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Abstract: Pediatric adrenocortical carcinoma (ACC) is a rare malignancy with a poor outcome. 

Molecular mechanisms of pediatric ACC oncogenesis and advancement are not well understood. 

Accurate and timely diagnosis of the disease requires identification of new markers for pediatric 

ACC. Differentially expressed genes (DEGs) were identified from the gene expression profile 

of pediatric ACC and obtained from Gene Expression Omnibus. Gene Ontology functional and 

pathway enrichment analysis was implemented to recognize the functions of DEGs. A protein–

protein interaction (PPI) and gene–gene functional interaction (GGI) network of DEGs was 

constructed. Hub gene detection and enrichment analysis of functional modules were performed. 

Furthermore, a gene regulatory network incorporating DEGs–microRNAs–transcription factors 

was constructed and analyzed. A total of 431 DEGs including 228 upregulated and 203 downregu-

lated DEGs were screened. These genes were largely involved in cell cycle, steroid biosynthesis, 

and p53 signaling pathways. Upregulated genes, CDK1, CCNB1, CDC20, and BUB1B, were 

identified as the common hubs of PPI and GGI networks. All the four common hub genes were 

also part of modules of the PPI network. Moreover, all the four genes were also present in 

the largest module of GGI network. A gene regulatory network consisting of 82 microRNAs 

and 100 transcription factors was also constructed. CDK1, CCNB1, CDC20, and BUB1B may 

serve as potential biomarker of pediatric ACC and as potential targets for therapeutic approach, 

although experimental studies are required to authenticate our findings.

Keywords: gene expression profiling, protein–protein interaction network, network module, 

gene–gene functional interaction network

Introduction
Adrenocortical tumor (ACT) is an aberrant and highly aggressive malignancy 

originating from the adrenal cortex. It is accountable for ~0.2% of all childhood cancers. 

The majority of pediatric ACTs are functional as compared to adult ACTs, which are 

mostly nonfunctional.1 Girls are more frequently affected with pediatric adrenocortical 

carcinoma (ACC) than boys.2 Increased production of androgens, aldosterone, corti-

costeroids, and estrogen with ~80% showing virilization are the symptoms associated 

with pediatric ACC.3 Like most pediatric embryonal tumors, a good result demands 

early detection and complete surgical resection.4 Traditional chemotherapeutic agents 

have shown little value in treating children with ACC. Long-term problems associ-

ated with mitotane plus EDP (etoposide, doxorubicin, and cisplatin) treatment are a 

troublesome issue for children with ACC. Moreover, leukemogenesis may develop on 

treatment with topoisomerase inhibitors such as etoposide and doxorubicin.3 Surgery 

and exhaustive chemotherapy have shown poor outcomes in children with locally 

advanced or metastasis disease.4

correspondence: anurag Kulshrestha
Bioinformatics Division, national Bureau 
of animal genetic resources, Karnal, 
haryana 132001, india
Tel +91 896 029 8856
email anurag.kulshrestha23@gmail.com 

Journal name: OncoTargets and Therapy
Article Designation: Original Research
Year: 2016
Volume: 9
Running head verso: Kulshrestha et al
Running head recto: Markers of pediatric ACC
DOI: http://dx.doi.org/10.2147/OTT.S108485

http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/OTT.S108485
https://www.facebook.com/DoveMedicalPress/
https://www.linkedin.com/company/dove-medical-press
https://twitter.com/dovepress
https://www.youtube.com/user/dovepress
mailto:anurag.kulshrestha23@gmail.com


OncoTargets and Therapy 2016:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

4570

Kulshrestha et al

Pediatric ACC is commonly reported in families with 

Li–Fraumeni syndrome, which are generally related with 

TP53 tumor-suppressor germ line mutations5 or inherent 

genetic and/or epigenetic changes affecting chromosome 

11p15 (Beckwith–Wiedemann syndrome).6 Although the 

elements advancing to occasional pediatric ACCs are not 

established, their similarity to cases with an inherent sus-

ceptibility indicates a common method of tumorigenesis. 

Size of the tumor and verification of the tumor after surgery 

form the basis of staging of pediatric ACC.7 Early-stage 

tumor tissue can be accessed through the distinguishable 

clinical symptoms of ACC such as Cushing syndrome and 

virilization. Embryonal tumors share the epidemiological 

and molecular characteristics with ACC.4

Molecular studies differentiating pediatric ACC from 

age-matched normal adrenals have been established from 

gene expression profiling. Rarity of this tumor has been 

a problem in identifying the potential markers. Increased 

levels of insulin-like growth factor 2 (IGF-2) are found in 

90% of pediatric ACC due to genetic or epigenetic changes 

in chromosome 11p15.8 KCNQ1 (potassium channel, volt-

age gated KQT-like subfamily Q, member 1) and CDKN1C 

(cyclin-dependent kinase inhibitor 1C) are among the most 

strongly downregulated genes in pediatric ACC. Genes 

associated with mitogen-activated kinase and growth factor 

receptor pathways are impaired in pediatric ACC, indicat-

ing their plausible utility as therapeutic targets. HSD3B2, 

a steroidogenic enzyme, and its transcriptional regulators 

NR4A1 (nuclear receptor subfamily 4, group A, member 1) 

and NR4A2 (nuclear receptor subfamily 4, group A, member 

2) are downregulated in pediatric ACC.2 Another highly 

downregulated gene in pediatric ACC is NOV (nephroblas-

toma overexpressed), which encodes a multimodular protein 

that has proapoptotic function on adrenocortical cancer cells.9 

MicroRNA (miRNA) expression profiling of pediatric ACC 

revealed downregulation of miR-99a and miR-100, which 

in turn downregulates the expression of insulin-like growth 

factor 1 receptor (IGF-1R), mechanistic target of rapamycin 

(mTOR), and regulatory associated protein of MTOR, com-

plex 1 (RPTOR) in adrenocortical cell lines.10

A listing of differentially expressed genes (DEGs) is 

provided through gene expression analysis. Protein–protein 

interactions (PPIs) utilize known relationships among the 

protein molecules. Analyzing the PPI network recounts the 

importance of these interactions in relation to signal trans-

duction and biochemistry. In a particular biological context, 

all proteins interact with other proteins to perform particular 

functions.11 Substantial amount of attention has been given 

to coherent analysis of microarray gene expression data 

with PPI networks in recent years.12,13 Potential biomarker 

identification, elucidation of protein function and protein 

interaction, functional module identification, and drug target 

identification are some of the applications of analyzing 

PPI networks.14,15

This study focuses on analyzing the gene expression 

profile of children with ACC, based on the understanding 

of interaction networks utilizing a system biology approach. 

To obtain more knowledge from gene expression profiles, 

analysis should transcend identification of the affected 

genes leading to the proteins underlying the inflated 

biological phenotypes.

Materials and methods
A bioinformatics approach with myriad of computational 

tools, software, and databases was utilized for shedding light 

on the underlying mechanisms of pediatric ACC. The entire 

workflow representing the procedure employed for the study 

is shown in Figure 1.

raw biological data
The raw DNA microarray data were obtained from Gene 

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) for 

healthy children and children suffering from ACC. The chip 

dataset GSE7541516 included samples from healthy children, 

children with adenomas, and children with ACC. Eighteen 

ACC and seven normal adrenal samples were extracted 

from the dataset. Studying the gene expression enables to 

identify potential biomarkers for early detection of ACC. 

Gene expression profiling was performed using Affymetrix 

Human Genome U133A chips. (Affymetrix, Inc., Santa 

Clara, CA, USA)

Data preprocessing and normalization
DNA microarray analysis begins with preprocessing and 

normalization of raw biological data. This process removes 

noise from the biological data and ensures its integrity. Back-

ground correction of probe data, normalization, and summa-

rization were executed by robust multi-array average analysis 

algorithm17 in affy package of R.18 Raw intensity and normal-

ized intensity box plot were also generated for the analysis.

elucidation of Degs
Normalization of data was followed by analysis of differ-

ential expression by Linear Models for MicroArray data 

package of R.19 Delineating parameters such as adjusted 

P-value, false discovery rate (FDR), and fold change were 

utilized for filtering of DEGs between healthy and diseased 

states. To reduce error from multiple hypothesis testing,20 
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Benjamini–Hochberg method21 was employed to obtain 

adjusted P-values. Genes were further screened on account 

of adjusted P-value ,0.05 and fold change .2.

Functional enrichment of Degs
Discerning the implication of DEGs in ACC, biological 

attributes of DEGs such as biological processes, molecular 

functions, and cellular components were extracted from Gene 

Ontology (GO)22 enrichment analysis. Database for Annota-

tion, Visualization, and Integrated Discovery,23 WEB-based 

Gene SeT AnaLysis Toolkit (WebGestalt),24 and Funrich 

tools25 were surveyed for GO and pathway enrichment of 

DEGs. Hypergeometric test was utilized to assess the func-

tional enrichment against predefined functional categories 

through large genomic, proteomic, and genetic datasets with 

P-value ,0.05 and gene count .2.

PPi network construction
The recent version of STRING v1026 database was employed 

for construction of PPI network of proteins encoded by 

DEGs. STRING is a database of known and predicted 

PPIs. The interactions include direct (physical) and indirect 

(functional) associations. The interactions are procured from 

genomic context, high-throughput experiments, coexpres-

sion, and previous knowledge. Three PPI networks were 

constructed by mapping upregulated DEGs, downregulated 

DEGs, and total DEGs, respectively, to STRING database 

with confidence score .0.4. PPI networks were visualized 

and analyzed in Cytoscape27 software, which furnishes 

diverse plugins for multiple analyses. Cytoscape represents 

PPI networks as graphs with nodes illustrating proteins 

and edges depicting associated interactions. Hub protein 

nodes of the PPI network with connectivity degree .10 

were identified.

network topology analysis
Network Analyzer28 was employed to analyze the topological 

parameters of networks. Architecture of complex networks 

was examined with topological parameters such as clustering 

coefficient, centralization, density, and network diameter. 

Undirected edges were considered for all the networks. 

The number of directly connected neighbors of a node in a 

network was termed as degree of a node. Node degree distri-

bution P(k) is termed as the number of nodes with a degree 

k for k=0, 1, 2, …. Power law of distribution of node degrees, 

one of the most crucial network topological characteristics, 

was analyzed. A line can be fitted on the node degree dis-

tribution data to visualize the pattern of their dependencies. 

Network Analyzer uses the least squares method and only 

the points with positive coordinate values are considered 

for fit. R-squared value (R2), also known as the coefficient 

of determination, gives the proportion of variability in the 

dataset. When R2 value is close to 1, the fit is considered to 

be good. Also, other network parameters were analyzed.

Figure 1 Workflow utilized for identification of potential markers of pediatric ACC.
Abbreviations: acc, adrenocortical carcinoma; Degs, differentially expressed genes; ggi, gene–gene functional interaction; mirna, microrna; PPi, protein–protein 
interaction; TFs, transcription factors.
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Module identification and enrichment 
analysis
Module identification is imperative as two interacting proteins 

have a higher probability of sharing the same function than 

two proteins not interacting. Molecular Complex Detection 

(MCODE)29 was used to find local dense subnetworks or 

modular clusters through vertex weighing by local neighborhood 

density and outward traversal from a locally dense protein node 

to isolate dense regions in PPI network. Module identification 

criteria included degree cutoff of 2, node score cutoff of 0.2, 

k-core of 2, and maximum depth of 100. Significant mod-

ules were identified with MCODE score $4 and nodes $6. 

Biological significance of these predicted modules was inferred 

by BiNGO30 plugin of Cytoscape. GO enrichment was per-

formed with P-value ,0.05 based upon hypergeometric test 

and corrected by Benjamini and Hochberg FDR. GO Slim is 

utilized by BiNGO for functional annotation.

construction of gene–gene functional 
interaction network
Gene–gene interaction network incorporating up- and 

downregulated DEGs was constructed for identifying the 

functional interactions between DEGs. DEGs’ list was fur-

nished to GeneMANIA31 that incorporates large functional 

association data such as coexpression data, colocalization 

data, physical interactions, shared protein domains, path-

way, and genetic interactions. Twenty additional genes 

were added to the interaction network based on GO term 

(biological process)-based weighting and Homo sapiens 

as the species to identify genes that may have been missed 

during the screening process. Hub genes were identified with 

connectivity degree .10. MCODE was employed for iden-

tification of modules in the gene–gene functional interaction 

(GGI) network. BiNGO and Gene Set Enrichment Analysis32 

were utilized to identify the GO terms and pathways associ-

ated with modules with FDR q-value below 0.05.

construction of transcription 
factor–mirna regulatory network
Genes must interact with and respond to an organism’s 

environment, as they independently cannot control the organ-

ism by themselves. Transcription factors (TFs) and miRNA 

regulate the gene expression at transcriptional and posttran-

scriptional levels. Information pertinent to TFs, miRNAs, and 

their respective target genes may help to better understand the 

intrinsic processes of pediatric ACC. Molecular Signatures 

Database v5.1 (MSigDB)32 was explored for the identifica-

tion of TFs and miRNAs associated with DEGs with FDR 

q-value below 0.05. MSigDB incorporates annotated gene 

sets derived from a large variety of resources. A gene regu-

latory network incorporating DEGs, TFs, and miRNAs was 

constructed in Cytoscape.

Results
The comprehensive study focused on identifying and ana-

lyzing the genes, proteins, and probable patterns that are 

expressed in children with ACC, as compared to normal 

children. The ACC dataset was exposed to preprocessing and 

normalization in order to remove noise by robust multiaver-

age analysis algorithm (Figure 2).

Figure 2 Preprocessing and normalization of expression data.
Notes: (A) raw intensity box plot. (B) normalized intensity box plot. Bars represent interquartile range. red in (A) represents dataset before normalization and blue 
(B) after normalization.
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Identification of DEGs
The normalized data were subjected to analysis to reveal 

genes with altered expression profiles between healthy and 

diseased datasets. A total of 431 DEGs were obtained through 

a threshold of adjusted P-value ,0.05 and a fold change .2. 

Among the total DEGs, 228 were upregulated and 203 were 

downregulated genes.

Functional enrichment of Degs
Biological significance of DEGs was established by enriching 

the GO functions such as biological processes, cellular com-

ponents, and molecular functions. Among the total DEGs, 

both upregulated and downregulated DEGs were largely 

involved in metabolic process and protein binding. Most of 

the upregulated DEGs were present on the nucleus, while the 

downregulated DEGs existed on the membrane (Figure 3).

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway enrichment analysis revealed that the upregulated 

DEGs were mostly enriched in cell cycle, steroid biosynthesis, 

and p53 signaling pathway, while the downregulated DEGs 

were mainly involved in complement and coagulation cas-

cades (Table 1). Funrich enrichment analysis of the biological 

pathways associated with DEGs is shown in Figure 4.

PPi network construction
STRING furnishes original reliable protein data for conse-

quent analysis. Upregulated, downregulated, and total DEGs 

were mapped to generate three PPI networks. A PPI network 

was formed with upregulated DEGs containing 194 nodes 

and 1,122 edges, as these DEGs had literature related to 

interacting proteins. Moreover, a PPI network was formed 

with 130 nodes and 262 edges with the available literature. 

The total DEG PPI network was formed with 366 nodes and 

1,858 edges (Figure 5A).

Hub genes of the total DEGs PPI network were identified 

as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 

cyclin-dependent kinase 1 (CDK1), topoisomerase (DNA) 

II alpha (TOP2A), cyclin B1 (CCNB1), and ATP citrate lyase 

(ACLY). Top 20 hub genes of the overall PPI network are 

shown in Table 2.

network topological analysis
PPI networks or biological networks are notably different 

from random networks on the basis of differentiable topo-

logical characteristics. The most important indicator is the 

power law of node degree distribution. The power law of 

degree distribution was followed with an R2=0.749, 0.859, 

Figure 3 gene ontology functional analyses of Degs.
Notes: gene Ontology category (A) biological process, (B) molecular function, and (C) cellular component. Blue denotes upregulated Degs and red depicts downregulated Degs.
Abbreviation: Degs, differentially expressed genes.
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and 0.836 for upregulated, downregulated, and total DEGs, 

respectively. This implies that all the PPI subnetworks were 

scale-free, a major attribute of complex biological networks.33 

Various parameters of the PPI networks such as clustering 

coefficient, network centralization, and network density are 

shown in Table 3.

Module identification and enrichment 
analysis
The overall PPI network of the DEGs was surveyed for 

identification of functional modules in the network. Five 

modules were identified in the PPI network with MCODE 

score $4 and nodes $6: module P-A with MCODE score 

of 8.625 (nodes =17), module P-B with MCODE score of 

6.857 (nodes =22), module P-C with MCODE score of 

5.727 (nodes =23) (Figure 5B), module P-D with MCODE 

score of 5.2 (nodes =16) (Figure 5C), and module P-E with 

MCODE score of 5 (nodes =19). Hub genes, namely, CDK1, 

CCNB1, and cell division cycle 20 (CDC20), were present in 

module P-D, and BUB1 mitotic checkpoint serine/threonine 

kinase B (BUB1B) was present in module P-C. Modules P-C 

and P-D were scrutinized further for function and pathway 

enrichment analysis.

GO functional enrichment of the modules revealed that 

module P-C was enriched in sterol and steroid metabolic 

process and that module P-D was enriched in cell cycle pro-

cess and cell cycle phase (Table 4). Also, KEGG pathway 

enrichment analysis revealed that genes in module P-C 

were enriched in cell cycle and p53 signaling pathway 

and that genes in module P-D were significantly enriched 

in aminoacyl-tRNA biosynthesis and cell cycle pathways 

(Table 5).

Table 1 KEGG pathway enrichment analysis of DEGs (top five in each)

Category Term Category Count Adjusted P-value

Upregulated
Kegg hsa04110 cell cycle 20 2.70e-09
Kegg hsa00100 steroid biosynthesis 6 0.0016
Kegg hsa04115 p53 signaling pathway 9 0.0051
Kegg hsa04114 Oocyte meiosis 11 0.0049
Kegg hsa00900 Terpenoid backbone biosynthesis 4 0.0961
Downregulated
Kegg hsa04610 complement and coagulation cascades 9 0.0012
Kegg hsa02010 aBc transporters 4 0.8510

Abbreviations: Degs, differentially expressed genes; Kegg, Kyoto encyclopedia of genes and genomes.

β

β

Figure 4 Pathway enrichment analyses of (A) upregulated and (B) downregulated Degs.
Abbreviations: Degs, differentially expressed genes; igF, insulin-like growth factor; igFBPs, insulin-like growth factor binding proteins.
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Table 2 Top 20 hubs of overall PPi network

ID Degree ID Degree ID Degree ID Degree

gaPDh 88 CDC20 51 hsPa5 38 rrM2 33
CDK1 76 aUrKa 51 hDac1 37 hsPa4 33
TOP2a 74 ccnB2 49 egr1 36 sMarca4 32
CCNB1 60 FOs 49 BUB1B 35 MMP2 32
aclY 52 BUB1 40 caT 34 McM5 31

Abbreviations: Degs, differentially expressed genes; PPi, protein–protein interaction.

Table 3 Topological parameters of PPi networks

PPI network Number 
of nodes

Number 
of edges

R2 Correlation Clustering 
coefficient

Network 
centralization

Network 
density

Network 
diameter

Overall Degs 366 1,858 0.836 0.880 0.304 0.214 0.028 9
Upregulated 194 1,122 0.749 0.849 0.404 0.280 0.060 8
Downregulated 130 262 0.859 0.996 0.213 0.204 0.031 9

Abbreviations: Degs, differentially expressed genes; PPi, protein–protein interaction.

Table 4 GO enrichment analysis of modules of PPI network (top five in each)

Category Class Description Gene count Adjusted P-value

Module P-C
BP 16,125 sterol metabolic process 5 6.3681e-05
BP 8,202 steroid metabolic process 6 6.3681e-05
BP 43,038 amino acid activation 4 6.3681e-05
BP 43,039 trna aminoacylation 4 6.3681e-05
BP 6,418 trna aminoacylation for protein translation 4 6.3681e-05
Module P-D
BP 22,402 cell cycle process 9 1.6615e-06
BP 22,403 cell cycle phase 8 2.3258e-06
BP 7,047 cell cycle 9 8.3642e-06
BP 278 Mitotic cell cycle 7 1.3412e-05
BP 6,996 Organelle organization 10 3.8684e-05

Abbreviations: BP, biological process; gO, gene Ontology; PPi, protein–protein interaction.

Table 5 Pathway enrichment analysis of modules of PPI network (top five in each)

Category Class Description Gene count Adjusted P-value

Module P-C
Kegg hsa04110 cell cycle 6 6.13e-06
Kegg hsa04115 p53 signaling pathway 4 8.55e-04
Kegg hsa04114 Oocyte meiosis 4 0.0023
Kegg hsa04914 Progesterone-mediated oocyte maturation 3 0.0256
Module P-D
Kegg hsa00970 aminoacvl-trna biosynthesis 4 0.0030
Kegg hsa04110 cell cycle 3 0.3684

Abbreviations: PPi, protein–protein interaction; Kegg, Kyoto encyclopedia of genes and genomes.
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ggi network
A GGI network of the overall DEGs was constructed to 

infer the biological meaning of the recognized DEGs at the 

gene level. The gene interaction network was composed of 

449 nodes and 14,848 edges (Figure 6A). Approximately 

64.66% genes show physical interactions, and 17.38% of 

genes show coexpression in the GGI network.

The hub genes of the GGI network were identified as 

ubiquitin C (UBC), interleukin enhancer binding factor 2 

(ILF2), karyopherin subunit alpha 2, CCNB1, and CDC28 

protein kinase regulatory subunit 2 (CKS2). The top 20 hubs 

of GGI network are shown in Table 6.

Ten modules were identified in the GGI network with 

MCODE score $4 and nodes $6. They were as follows: 

module G-A (MCODE score – 70.541) with 75 nodes 

(Figure 6B), module G-B (MCODE score – 18.698) with 

64 nodes, module G-C (MCODE score – 12.963) with 

28 nodes, module G-D (MCODE score – 7.333) with 28 

nodes, module G-E (MCODE score – 5.647) with 35 nodes, 

module G-F (MCODE score – 5.556) with ten nodes, mod-

ule G-G (MCODE score – 5.286) with 29 nodes, module 

G-H (MCODE score – 5.2) with eleven nodes, module G-I 

(MCODE score – 4.839) with 32 nodes, and module G-J 

(MCODE score – 4.833) with 13 nodes. Hub genes, namely, 

CDK1, CCNB1, CDC20, and BUB1B, were also present in 

the largest module G-A of the GGI network. Genes in module 

G-A were further scrutinized for enrichment analysis.

Genes in module G-A were found to be significantly 

enriched in cell cycle and cell cycle phase. Moreover, KEGG 

pathway enrichment revealed that genes in module G-A were 

enriched in cell cycle and oocyte meiosis pathways (Table 7).

gene regulatory network
Identification of DEGs was preceded by recognizing TFs 

and miRNA associated with DEGs to better understand the 

process of gene regulation.

Eighty-two miRNAs such as TGGTGCT, MIR-29A, 

MIR-29B, MIR-29C, GTACTGT, MIR-101, GTGCCTT, 

and MIR-506 were found to be associated with DEGs. 

One hundred TFs such as GGGCGGR_V$SP1_Q6 and 

TGGAAA_V$NFAT_Q4_01 were mapped to DEGs with 

FDR q-value below 0.05. Top ten TFs and miRNAs associ-

ated with DEGs are shown in Tables 8 and 9, respectively.

The DEGs–miRNAs–TFs regulatory network consisted 

of 520 nodes and 2,782 edges (Figure 7). Sp1 TF (SP1) was 

identified as the hub of the network with a node degree of 88.

Discussion
PPIs and protein expression are responsible for the patho-

logical changes induced by the development of carcinoma. 

Multiple resources such as alterations in gene expression, PPI 

network, gene functional interaction network, hubs, and mod-

ule identification were employed to identify potential diag-

nostic markers that can distinguish children with ACC.

Figure 6 ggi network for pediatric acc along with module.
Notes: (A) a ggi network of overall Degs. Upregulated genes are shown in blue, downregulated Degs in red, and additional genes in light blue. (B) Functional module 
with McODe score 70.541.
Abbreviations: acc, pediatric adrenocortical carcinoma; Degs, differentially expressed genes; ggi, gene–gene functional interaction; McODe, molecular complex 
detection.
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Table 6 The top 20 hub genes of ggi network

ID Degree ID Degree ID Degree ID Degree

UBc 322 cDK2 135 h2aFZ 127 PlK1 123
ilF2 141 CDK1 133 cKs1B 127 PsMD14 122
KPna2 138 PTTg1 131 UBe2s 125 DDX39a 122
CCNB1 137 BUB1B 130 McM6 124 ZWTnT 121
cKs2 137 CDC20 127 DnMT1 124 McM3 121

Abbreviation: ggi, gene–gene functional interaction.

Table 7 gO and Kegg pathway enrichment analyses of the 
most significant module of gene–gene interaction network with 
MCODE score 70.541 (top five in each)

Category Class Description Gene 
count

Adjusted 
P-value/FDR 
q-value

GO
BP 7,049 cell cycle 47 3.4537e-39
BP 22,403 cell cycle phase 37 5.8834e-35
BP 278 Mitotic cell cycle 35 4.0954e-34
BP 51,301 cell division 33 5.9482e-34
BP 279 M phase 34 5.9482e-34
Pathway
Kegg hsa04110 cell cycle 21 1.35e-34
Kegg hsa04114 Oocyte meiosis 11 5.32e-15
Kegg hsa03030 Dna replication 7 1.15e-11
Kegg hsa04914 Progesterone-mediated 

oocyte maturation
8 7.63e-11

Kegg hsa04115 P53 signaling pathway 6 6.33e-08

Abbreviations: FDr, false discovery rate; gO, gene Ontology; Kegg, Kyoto 
encyclopedia of genes and genomes; McODe, molecular complex detection; BP, 
biological process.

A total of 431 DEGs including 228 upregulated and 203 

downregulated DEGs were identified by microarray data 

analysis. Pathway enrichment analysis demonstrated that cell 

cycle, terpenoid backbone biosynthesis, and oocyte meiosis 

were overrepresented amid upregulated genes. IGF-2 was the 

most highly expressed gene in pediatric ACC, as compared 

to normal adrenal. Among the upregulated DEGs, CDK1, 

CCNB1, CDC20, and BUB1B were the common hubs among 

PPI and GGI networks. More centralized genes in the network 

are suggested to be key drivers of proper cellular function, 

in comparison to peripheral genes.34 Moreover, all these four 

genes were incorporated in the functional modules of the 

interaction networks.

CDK1, also known as CDC2, is a representative of serine/

threonine protein kinase family. CDK1 is a catalytic subunit 

of M-phase promoting factor, a well-conserved protein kinase 

complex crucial for G1/S and G2/M phase transitions of cell 

cycle in eukaryotes. CDK1 has previously been reported to 

be upregulated in ACC samples by Glover et al. Moreover, in 

vivo inhibition of CDK1 by targeted miR-7 delivery has been 

proposed as a therapeutic approach for ACC.35 CDC2 was 

found to be dysregulated in cell cycle pathway through meta-

analysis of gene expression and comprehensive genomic 

hybridization profiling data of ACC.36

CCNB1 encodes for a regulatory protein that is involved 

in mitosis. Pinto et al reported that pediatric ACC based on 

TP53 and somatic ATRX mutations had shown high expres-

sion of genes associated with chromosome instability and 

deregulation of cell cycle control, such as CCNB1.4 Soon et al 

reported that CCNB1 expression was found to be appreciably 

higher in ACC as compared to adrenocortical adenoma. Also, 

the combination of IGF-2 and either MAD2L1, CCNB1, or 

Ki-67 is highly sensitive and specific for ACC.37

CDC20 acts as regulatory protein involved in cell cycle 

progression, apoptosis, and ciliary disassembly. CDC20 

has been proposed to exhibit oncogenic function, dem-

onstrating its utility as a potential therapeutic target for 

combating human cancers.38 CDC20 has previously been 

reported to be upregulated in transcriptome analysis of 

adrenocortical cancer.39

BUB1B is an essential spindle assembly checkpoint pro-

tein that forms mitotic check point complex, which on activa-

tion controls premature chromosome segregation.40 Mitotic 

inhibitor drugs such as taxanes, which disrupt the process 

of cell division, have proved to be potent anticancer drugs.  

Table 8 Top ten TFs associated with Degs

TF Number of 
target genes

FDR q-value

gggcggr_V$sP1_Q6 88 4.96e-20
Tggaaa_VsnFaT_Q4_01 67 1.40e-18
gaTTggY_V$nFY_Q6_01 51 8.78e-18
gggaggrr_V$MaZ_Q6 70 1.43e-16
cTTTgT_V$leF1_Q2 64 3.33e-16
caggTg_V$e12_Q6 70 9.63e-15
aacTTT_UnKnOWn 56 1.81e-12
rYTTccTg_V$eTs2_B 40 1.39e-11
rTaaaca_V$Freac2_01 35 1.74e-10
V$nFY_01 19 2.60e-10

Abbreviations: Degs, differentially expressed genes; FDr, false discovery rate; 
TFs, transcription factors.
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Figure 7 a gene regulatory network incorporating Degs–TFs–mirnas.
Notes: Degs are shown in red (circle), TFs in green (triangle), and mirnas in blue (diamond).
Abbreviations: Degs, differentially expressed genes; mirna, microrna; TFs, transcription factors.

Table 9 Top ten mirnas associated with Degs

miRNA Number of 
target genes

FDR q-value

TggTgcT, Mir-29a, Mir-29B, 
Mir-29c

20 1.72e-05

gTacTgT, Mir-101 14 1.72e-05
gTgccTT, Mir-506 21 3.41e-04
aTaccTc, Mir-202 10 3.41e-04
cagTgTT, Mir-141, Mir-200a 13 3.41e-04
aaTgTga, Mir-23a, Mir-23B 15 3.86e-04
gTgacTT, Mir-224 9 4.89e-04
TgccTTa, 1ir-124a 17 4.89e-04
accaaag, Mir-9 16 4.89e-04
aTgTTTc, Mir-494 9 4.89e-04

Abbreviations: Degs, differentially expressed genes; FDr, false discovery rate; 
mirna, microrna.

Combined expression of BUB1B–PINK1 has been proposed 

to be slightly related with disease-free survival in the pedi-

atric group.41

A gene regulatory network incorporating DEGs–

miRNAs–TFs was also constructed to better understand the 

process of gene regulation. Upon analysis, SP1 was found 

to be hub of the gene regulatory network. SP1 is a versatile 

sequence-specific DNA-binding protein involved in the 

expression of different genes.42 It is overexpressed in various 

human cancers and is involved in angiogenesis, cell growth, 

and resistance to apoptosis.43–45

The study has some limitations as the data utilized in the 

study consisted of 18 ACC and seven control samples, which 
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were restricted in quantity and downloaded from the Gene 

Expression Omnibus database, not generated by us.

Conclusion
Four novel genes, CDK1, CCNB1, CDC20, and BUB1B, 

associated with pediatric ACC were identified by bioinfor-

matics approaches. These DEGs were present in the hubs and 

modules of PPI and GGI networks, suggesting their potential 

utility as potential biomarker for pediatric ACC. These genes 

may also provide prospective targets for pediatric ACC 

therapy, although further experimental studies are essential 

to confirm the role of these genes and their potential to be 

developed as molecular targets for pediatric ACC.
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