highly expressed subunit genes were
CHNRA4 and CHNRB2, whose protein products combine to form the most ubiquitous
functional receptor isoform expressed in the adult brain. They exhibited correlated
expression in both RNAseq samples, and in tissue sections by in situ hybridization.
Co-localization studies with other cortical markers suggest they are pre-dominantly
expressed by post-mitotic glutamatergic neuron pre-cursors in both cortical plate
and pre-subplate, rather than cortical progenitor cells or GABAergic interneuron pre-
cursors. However, GABAergic interneuron progenitor cells in the ganglionic eminences
do express these sub-units. CHNRA5 also showed moderate levels of expression and
again favored post-mitotic neurons. Other subunits, e.g., CHRNA7, exhibited low but
detectable levels of expression. CHRN genes found not to be expressed included genes
for subunits usually considered muscle specific, e.g., CHNRA1, although some muscle
specific gene expression was detected, for instance CHNRB1. Although there is little
or no synthesis of acetylcholine by intrinsic cortical neurons, cholinergic fibers from
basal forebrain innervate the cerebral cortex from 12 PCW at the latest. Acetylcholine
may have a paracrine effect on radially migrating cortical neurons and GABAergic
interneuron progenitors.

Keywords: cerebral cortex, development, ganglionic eminences, glutamatergic neurons, inhibitory interneurons,
nicotine, nicotinic receptors

Abbreviations: KI67, cell cycle protein recognized by monoclonal antibody Ki67; RNAseq, sequencing of total RNA
species isolated from tissues; GAD 67, glutamate decarboxylase isoform molecular weight 67 kD; CHRNA4, CHRNB2,
CHRNA5, CHNRA7, CHNRA1, CHNRB1, Genes and mRNA for particular sub-units of the nicotinic receptor; GABA,
gamma-aminobutyric acid.
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INTRODUCTION

Nicotinic acetylcholine receptors (nAChRs) are pentameric
ligand-gated cation channels that respond to acetylcholine, as
well as a variety of pharmacological agents including nicotine
(Albuquerque et al., 2009; Kulbatskii et al., 2018). They are
widely distributed throughout human and rodent brain during
all phases of development (Broide et al., 1995; Zoli et al., 1995;
Agulhon et al., 1999; Hellstrom-Lindahl and Court, 2000; Pentel
et al., 2006; Broide et al., 2019). Depending on their subunit
composition, nAChRs can gate both Na+ and Ca++ ions and
exist in one of three conformational states: open, closed at
rest, and desensitized in which ligand binding cannot induce
channel opening (Dani and Bertrand, 2007). There are up to
12 genes (species dependent) that encode the subunit proteins
believed to be expressed in the central and autonomic nervous
system, yielding seven α (α2–α10) and three β subunits (β2–
β4) (McGehee, 1999). These combine in both homomeric (α7–
α10) and heteromeric (α2–α7, β2–β4) configurations, which
determine the pharmacological specificity, ion selectivity, and
desensitization characteristics of the nAChR (Gotti et al.,
2009; Wu et al., 2016). Other subunits are expressed at the
neuromuscular junction in different configurations depending
on the development stage (α1, αδ, αγ, αε, and β2; Cordero-
Erausquin et al., 2000) and heteromeric combinations of α9α10
subunits may be expressed in mammalian vestibular and cochlear
mechanosensory hair cells (Elgoyhen et al., 2001).

Tobacco smoke contains a complex mixture of many
chemicals which may be potentially interfere with fetal
development (Hoffmann and Hoffmann, 1997; Pazo et al., 2016).
In particular, carbon monoxide can reduce oxygen transport
across the placenta leading to hypoxia and growth retardation
(Verhagen et al., 2011) particularly in the third trimester,
which may have specific effects on neural systems, for instance
dopaminergic innervation of the prefrontal cortex, leading to
attention deficit and hyperactivity disorder (Zhu et al., 2016). For
these reasons, nicotine replacement therapy has been proposed as
advisable for pregnant women who find it hard to stop smoking
during pregnancy (Benowitz and Dempsey, 2004). A recent study
has shown that nicotine replacement therapy may be relatively
protective of the fetus, compared to smoking, for those births
that reach full term (Tran et al., 2020). Nevertheless nicotine,
which is the major psychoactive component of tobacco smoke
and the primary cause of addiction, has been shown to cross the
placenta, enter fetal circulation and accumulate in the fetus from
as early as 7 weeks of gestation (Jauniaux et al., 1999). A large
number of studies have shown a correlation between maternal
smoking during pregnancy and psychiatric disorders during later
life (e.g., Mansi et al., 2007; Wehby et al., 2011; Ekblad et al., 2014;
Dong et al., 2018) while experiments in animals have postulated
potential roles for both nicotine exposure (Role and Berg, 1996;
Pilarski et al., 2012; Wang and Gondre-Lewis, 2013; Zhang
et al., 2019) and perinatal hypoxia (Miguel et al., 2015, 2018) in
affecting neurodevelopment leading to psychiatric disease.

Interestingly, Dong et al. (2018) provided evidence that
even after stopping in the first trimester smoking was still
significantly associated with childhood ADHD, suggesting that

the first trimester could be an important window for fetal
neurodevelopment during which exposure to smoking could
be a risk factor for childhood ADHD. At this early stage of
development mild hypoxia is likely to be less of a threat to cortical
development (Jaddoe et al., 2007). In support if this, it has been
shown that third trimester smoking has deleterious effects upon
growth rates, whereas smoking throughout pregnancy affects
attention in neonates (Espy et al., 2011). In animal experiments,
developmental exposure to nicotine causes changes in both
neuronal structure and behavior (Sorenson et al., 1991; Heath
and Picciotto, 2009; Ballesteros-Yanez et al., 2010; Lozada et al.,
2012; Mychasiuk et al., 2013) and may act on gene expression that
controls cortical circuit formation via the epigenetic regulator
Ash2l, a component of a histone methyltransferase complex (Jung
et al., 2016). It has been demonstrated that in the brainstem and
cerebellum of the human fetus between 5 and 12 weeks gestation
the gene expression pattern of both α4 and α7 nicotinic receptor
subunits was different following smoking during the pregnancy
(Falk et al., 2005).

Therefore, we propose that nicotinic receptors may be
expressed in the human forebrain during the early stages of
development, such that exposure to nicotine could disturb
the very earliest stages of cortical circuit formation. Previous
studies have demonstrated that nicotinic receptor sub-units are
expressed in human fetal forebrain extracts at both the mRNA
and protein level from about 8 post-conceptional weeks (PCW)
by RT-PCR and the binding of a radioligand to membrane
fractions (Hellstrom-Lindahl et al., 1998; Falk et al., 2002)
and from 17 PCW by immunohistochemistry and in situ
hybridization for the α4 subunit only (Schröder et al., 2001).
However, to date, no studies have attempted to localize receptor
expression to specific cell types in the developing human
forebrain. This study presents a comprehensive exploration of
nicotinic receptor subunit expression by RNAseq, coupled with
in situ hybridization and immunohistochemical approaches to
elucidate cell specific expression.

MATERIALS AND METHODS

Human Tissue
Human fetal tissue from terminated pregnancies was obtained
from the joint MRC/Wellcome Trust-funded Human
Developmental Biology Resource (HDBR)1 (Gerrelli et al.,
2015). All tissue was collected with appropriate maternal consent
and approval from the Newcastle and North Tyneside NHS
Health Authority Joint Ethics Committee. Fetal samples ranging
in age from 7.5 to 12 PCW were used. Ages were estimated from
foot and heel to knee length measurements according to Hern
(1984).

For RNAseq, whole fetal brains were isolated from the
skull and the meninges were removed. The hemispheres were
separated and the choroid plexus and subcortical structures
removed. One or both hemispheres was then divided into
a maximum of 7 sections. Each hemisphere represented an

1http://www.hdbr.org
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independent sample. The temporal lobe, including lateral and
medial walls was removed, and divided in half and labeled section
6 (posterior temporal cortex) or 7 (anterior). The remaining
cortex was divided into 5 sections of equal width from the
anterior (A) to the posterior (P) pole of the cortex including
lateral and medial cortical walls (labeled 1–5) depending on size.
RNA was extracted from the sections. Each RNA sample was
described by age in PCW, and by position by giving an average
numerical value derived by considering the anterior pole as 0,
posterior pole as 5 and the temporal pole as 7 (after Miller et al.,
2014). Therefore for a hemisphere minus temporal lobe divided
into 5, slice 1 has a locational average value of 0.5, whereas slice 3
has a value of 2.5, slice 5 has a value of 4.5 and slice 7, 6.5, etc.

For in situ hybridization, brains were isolated and fixed for
at least 24 h at 4 ◦C in 4% paraformaldehyde (Sigma-Aldrich,
Poole, United Kingdom United Kingdom) dissolved in 0.1 M
phosphate-buffered saline (PBS). Once fixed, whole or half brains
(divided sagittally) were dehydrated in a series of graded ethanols
before embedding in paraffin. Brain samples from fetuses aged 8,
10, and 12 PCW were cut at 8 µM section thickness in one of
three different planes; horizontally, sagittally, and coronally, and
mounted on slides.

RNA Seq
Full details of the origins, collection, preparation, sequencing and
analysis of the human fetal RNA samples has been previously
described (Lindsay et al., 2016; Harkin et al., 2017). The entire
RNAseq dataset from which data was extracted for this study has
been deposited at www.ebi.ac.uk/arrayexpress/experiments/E-
MTAB-4840. High quality reads were then mapped to the
human reference genome hg38 with Tophat2 (Kim et al., 2013).
Reads aligned to genes and exons were counted with htseq-
count (Anders et al., 2014) and normalized RPKMs calculated.
Read length was 101 bp prior to trimming and 85 bp after
trimming with no reads of less than 20 bp retained. The
minimum number of reads examined per sample was 63 million
(average 90 million).

RNAScope in situ Hybridization
RNA in situ hybridization experiments were performed using
the RNAscope R© technology, which has been previously described
(Wang et al., 2012). Paired double-Z oligonucleotide probes
were designed against target RNA using custom software. The
following probes were used:- Hs-CHRNA4 (498331) a 20zz
probe targeting 2,085–3,748 of NM_000744.6: Hs-CHRNA5
(482401) a 20zz probe targeting 282–3,587 of NM_000745.3;
Hs-CHRNA7 (310101) a 21zz probe targeting 181–1,591 of
NM_000746.5; Hs-CHRNB2 (498351) a 20zz probe targeting
502–2,170 of NM_000748.2. The RNAscope Reagent Kit (ACD
Bio Techne, Abingdon, United Kingdom) was used according
to the manufacturer’s instructions but with slight modifications.
In brief, 8 µM−thick paraffin sections were baked on a heating
pad for 10 min at 60◦C, dewaxed in Xylene, and then boiled
with target retrieval buffer (ACD) for 20 min at 95◦C. Protease
digestion was carried out at 40◦C for 30 min, followed by probe
hybridization for 2 h at 40◦C with target probes. The hybridized
signals were amplified by a cascade of signal amplification

molecules and detected with the RNAscope 2.5 HD detection kit
(Fast Red). Slides were counterstained with 50% hematoxylin and
positive signals showed as red chromogenic dots in the cytoplasm
or nucleus. Each sample was quality controlled for RNA integrity
with a probe specific to the housekeeping gene GAPDH. Negative
control background staining was evaluated using a probe specific
to the bacterial dapB gene.

RNAscope Fluorescent in-situ
Hybridization Coupled With
Immunofluorescence
In situ hybridization was carried out first as described above
using probes for human CHRNA4 and CHRNB2 only. Instead
of Fast Red, the hybridized signals were detected with Cy3
tyramide (Tyramide Signal Amplification (TSATM) Cy3 plus
system reagent, Perkin Elmer, Buckingham, United Kingdom).
Then immunofluorescent staining was carried out according
to previously described protocols (Alzu’bi et al., 2017) with
antibodies to either GAD67 (interneuron marker; mouse
monoclonal dilution 1:1000, Merck Millipore, Watford,
United Kingdom; AB_2278725; Alzu’bi and Clowry, 2019)
or Ki67 (progenitor cell marker; mouse monoclonal dilution
1:150; Dako, Ely, United Kingdom; AB_2142378; Alzu’bi and
Clowry, 2019). Briefly, sections were boiled in 10 mM citrate
buffer pH6, followed by incubation with primary antibody
[diluted in 10% normal blocking serum in Tris buffered
saline (TBS) pH 7.6] overnight at 40C. Sections were then
incubated with HRP-conjugated secondary antibody for 30 min
[ImmPRESSTM HRP IgG (Peroxidase) Polymer Detection Kit,
Vector Labs]. Signals were detected with fluorescein tyramide
for 10 min (TSATM fluorescein plus system reagent, Perkin
Elmer). Sections were counterstained with 4’, 6-diamidino-2-
phenylindole dihydrochloride (DAPI; Thermo Fisher Scientific,
Cramlington, United Kingdom) and mounted using Vectashield
Hardset Mounting Medium (Vector Labs, Peterborough,
United Kingdom).

RESULTS

Quantitative Analysis of mRNA Reveals
Distinct Patterns of CHNR Gene
Expression
One hundred and nine samples of cortical tissue taken from
multiple locations across the cortical surface at ages ranging
from 7.5 to 12 PCW, were subjected to RNAseq analysis. Of
the sixteen nicotinic receptor sub-unit genes (CHNR) present
in the human genome, nine were expressed at this stage of
development, of which four could be regarded as moderately
expressed (in the second quartile) and four showed low levels
of expression (third quartile) in comparison to expression
of all protein coding genes at this stage of development
(see Table 1 and Harkin et al., 2017, for more details of
expression level determination). Surprisingly, expression of two
subunits, CHNRB1 (moderate expression) and CHNRE (low)
usually associated with the neuromuscular junction rather
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neuron-neuron synapses (Cordero-Erausquin et al., 2000) was
detected. Interestingly, although CHNRB1 is not thought to
be expressed in the brain, whole genome linkage analysis has
found an association with nicotine dependence (Lou et al.,
2007). The most highly expressed genes were CHRNA4 and
CHRNB2, the protein products of which together form the
most ubiquitous isoform of the nicotinic receptor in the
adult cerebral cortex and thalamus (α42β23; Cordero-Erausquin
et al., 2000). Expression of the two subunits was highly
correlated between samples (Figure 1A) providing indirect
evidence that they were co-expressed to form this receptor
sub-type. Of the other subunit genes usually pre-dominantly
expressed in the central nervous system (Cordero-Erausquin
et al., 2000) CHRNA5 was moderately expressed and CHRNA7
and CHRNA10 exhibited low levels of expression. CHRNFAM7A,
a partial duplication of the CHRNA7 gene which codes for a
non-acetyl choline binding dupα7 subunit that assembles with α7
subunits, resulting in a dominant negative regulation of receptor
function (Sinkus et al., 2015), was found to exhibit very low
levels of expression.

Expression for all studied genes changed relatively little
with either age or location within the cortex, although small
but statistically significant differences were detected for some
genes (Table 1 and Figures 1B,C). Apart from CHNRA5, all
moderately expressed genes significantly increased expression
with age, whereas genes exhibiting low expression were either
unchanged or showed a slight tendency to decrease expression.
Gene expression levels for a number of CHNR genes did show
a tendency to correlate with cortical location which was given
a numerical value derived by considering the anterior pole
as 0, posterior pole as 5 and the temporal pole as 7 (see
methods; Miller et al., 2014) showed that many genes were
expressed in gradients along this axis. CHNRA3 (Figure 1C;
see also Lindsay et al., 2016) and CHNRB4 both showed a
strong tendency to increase expression toward the posterior
and temporal cortical areas, as did CHNRB2 to a lesser extent
(Table 1). A32β43 isoforms of the nicotinic receptor are usually
associated with autonomic ganglia and certain subcortical brain
nuclei (Gotti et al., 2009) and so it is speculative to suggest such
isoforms might be present in the developing cerebral cortex.
CHRNA5 and CHRNE were both slightly more highly expressed
in the frontal cortex.

In order for nicotinic receptor subunits to assemble into
functional receptors, expression of other proteins is required.
Two examples of this are NACHO (gene name TMEM35) and
RIC3 (Koperniak et al., 2013; Gu et al., 2016; Matta et al., 2017).
Therefore expression of these genes was also explored. It was
found that TMEM35 is very highly expressed whilst RIC3 is
also expressed at similar levels to CHRNA genes (see Table 1).
Therefore, it is a strong possibility that functional receptors are
formed in the early fetal cortex.

In situ Hybridization
Initially, immunohistochemistry for nicotinic receptor subunits
was attempted using various commercially available antibodies
but these proved unreliable, as previously reported (Moser
et al., 2007) and so are not reported here. Instead we turned

to RNAscope in situ hybridization to validate our RNAseq
findings and found this to be satisfactory. The protein products
of CHNRA4 and CHRNB2 are known combine to form a
functioning receptor isoform in the brain (α42β23) sometimes
incorporating an α5 subunit from the CHRNA5 gene (α42β22α5)
which increases the magnitude of nicotine-gated currents (Bailey
et al., 2010). For the two most highly expressed genes, CHNRA4
and CHNRB2, expression levels were higher in the post-
mitotic layers (marginal zone, cortical plate, pre-subplate) of
the cortical wall than in the proliferative layers (ventricular
zone, subventricular zone) at all ages studied, especially for
CHNRA4 (Figures 2A–C, 3A–D). CHNRA5 showed a lower level
of expression (Figures 2A–C) reflecting the RNAseq findings.
At 12 PCW there was a tendency toward higher expression
in neurons in the outer layers of the cortical plate (recently
arrived) than in lower levels (born earlier; Figure 2B). Low
level CHNRA7 expression was detected by in situ hybridization
and was located throughout the cortical wall at all ages studied
(Figures 2A–C) confirming our RNAseq findings (Table 1) and
a previous in situ hybridization study (Agulhon et al., 1999).
The probes might have detected CHRFAM7A expression as
well, due to the high homology between these genes in the
probe target region.

To further characterize expression the two most highly
expressed sub-units, double label fluorescent In situ and
immunofluorescence was carried out for CHNRA4 and CHNRB2
with either GAD67 (marker for GABAergic interneurons) or
KI67 (marker for dividing cells) at 8 PCW. It was found
that neither CHNRA4 nor CHNRB2 co-localized with GAD67+
neurons to any great extent, instead being preferentially
expressed by GAD67- cells in the post-mitotic layers of the
cortex, which are pre-dominantly glutamatergic pyramidal cell
pre-cursors either migrating through the intermediate zone or
settled in the cortical plate and pre-subplate (Figures 3A,B).
Similarly, in the proliferative zones, low levels of CHNRA4 or
CHNRB2 expression showed little co-localization with KI67+
cells undergoing cell division and preferentially localized to
KI67- cells, which could either be quiescent progenitors not
undergoing division, or newborn post-mitotic neuron precursors
(Figures 3C,D). Interestingly, in the ganglionic eminences of the
ventral telencephalon, where cortical GABAergic interneurons
and GABAergic neurons of the basal ganglia are born (Marin
and Rubenstein, 2001; Alzu’bi et al., 2017) high expression
of both CHNRA4 (not shown) and CHNRB2 (Figures 3E,F)
was observed, co-localized with progenitor cells of the VZ
but not with post-mitotic GAD67+ cells in the overlying
SVZ and mantle zone (Figure 3F). Thus pyramidal cells and
interneurons show a reverse pattern of expression of CHNRA4
and CHNRB2, with interneurons restricting expression to their
progenitor cells, and pyramidal cells restricting expression to
post-mitotic neurons.

DISCUSSION

This study provides further evidence that nAChRs may be
present in the forebrain in the earliest stages of human
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TABLE 1 | Summary of expression of nicotinic receptor subunits in the human fetal cerebral cortex.

Subunit Mean normalized RPKM (± 95% conf.
limits) 7.5–12 PCW n = 109

Change with age (r and p-values) Ant to pos/temp gradient (r and p-values)

Moderate expression (2nd quartile for all protein coding genes 7.5–12PCW, nRPKM range 10–40)

CHRNA4 24.74 ± 0.48 r = 0.356
p < 0.001

CHRNA5 13.35 ± 0.24 r = –0.327
p < 0.001

CHRNB1 12.12 ± 0.28 r = 0.556
p < 0.0001

CHRNB2 27.94 ± 0.47 r = 0.189
p < 0.05

r = 0.212
p < 0.03

Low expression (3rd quartile for all protein coding genes 7.5–12 PCW, nRPKM range 0.4–10)

CHRNA3 3.82 ± 0.21 r = –0.397
p < 0.0001

r = 0.459
p < 0.0001

CHRNA7 2.99 ± 0.09

CHRNFAM7 1.27 ± 0.04

CHRNA10 2.71 ± 0.09 r = –0.580
p < 0.0001

CHRNB4 3.91 ± 0.12 r = –0.275
p < 0.005

r = 0.429
p < 0.0001

CHRNE 1.68 ± 0.06 r = –0.249
p < 0.01

No expression CHRNA1, CHRNA2, CHRNA6, CHRNA9, CHRNB3, CHRNAD, CHRNAG, Not bold considered muscle specific

Expression of genes for proteins involved in assembling nACHR

TMEM35 201.32 + 5.13 r = 0.376
p < 0.0001

r = 0.239
p < 0.02

RIC3 16.89 + 0.73 r = 0.456
p < 0.0001

FIGURE 1 | Patterns of expression of nAChR subunit mRNA. (A) Shows the high correlation of expression (normalized RPKM) of CHRNA4 with CHRNB2 within
specific tissue samples. (B) Shows that expression of CHRNA4 increased significantly with age (PCW, post-conceptional weeks) but only to a small degree, while (C)
demonstrates that expression of CHRNA3 changed significantly but only to a small degree across cortical regions (ant, anterior; Pos, Posterior; Temp, temporal).
(B,C) Are representative of the degree to which other subunits change expression over time or across the cortex (see Table 1).

fetal development. The majority of receptor subunits
normally found in the brain were present at the mRNA
level. Subunit combinations that would form functioning
receptors were expressed, along with genes for proteins
required to assemble the receptor at the cell membrane.
In the cortex, gene expression was largely confined to
post-mitotic glutamatergic neurons of the cortical plate and
pre-subplate, or in the process of migrating to these locations.
Cortical progenitor cells exhibited very low expression.
Conversely, GABAergic interneurons showed low expression,

but their progenitors in the ganglionic eminences exhibited
higher expression.

Presence of Ligands for nAChRs in the
Developing Telencephalon
If functional nAChRs are to have active role in the development
of the cortex it is necessary to show the presence of ligands
to activate these receptors. Acetylcholine could derive from
cholinergic innervation early in development but there is no
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FIGURE 2 | RNAScope in situ hybridization for nAChR subunit mRNA. (A) Sections from across the whole dorsomedial cortical wall at 8 post-conceptional weeks
(PCW) with positive in situ hybridization observed as red dots and counterstained with hemotoxylin. CHRNA4 was expressed pre-dominantly in layers containing
post-mitotic cells, CHRNB2 was strongly expressed in all compartments, CHRNA5 showed lower expression which was slightly higher in proliferative layers, whereas
CHRNA7 was weakly expressed. Probes for the standard reference gene GAPDH detected very strong expression, whereas the bacterial gene dapB showed no
detectable expression. (B,C) A broadly similar pattern of expression was seen at 12 PCW, but with CHRNA4 now all but absent from the purely proliferative VZ, and
CHRNA5 expression slightly stronger in the CP. MZ, marginal zone; CP, cortical plate; pSP, pre-subplate; IZ, intermediate zone; SVZ, subventricular zone; ventricular
zone. Scale bars = 100 µM.
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FIGURE 3 | Combined in situ hybridization/immunohistochemistry to localize nAChR subunit expression to cell type. (A,B) Higher magnification insets A1, B1, show
combined expression of either CHRNA4 or CHRNB2 (red) with GAD67 (green) a marker for inhibitory interneurons. Sections were counterstained with DAPI (blue).
Although both sub-unit mRNAs were strongly expressed in post-mitotic zones, there was little co-localization with GAD67 suggesting their expression may very
largely be confined to glutamatergic neurons. Conversely, in proliferative zones (C,D and higher magnification insets C1,2 and D1,2) CHRNA4 and CHRNB2
expression was generally not co-localized to cells expressing KI67, a marker for dividing cells. In the ventral telencephalon, CHRNB2 (E) and CHRNA4 (not shown)
were strongly expressed in the proliferative ganglionic eminences, particularly in the MGE, a source of cortical interneurons. However, again, neither CHRNB2 (E) nor
CHRNA4 (not shown) was observed to co-localize with GAD67 in post-mitotic cortical interneuron pre-cursors (F). MZ, marginal zone; CP, cortical plate; pSP,
pre-subplate; IZ, intermediate zone; SVZ, subventricular zone; VZ, ventricular zone; ChP, choroid plexus; MGE, medial ganglionic eminence; LGE, lateral ganglionic
eminence; Crx, cerebral cortex. Scale bars = 100 µM.
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evidence as yet for this occurring before about 12 PCW. From
this age, choline acetyltransferase activity has been detected
in cortex (Candy et al., 1985) although no earlier stage was
tested, however, acetylcholinesterase histochemistry has only
detected putative cholinergic fibers from the basal telencephalon
entering the pre-subplate just before this stage of development
(Kostovic, 1986). Synapses have been demonstrated to be
present in the pre-subplate and marginal zone at this stage
(Kostovic and Rakic, 1990; Bayatti et al., 2008). Whether these
synapses include cholinergic terminals remains to be investigated.
Our own attempts to demonstrate choline acetyltransferase
immunoreactivity in paraffin sections of human fetal brain have
so far been unsuccessful.

An alternative source could be choline and acetylcholine
in the fetal circulation. Choline as a nutrient is critical
for fetal nervous system development (Zeisel, 2006). High
concentrations of choline are delivered to the fetus across the
placenta by specialized transport systems (Sweiry et al., 1986).
Choline can act as a ligand for α7 receptors in particular
(Alkondon et al., 1997), however, these subunits were not
found to be highly expressed in the present study. Choline
appears to be a far less potent agonist for α42β23 receptors
(Alkondon et al., 1997) the most likely isoform present in
the developing cortex (see above), however, it can potentiate
the action of acetylcholine on α4β4 receptors (Zwart and
Vijverberg, 2000) as well as modulate synaptic transmission
and neuronal excitability independent of nicotinic receptor
activation (Albiñana et al., 2017). Furthermore, it has been
demonstrated that the placenta can synthesize and store high
concentrations of acetylcholine from as early as 9 PCW (Sastry
et al., 1976) and release it into both maternal and fetal
circulations (Sastry, 1997). Although recent evidence suggests
an effective blood brain barrier has formed by this stage of
development (Møllgård et al., 2017) it seems possible that
acetylcholine may enter the developing brain and act in a
paracrine manner.

Potential Role for nACHRs in
Development
It has long been appreciated that neurotransmitters can
have paracrine effects in the developing cortex (Manent and
Represa, 2007). Long before appreciable synaptogenesis has
occurred there is release of GABA and glutamate by non-
vesicular mechanisms that leads to communication between
migrating neuronal pre-cursors in particular. It has been
proposed that glutamate release by pyramidal cells attracts
migrating inhibitory interneurons acting through ionotropic
AMPA and NMDA receptors (Manent et al., 2005) and GABA
released by interneurons influences pyramidal cell migration
via ionotropic GABAA receptors (Manent et al., 2006). In this
way, a balanced mix of each neuronal subtype is achieved
in the cortex (Manent and Represa, 2007). Intracellular Ca2+

concentration is an important coordinator of the intracellular
processes controlling migration (Komuro and Kumada, 2005)
and activation of all these ionotropic receptors can directly or
indirectly lead to Ca2+ entering the neuron and increasing

intracellular concentrations. Activation of nicotinic receptors
should also lead to depolarization and the opening of voltage
gated Ca2+ channels and NMDA receptors, raising intracellular
Ca2+ (Kulbatskii et al., 2018). This study revealed nicotinic
receptor subunits to be pre-dominantly expressed by post-mitotic
glutamatergic neurons and not GABAergic neurons, suggesting
their activation could preferentially control migration of one
class of neuron only.

Acetylcholine can also stimulate proliferation of cancer
cells via nicotinic receptors (Song et al., 2003 and Montaño-
Velázquez et al., 2018) and its preferential expression by neural
progenitors for GABAergic neurons rather than for glutamatergic
neurons suggest that activation of nicotinic receptors may control
GABAergic cortical interneuron production independently of
production of glutamatergic neurons. Interestingly, cortical
glutamatergic neuron progenitors preferentially express various
glutamate receptor sub-units, whereas inhibitory interneuron
progenitors do not (Bagasrawala et al., 2017) suggesting that
the development of subsets of neurons is controlled by different
neurotransmitters.

CONCLUSION

The possibility that nicotinic receptors are expressed by different
classes of post-mitotic neuron and neuroprogenitor cell in early
human fetal forebrain raises the possibility that acetylcholine
may act either as a neurotransmitter or paracrine agent to
influence cortical development. Further in vitro experiments
will be required to explore these possibilities. This raises the
possibility that maternal ingestion of nicotine, either by smoking,
or by oral or transcutaneous administration, may have effects
upon brain development.
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