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Abstract

Chronic inflammation is a hallmark of cancer. Inflammatory chemokines, such as C-C che-

mokine ligand 2 (CCL2), are often present in tumors but their roles in cancer initiation and

maintenance are not clear. Here we report that CCL2 promotes mammary carcinoma

development in a clinically relevant murine model of breast cancer. Targeted disruption of

Ccl2 slowed the growth of activated Her2/neu-driven mammary tumors and prolonged host

survival. Disruption of Ccl2 was associated with a decrease in the development and mobili-

zation of endothelial precursor cells (EPCs) which can contribute to tumor neovasculariza-

tion. In contrast, disruption of Ccr2, which encodes CCL2’s sole signaling receptor,

accelerated tumor development, shortened host survival, and mobilized EPCs. However,

pharmacological inhibition of CCR2 phenocopied Ccl2 disruption rather than Ccr2 disrup-

tion, suggesting that the Ccr2-/- phenotype is a consequence of unanticipated alterations

not linked to intact CCL2/CCR2 signaling. Consistent with this explanation, Ccr2-/- mono-

cytes are more divergent from wild type monocytes than Ccl2-/- monocytes in their expres-

sion of genes involved in key developmental and functional pathways. Taken together, our

data suggest a tumor-promoting role for CCL2 acting through CCR2 on the tumor microen-

vironment and support the targeting of this chemokine/receptor pair in breast cancer.

Introduction

Tumor stroma contains a variety of immune cells, endothelial cells, and other mesenchymally
derived cell types. Nearly all cancers are infiltrated by inflammatory cells [1–3] which are capa-
ble of suppressing or promoting tumor development depending on their phenotypes and abun-
dance. Prominent among these cells are tumor-associated macrophages (TAMs) which can
promote tumor growth, angiogenesis, and metastasis in some settings or stimulate anti-tumor
immunity or kill tumor cells directly in others [3–6].
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Chemokines are mediators of inflammation and immunity which can modulate TAM activ-
ity and influence cancer biology [7–9]. CCL2 (or monocyte chemotactic protein-1 (MCP-1)) is
a major chemoattractant for monocytes,macrophages, memory T lymphocytes, and endothe-
lial cells [10–12] and directly contributes to the pathogenesis of inflammatory diseases such as
atherosclerosis, rheumatoid arthritis and diabetic nephropathy [13, 14]. CCL2 is also associated
with the development and progression of several cancer types, including breast, ovarian and
prostate [15–19]. Elevated levels of CCL2 in breast cancer biopsies correlate with increased
TAM accumulation,more extensive tumor vascularization, and more aggressive clinical behav-
ior [18, 20] and at least a portion of CCL2’s effectsmay be attributed to its ability to stimulate
angiogenesis [21, 22]. Moreover, CCL2may recruit other effector cells such as Ly-6Chi inflam-
matory monocytes or mesenchymal stem cells that modulate tumor growth and progression
[16, 23]. Recent data suggest that CCL2may accomplish this through a cascade of chemokine
expression involving CCL3 [24]. However, CCL2’s influence on cancer behavior is complex
because, in some contexts, it may inhibit tumor growth by attracting tumor-suppressive
immune cells [25].

CCL2’s sole signaling receptor is CCR2 [26] and mice carrying targeted disruptions of either
Ccl2 or Ccr2 have concordant phenotypes in most inflammatorymodels [13, 27–29]. However,
in other settings, the phenotypes of the ligand- and receptor-deletedmice diverge. For example,
Ccl2-/- mice are deficient in TH1-biased T cell polarization [27], whileCcr2-/- mice are TH2-defi-
cient [30]. The potential effects of this complex physiology on the behavior of cancers have not
been fully explored.

Here, we used a mouse model of breast cancer in which the MMTVLTR drives activated
HER2/neu (MMTV-neu) to investigate how CCL2 and CCR2 affect tumor development.
Transgenic MMTV-neu mice spontaneously develop aggressive, multifocal mammary carcino-
mas that mimic many of the characteristics of human breast cancer [31]. We examined the
behavior of these mammary carcinomas in mice carrying targeted deletions of Ccl2 or Ccr2, as
well as wild type mice treated with a small molecule antagonist of CCR2, and explored the
effects of this chemokine ligand/receptor pair on the tumor microenvironment.

Materials and Methods

Antibodies

Fluorescent antibodies were purchased from BD Bioscience (Bedford,MA), eBioscience (San
Diego, CA), or R&D Systems (Minneapolis, MN) Anti-murine CD31 rat monoclonal (clone
Mec13.3) was purchased from Biocare Medical (Concord, CA). The MC-21 antibody against
mouse CCR2 was a kind gift from Dr. Detlef Schlöndorff [32].

Animal models

Wild type Balb/cJ and SCIDmice were purchased from Jackson Laboratory (Bar Harbor, ME).
MMTV-neu mice in an FVB background [31] were backcrossed ten generations into the Balb/
cJ background.Ccl2-/- [29] and Ccr2-/- [27] (a gift from Israel Charo, University of California at
San Francisco) mice in a Balb/cJ backgroundwere periodically backcrossed with Balb/cJ mice
to reduce genetic drift. In order to place the MMTV-neu transgene in the proper background,
MMTV-neu mice were crossed with Ccl2-/- or Ccr2-/- mice. Tumor growth in female neu+ ani-
mals was measured weekly using calipers. Protocols for this study were approved by the Insti-
tutional Animal Care and Use Committee at Dana-Farber Cancer Institute which is AAALAC
accredited, and all animal use was in accordance with the Guide for the Use and Care of Labo-
ratory Animals. Humane endpoints were used in all survival studies. In particular, mice were
sacrificedusing CO2 inhalation followed by cervical dislocation if any of the following
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endpoints were observed: their tumors reached 2 cm in diameter, their tumors were necrotic,
or they were unable to reach food or water. All mice on this study were monitored daily and
were administered analgesics or anesthetics if any sufferingwas observed such as rough hair
coat, hunched posture, lethargy, persistent recumbency, labored breathing, or skin breakdown.
No unexpected deaths were observed in this study.

Cell culture

MCF7 and MDA-MB-231 cells were maintained in DMEM (Life Technologies, Grand Island,
NY) supplemented with 10% FBS (Life Technologies), and SK-BR-3 cells were maintained in
McCoy’s 5A medium (Life Technologies) plus 10% FBS. Human ECFCwas purchased from
Lonza (Walkersville, MD), and maintained in EBM-2 Basal Medium (Lonza) supplemented
with EGM-2 SingleQuot Kit Suppl. & Growth Factors (Lonza). For primarymouse tumor cell
isolation, tumors were harvested, cut into small pieces with scissors, and digested with collage-
nase (Sigma, St. Louis, MO). Cells were filtered through a 40 μm cell strainer, and cultured in
DMEM supplemented with 10% FBS.

CCL2 ELISA

Medium was collected and centrifuged to remove cell debris. Adherent cells were then lysed in
1% NP40 buffer. CCL2 was measured using the OptEIA Human MCP-1 ELISA Set (BD Biosci-
ence). Murine Ccl2 was detected in mouse serum using a preconfiguredBio-Plex mouse cyto-
kine assay (BioRad, Hercules, CA).

Western blot: Human mammary carcinoma cells treated with CCL2 neutralizing antibody
(R&D Systems) or etoposide (Sigma) were lysed with RIPA buffer (Boston Bioproducts, Ash-
land, MA), proteins were separated on a 10% Ready Gel precast polyacrylamide gel (Bio-Rad),
transferred to a PVDFmembrane (Bio-Rad), and probed with a rabbit polyclonal antibody
against PARP (Cell Signaling, Danvers, MA). The membrane was then incubated with horse-
radish peroxidase (HRP)-conjugated secondary antibody and developed using SuperSignal
West Pico Chemiluminescent Substrate (Thermo Fisher Scientific, Rockford, IL).

Cell proliferation assay

Cells were incubated with [3H]thymidine at 1 μCi per 500 μL in complete medium containing
10% fetal bovine serum for 24 hrs, and lysed with 0.2 N NaOH for 20 min at room temperature.
The lysates were analyzed using a Wallac 1450 MicroBeta TriLux Scintillation Counter (Perki-
nElmer, Waltham, MA).

CCX872 treatment

CCX872, a small molecule antagonist of CCR2, was provided by ChemoCentryx (Mountain
View, CA). CCX872 is highly specific for CCR2 compared to other chemokine receptors as
well as receptors for C5a and fMLP. Its IC50 for blocking binding of radiolabeledCCL2 to
human CCR2 is 3 nM; its IC50 for inhibiting human CCR2-mediated chemotaxis is 32 nM
while its IC50 for inhibiting murine CCR2-mediated chemotaxis is 69 nM. At a daily dose of 10
mg/kg in mice CCX8782 ameliorated renal dysfunction in diabeticmice to nearly the same
extent as 100 mg/kg (ZhenhuaMiao, ChemoCentryx,Mountain View, CA, personal communi-
cation; see S1 File.). Female MMTV-neu littermates were randomly divided into vehicle and
treated groups. Mice were given daily subcutaneous injections of 100 μL vehicle (1% HPMC,
0.1% Tween 80) or CCX872 at 2 mg/mL in the same vehicle beginning at 4 weeks of age.
Tumors were measured twice weekly using calipers, and volume was averaged.
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Human breast cancer xenograft model

MDA-MB-231 cells were stably transfected with a luciferase reporter gene, and 107 cells in
100 μL PBS containing 5%Matrigel (Life Technologies) were injected into the fourth mam-
mary gland of SCIDmice. Injectedmice were randomized 1 week after injections, and given
subcutaneous injections of isotype antibody or ABN912 antibody against human CCL2 at a
dose of 100 or 400 μg [14]. Four more injections were given at an interval of twice weekly. Bio-
luminescence imaging using a Xenogen instrument (Perkin Elmer) was performed after each
injection.

Tissue microarray (TMA) and immunohistochemistry

Tumors from mice at 60, 80, 100, 120 and 140 days of age were harvested and paraffin-
embedded. Five tumor blocks from each genotype at each time point were used to construct
a TMA. TMAs were stained for Ki-67, vWF, Mac2, B220, or CD3 with the Vector M.O.M.
kit (Vector Laboratories, Burlingame, CA) as directed by the manufacturer. Adjacent sec-
tions were stained with isotype controls. TMAs were then imaged, and analyzed quantita-
tively using Image J software. CD31 staining was performed on slides and quantified by
acquiring color images from three fields (0.75 mm x 0.75 mm [2048 pixels x 2048 pixels])
from each slide using a Nikon Eclipse E600 microscope fitted with a SPOT Insight 4.0 cam-
era at 200X. The areas (number of pixels) of vascular structures in each image defined by
CD31 staining were quantified and tabulated using ImageJ. Areas of CD31 staining consist-
ing of fewer than 400 pixels were not included in subsequent statistical analysis. Five slides
from 5 mice were analyzed for each genotype at each time point (except for Ccr2-/- at 80
days for which only 4 slides were analyzed). Three images from each slide were analyzed and
the average area of CD31 staining per image was determined for each slide. In order to cap-
ture small vessel staining, only individual areas of staining with fewer than 10,000 pixels in
area were counted.

Flow cytometry

Peripheral blood was collected from the inferior vena cava of sacrificedmice into EDTA-
coated tubes. Bone marrow was flushed from femurs of the same mice in MACS buffer
(PBS containing 0.5% BSA and 2 mM EDTA). Spleens were minced, and passed through a
40-micron cell strainer (BD Bioscience) twice. Tumors (usually more than three) from the
same mice were minced together with scissors and blades, and were digested in 5 mL RPMI
containing 1% collagenase IV (Worthington Biochemical Corporation, Lakewood,NJ) and
1% hyaluronidase (Sigma) at 37°C for 1 hour, and then 10 units/mL DNase I (Worthing-
ton) for 15 min. Erythrocytes in blood samples were lysed with RBC Lysis Buffer Solution
(eBioscience), and erythrocytes in spleen, bone marrow, and tumor samples were lysed
using ACK buffer (Lonza). Erythrocyte-depletedsamples were filtered again using a
40-micron cell strainer before staining with fluorescently labeled antibodies in MACS
buffer for flow cytometry. When applicable, stained cells were washed with PBS and stained
with the viability stain eFluor 506 (eBioscience) in PBS for 30 min before flow analysis.
Flow cytometry was performed on an LSR II instrument using proper filters for each fluor-
ophore. Compensation controls were run at the same time using BD CompBeads (BD Bio-
science) stained with the same antibodies as those used for cells. Spectral compensations
were performed post-acquisition using FlowJo software (Tree Star, Ashland, OR). Gatings
were performed based on FMO controls acquired in parallel.
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Monocyte isolation by flow cytometry

Monocytes were defined by the absence of markers for T cells (CD4–CD8–), B cells (B220–),
NK cells (NK1.1–), dendritic cells (CD11c–), neutrophils (Ly-6G–) and eosinophils (CCR3–)
and by the presence of CD11b and Ly-6C. Blood from five wild type,Ccl2-/-, or Ccr2-/- mice at
14–18 weeks of age was pooled and erythrocytes lysed. Erythrocyte-freeblood cells were mixed
with the following antibodies at 1:100 dilution (1:10 for CCR3): CD4-PE, CD8-PE, B220-PE,
Ly-6G-PE, MHC II-PE (BD Bioscience) and CCR3-PE (R&D Systems), and passed through an
LD cell separation column (Miltenyi Biotech, Auburn, CA). Cells in the flowthroughwere cen-
trifuged, stained with CD11b-PE antibody at 1:100 dilution, and passed through an MS column
(Miltenyi). Positively selected cells were eluted with MACS buffer.

cDNA Microarray: Purifiedmonocytes were centrifuged, and total RNA was isolated using
RNeasy (QIAGEN, Valencia, CA). RNA quality was assessed using a Nanodrop spectropho-
tometer and Bioanalyzer. cDNA was synthesized, fluorescently tagged, and hybridized to a
Mouse Gene 1.0 ST array (Affymetrix, Santa Clara, CA). Scanned fluorescent images were ana-
lyzed using the dChip software. Comparison among samples was conducted using the parame-
ters E/B or B/E>1.2 AND E-B or B-E>100. Gene ontology studies were performedwith the
GSEA software using the GO Biological Processes of gene ontology (GO) gene sets. Permuta-
tion type was set to gene_set and 1000 permutations were conducted. All expression array files
are available through GEO. Accession numbers are: GSE88962, GSM2356474, GSM2456475,
GSM2456476, GSM2456477, GSM2456478, GSM2456479, GSM2456480, GSM2456481, and
GSM2456482.

Chemotaxis assay

Human ECFC cells were trypsinizedand resuspended in 0.1% BSA/RPMI at 106/mL. One
hundred μl of cell suspension was added to the upper well of a 24-well Transwell plate with 6.5
mm inserts with pore size of 8.0 μm (Corning Inc, Corning,NY). RPMI (600 μL) containing
0.1% BSA and the indicated concentration of purifiedCCL2 was added to the lower chamber.
Four replicates were included for each treatment, and the assay was terminated at 16 hr. Cells
on the bottom of the transwells were fix with methanol at -20°C, and stained with methyl green
(0.5% in 0.1M sodium acetate buffer with pH 4.2) at room temperature for 5 min before exami-
nation with an invertedmicroscope. Cells were counted and averaged over 10 randomly chosen
fields.

Results

Targeted deletions of Ccl2 or Ccr2 have disparate effects on mammary

carcinoma behavior in mice

To test the effect of CCL2 on the behavior of HER2/neu-drivenmammary carcinomas, we
compared the overall survival of mice carrying the MMTV-neu transgene and a targeted dele-
tion of Ccl2 (neu+Ccl2-/-) to mice carrying the MMTV-neu transgene alone (neu+). Fig 1A
shows that CCL2-deficientneu+ mice survived significantly longer than neu+ mice. Tumor-
free survival i.e., the age at which tumors first appear, was unchanged in neu+Ccl2-/- mice
compared to neu+ mice (Fig 1B) but the rate of tumor growth measured as total tumor burden
(Fig 1C) or as the rate of growth of the single largest tumor mass (Fig 1D) was slower in the
CCL2-deficient background. Thus, while CCL2 does not affect the age at which tumors first
appear, it stimulates their growth once they do appear, hence shortening overall survival. In an
attempt to confirm this tumor-promoting effect of CCL2, we developedCCR2-deficientmice
carrying the MMTV-neu transgene (neu+Ccr2-/-) in the same Balb/c strain background as
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neu+Ccl2-/- and neu+ mice. Paradoxically, CCR2 disruption significantly shortened survival
(Fig 1A). This correlated with earlier appearance (Fig 1B) and more rapid early growth (Fig 1C
and 1D) of tumors in neu+Ccr2-/- mice.

Pharmacologic inhibition of CCR2 phenocopies targeted disruption of

Ccl2

The disparate effects of Ccl2 versus Ccr2 disruption on the behavior of HER2/neu-drivenmam-
mary carcinomas could be due to the influence of other CCR2 ligands in CCL2-deficientmice
or the effects of CCL2 on an as yet unidentified receptor in CCR2-deficientmice. Alternatively,
these results could be the consequence of unanticipated alterations that occur in response to
genetic disruption of Ccl2 or Ccr2. To test these possibilities, we treated neu+ mice with

Fig 1. Effect of genetic disruption of Ccl2 or Ccr2 on Her2/neu-driven mammary carcinoma development. (A and B)

Overall survival and tumor-free survival of neu+ (n = 36), neu+Ccl2-/- (n = 29), and neu+Ccr2-/- (n = 32) mice. Median survivals

were compared using Log-rank (Mantel-Cox) test; (A) p < 0.05 for both wild type versus Ccl2-/- and wild type versus Ccr2-/-;

(B) not significant (n.s.) wild type versus Ccl2-/-, p < 0.01 wild type versus Ccr2-/-. (C and D) Growth of Her2/neu-driven

mammary carcinoma in wild type, Ccl2-/- and Ccr2-/- mice measured as total tumor volume in a mouse (C) or as the volume of

the single largest tumor mass in a mouse (D). Because the stochastic risk of malignant transformation is the same for any

mammary epithelial cell in this model, multiple tumor masses were often observed in single mammary glands. Thus the total

tumor volume in a mouse (C) could exceed the theoretical limit of ten times the single largest tumor mass (D) (based on ten

mammary glands per mouse). Different strain backgrounds produced no differences in the number of tumors per mouse.

Comparisons were made by two-way ANOVA; (C) p<0.05 Ccl2-/- versus wild type, p<0.001 Ccr2-/- versus wild type; (D)

p<0.05 Ccl2-/- versus wild type, p<0.001 Ccr2-/- versus wild type.

doi:10.1371/journal.pone.0165595.g001
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CCX872, a specific small-molecule antagonist of CCR2. CCX872 prolonged overall survival of
neu+ mice without extending their tumor-free survival (Fig 2A and 2B) and suppressed tumor
growth (Fig 2C and 2D). Thus the effects of CCX872 are similar to those of Ccl2 disruption
and different from those of Ccr2 disruption (compare Fig 1). This suggests that the CCL2/
CCR2 axis promotes tumor growth in the MMTV-neu model and genetic disruption of Ccr2
promotes tumor growth through other pathways.

Expression of genes involved in monocyte development and function

are significantly altered in Ccr2-/- monocytes

Our results raise the possibility that Ccr2 deletionmay produce changes that lead to paradoxi-
cal effects on HER2/neu-driven tumor growth. To find evidence for such changes, we analyzed
gene expression profiles of circulatingmonocytes isolated from tumor-free wild type, Ccl2-/-,
and Ccr2-/- mice. The proportion of circulatingmonocytes was the same in all three genotypes

Fig 2. Effect of pharmacologic inhibition of CCR2 on mouse mammary carcinoma development. (A and B) Overall

survival and tumor-free survival of neu+ mice treated with the CCR2 antagonist CCX872 (n = 26) or vehicle (n = 25). Median

survivals were compared using Log-rank (Mantel-Cox) test. Mice were sacrificed when the diameter of any single tumor

reached 2 cm, if a tumor became necrotic, or if mice were unable to reach food or water (C and D) Tumor growth in mice

treated with CCX872 or vehicle measured as total tumor volume in a mouse (C) or as the volume of the single largest tumor

mass in a mouse (D). Tumors were measured twice weekly and averaged. Comparisons were made by two-way ANOVA.

doi:10.1371/journal.pone.0165595.g002
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(Fig 3A). (Interestingly, the presence of mammary carcinomas reduced the number of circulat-
ing monocytes [discussed in more detail, below]). However, monocytes are broadly comprised
of two distinct populations: Ly-6Chi inflammatorymonocytes are CCR2+CX3CR1lo while Ly-
6Clo monocytes are CCR2-CX3CR1hi [33, 34], and disruption of Ccl2 or Ccr2 specifically sup-
pressed Ly6Chi monocytes (Fig 3B). While Ccl2 and Ccr2 disruption affected the abundance of
these monocyte subsets similarly, expression array analysis showed a more profound alteration
in Ccr2-/- monocytes than Ccl2-/- monocytes compared to wild type:Ccl2-/- monocytes showed
significant differences in the expression of 808 genes compared to wild type monocytes (Fig
3C). Although expression of 766 of these genes were also altered in Ccr2-/- monocytes, these
cells showed significant changes in 1621 additional genes suggesting a much more profound
departure from the wild type expression profile than Ccl2-/- monocytes.

To explore the implications of these alterations, we examined expression levels of specific
genes that are markers for Ly-6Chi and Ly-6Clo/–monocytes [34]. Compared to wild type,
Ccl2-/- monocytes showed a bias toward the Ly-6Clo signature, including reduced expression of

Fig 3. Gene expression profiling of wild type, Ccl2-/- and Ccr2-/- monocytes. (A) Monocyte proportions in the

blood of tumor-free and tumor-bearing wild type, Ccl2-/- and Ccr2-/- mice were measured using flow cytometry.

(Total leukocyte counts were similar in all three genotypes and unaffected by tumors.) Results were compared

using one-way ANOVA and Bonferroni’s multiple comparison test; *, p < 0.05; ***, p < 0.001 comparing neu-

versus neu+ within each genotype. (B) Quantitation of Ly-6Chi and Ly-6Clo/–monocytes as percentages of total

blood leukocytes. Comparisons were made by multiple t-tests. *, p < 0.05; ***, p < 0.001, neu- versus neu+ within

each genotype. #, p < 0.05; ###, p < 0.001, wild type versus Ccl2-/- or Ccr2-/- mice. (C) Venn diagram of genes

differentially expressed between wild type and Ccl2-/- monocytes, and between wild type and Ccr2-/- monocytes;

766 genes overlap between the two sets, 42 are unique to the Ccl2-/- set and 1621 are unique to the Ccr2-/- set.

(D-F) Heat maps of genes that characterize Ly-6Chi versus Ly-6Clo/–monocytes (B), monocyte development and

function (C), and transcription factors (D).

doi:10.1371/journal.pone.0165595.g003
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Mmp8, Irf4, Msr1 and Klf4 and augmented expression of Tgfbr3,Mr1, Runx3 and Ets1; how-
ever, this shift was more pronounced in Ccr2-/- monocytes (Fig 3D). In addition, Ccr2-/-, but
not Ccl2-/-, monocytes expressed lower levels of developmental genes such as Csf1r and Flt3, as
well as genes encoding immune molecules including chemokines, NOD-like receptors, toll-like
receptors, interferon regulatory factors, and type I and II interferon receptors (Fig 3D). The
reduction in Csf1r expression was validated independently by PCR (Fig 4). Finally, wild type
and Ccr2-/- monocytes express different sets of transcription factors that might direct their
diverging developmental programs (Fig 3E).

Gene sets enrichment analysis (GSEA) indicated that few signaling pathways were altered in
Ccl2-/- monocytes compared to wild type. In contrast, Ccr2-/- monocytes were markedly defi-
cient in pathways related to host defense: wounding, inflammation, and leukocyte locomotion
(Fig 5). Thus Ccr2-/- monocytes differ from wild type monocytes in important developmental
and functional ways. Nonetheless, because of the widespread use of Ccr2-/- mice we continued
to include them in the analyses describedbelow, recognizing that their behavior is dissimilar to
postnatal pharmacologic CCR2 inhibition in this setting.

CCL2 does not directly affect tumor cell proliferation

Both tumor-free and tumor-bearingmice have detectable amounts of CCL2 in serum although
tumor-bearingmice have higher levels as their tumors progress after 120 days of age (Fig 6A).
Cell lines derived fromMMTV-neu carcinomas in wild type and Ccr2-/- backgrounds secrete
CCL2 in culture (Fig 6B). These observations suggest the possibility that CCL2might promote
tumor growth through a direct effect on tumor cells. However, tumor cells from neu+,
neu+Ccl2-/-, and neu+Ccr2-/- mice grow at similar rates in culture (Fig 7A), and adding

Fig 4. Csfr1 mRNA is reduced in monocytes from Ccr2-/- mice. Monocytes were purified from the blood of wild type,

Ccl2-/-, and Ccr2-/- mice (5 mice in each group). mRNA was isolated and mRNA encoding CSF-1R was quantified by PCR.

* p > 0.05 by t-test; ** p < 0.05 by t-test.

doi:10.1371/journal.pone.0165595.g004
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neutralizing CCL2 antibodies to wild type tumor cells or exogenous CCL2 to Ccl2-/- tumor cells
did not affect their proliferation (Fig 7B). These observations extended to human breast cancer
cell lines: neutralization of CCL2 did not induce apoptosis or inhibit proliferation (Fig 7C–7E).
Similarly, antibody blockade of human CCL2 in a mouse xenograft model did not alter the
growth of transplanted mammary tumors (Fig 7F), suggesting that autocrine CCL2 does not
contribute to tumor growth in this model. (However, since CCL2may be produced by non-
malignant stromal cells in mammary cancers in situ, this experiment does not rule out a direct
effect of paracrinemurine CCL2.)

Effects of CCL2 and CCR2 deletion on TAM accumulation

As noted above (Fig 3A), tumor-bearing animals had lower numbers of circulatingmonocytes
than tumor-free animals. To better understand the basis for the reduced numbers of blood
monocytes in tumor-bearingmice, we examinedmonocyte reservoirs. The presence of tumors
did not influence the number of monocytes in the spleen or bonemarrow (Fig 8A and 8B) sug-
gesting that mammary carcinomas do not cause splenic pooling or suppression of monocyte
production. This inference is supported by unchanged levels of M-CSF in tumor-bearing ani-
mals (not shown). CCR2 deficiency reduced the number of monocytes in the spleen while

Fig 5. Gene sets enrichment analysis of genes enriched in wild type compared to Ccr2-/- monocytes. (A) Enrichment plots of wound

healing, inflammation and locomotory behavior pathways. (B) Common genes enriched in similar pathways.

doi:10.1371/journal.pone.0165595.g005
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increasing their number in bone marrow consistent with the marrow emigration defect previ-
ously reported in Ccr2-/- mice [35]. However, neither CCL2 nor CCR2 deficiencyhad any effect
on the accumulation of total leukocytes in tumors (Fig 8C) or TAMs (Fig 8D). Further experi-
mentation will be required in order to determine if CCL2 or CCR2 deficiency influences the
phenotype of these TAMs. Thus the most likely explanation for the tumor-driven decrease in
circulatingmonocytes is that circulatingmonocytes are being destroyed in the presence of
tumors through as yet unknownmechanisms.

Differential effects of CCL2 and CCR2 deletion on endothelial progenitor

cells

Because tumor growth can be affected by blood supply, we tested whether angiogenesis was
altered in the various genetic backgrounds by examining tissue microarrays and slides using
tumors isolated from neu+, neu+Ccl2-/-, and neu+Ccr2-/- mice at different ages. Consistent with
host survival and tumor growth in vivo (Fig 1), tumors from wild type and Ccl2-/- mice showed
similar patterns of gradually increasing Ki-67 staining of tumor cells (identifiedmorphologi-
cally) while neu+Ccr2-/- tumors showed much higher levels of Ki-67 staining starting abruptly
at 100 days (Fig 9A). This was also the age at which increases in vonWillebrands factor (vWF)
and CD31 appeared in Ccr2-/- tumors (Fig 9B and 9C) suggesting that these tumors underwent
an angiogenic switch at that time. Notably, CD31 staining density continued to increase in
Ccr2-/- mice through 140 days of age. As seen in the cells eluted from tumors (Fig 8D), there
were no significant differences among the various genotypes in the number of tumor-associ-
ated macrophages at most time points (Fig 9D).

Tumor angiogenesis can be accomplished, in part, by recruitment of endothelial progenitor
cells (EPCs) [36]. Therefore, we examined whether the presence of mammary carcinomas
affects the development and deployment of CD45–CD117/c-Kit+Flk1/Vegfr2+ EPCs and
whether CCL2 and CCR2 play a role. The presence of tumors in wild type mice doubled the
proportion of EPCs in peripheral blood (Fig 10A). However, EPCs in bone marrow were not

Fig 6. CCL2 production associated with MMTV-neu-driven tumors. (A) CCL2 concentrations were measured by ELISA

in sera from 4 wild type and 6 neu+ mice at the indicated ages. The difference between wild type and tumor bearing mice was

significant by two-way ANOVA (p < 0.05). (B) Cell lines were developed from neu+, neu+/CCL2-/-, and neu+/CCR2-/- mice.

CCL2 released into the culture medium by 106 cells over a 72 hr period was measured by ELISA.

doi:10.1371/journal.pone.0165595.g006
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Fig 7. CCL2’s effects on mammary carcinoma cells are non-cell autonomous. (A) In vitro growth of mammary

carcinoma cell lines derived from MMTV-neu-induced tumors in wild type, Ccl2-/-, and Ccr2-/- mice. Two representative cell

lines were tested from each genotype. (B) Neutralization of CCL2 in cultures of wild type murine tumor cells or addition of

exogenous CCL2 to Ccl2-/- tumor cells did not affect cell proliferation in vitro as measured by 3H-thymidine incorporation.

Etoposide was used as positive control for growth inhibition. (C) Concentration of CCL2 protein in medium or cell lysates of

cultured MCF7, SK-BR-3 or MDA-MB-231 human breast cancer cell lines determined by ELISA. (D) Immunoblot detection of

full-length and cleaved poly(ADP-ribose) polymerase (PARP) in lysates from MCF7, SK-BR-3 or MDA-MB-231 cells treated

with CCL2-neutralizing antibody. Etoposide was used as a positive control for PARP cleavage. Blots were stripped and

reblotted for tubulin as a loading control. (E) MDA-MB-231 cells were treated with two different CCL2-neutralizing antibodies,

and cell proliferation was measured by 3H-thymidine incorporation. (F) Luciferase-expressing MDA-MB-231 cells were

injected into the mammary fat pads of SCID mice. Mice were treated with ABN912, a neutralizing anti-human CCL2 antibody,

or isotype control. Arrows indicate time of antibody treatment. Tumor growth was followed by bioluminescence imaging.

doi:10.1371/journal.pone.0165595.g007
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significantly increased (Fig 10B) suggesting that the primary effect of mammary cancers is to
increase EPCmobilization without enhancing their production. Deletion of Ccr2 increased the
proportion of circulating EPCs in wild type mice and the presence of mammary tumors nearly
doubled this proportion (Fig 10A). Both of these effects, increased basal EPC numbers and
tumor-induced increases in EPCs, appeared to be the result of mobilization since Ccr2 deletion
did not alter bone marrow EPCs (Fig 10B). Strikingly, deletion of Ccl2 reduced circulating
EPCs by 50% and bonemarrow EPCs by 80%, and neither proportion increased in the presence
of tumors (Fig 10A and 10B). This suggests that CCL2 is required both for the development of
EPCs and for their mobilization by mammary cancers. Murine EPCs express CCR2 [37] as do
their human counterparts, human endothelial colony forming cells (hECFCs), (Fig 10C) and
hECFCs respond chemotactically to CCL2 in vitro (Fig 10D). The mechanism of EPC recruit-
ment into tumors may also depend on VEGF since circulating VEGF levels rise in tumor bear-
ing mice after 100 days of age (Fig 10E).

Fig 8. Effect of mammary tumors, Ccl2 disruption, and Ccr2 disruption on monocyte accumulation in spleen, bone

marrow, and tumors. (A and B) Proportions of monocytes in the spleen (A) and bone marrow (B) of tumor-free and tumor-

bearing wild type, Ccl2-/- and Ccr2-/- mice were measured by flow cytometry. Comparisons were made by one-way ANOVA

and Bonferroni’s multiple comparison test. #, p < 0.05; ##, p < 0.01 wild type versus Ccl2-/- or Ccr2-/- mice. (C) Total leukocyte

content of tumors was determined as the percentage of CD45+ cells. (D) Proportions of tumor-infiltrating T cells, B cells, and

monocytes/macrophages were determined by flow cytometry using antibodies against CD90+, B220+, and CD11b+,

respectively.

doi:10.1371/journal.pone.0165595.g008
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Discussion

We have demonstrated that targeted disruption of Ccl2 and pharmacologic inhibition of CCR2
both delay the growth of mammary tumors and prolong survival of mice carrying the MMTV-
neu transgene. These results suggest that CCL2-dependentCCR2 signaling promotes the devel-
opment and growth of endogenousmurine mammary carcinomas induced by HER2/neu, a
driver oncogene in 20% of human breast cancers [38]. Rather than exerting its effects directly
on mammary carcinoma cells by enhancing proliferation or survival as described in other
models [19, 39], CCL2molds the tumor microenvironment to promote tumor progression.
Specifically, although tumors in CCL2-deficientmice have the same total number of TAMs as
tumors in wild type mice, Ccl2 disruption is associated with a profound reduction in the num-
bers of endothelial precursor cells (EPCs) in the bone marrow and circulation which may sup-
press tumor angiogenesis.

Fig 9. Measurement of tumor-associated leukocytes and endothelial cells. Tissue microarrays were prepared from

MMTV-neu-driven tumors in wild type, Ccl2-/-, and Ccr2-/- mice at 60, 80, 100, 120 and 140 days of age. Four or five mice

were included per data point. Tissue microarray slides treated with fluorescent antibodies against (A) Ki-67, (B) vWF, (C)

CD31, and (D) Mac2 and imaged by fluorescence or immunohistochemistry. Quantified stains were compared using one-

way ANOVA. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

doi:10.1371/journal.pone.0165595.g009

CCL2/CCR2 in Mammary Cancers

PLOS ONE | DOI:10.1371/journal.pone.0165595 November 7, 2016 14 / 20



Fig 10. Effects of mammary tumors, Ccl2 disruption, and Ccr2 disruption on endothelial progenitor cell (EPC)

development and mobilization. (A and B) EPCs in peripheral blood (A) and bone marrow (B) of tumor-free and tumor-

bearing wild type, Ccl2-/-, and Ccr2-/- mice were measured as the proportion of circulating CD45- cells. Total CD45- cell

numbers were similar in all three genotypes with and without tumors. Comparisons were made by multiple t-tests. *, p < 0.05,

neu- vs. neu+. (C) Expression of CCR2 by mouse EPC and human endothelial colony-forming cells (hECFC). Left panel: red

histogram, anti-CCR2; green histogram, isotype control. Middle panel: red histogram, anti-CCR2; green histogram, isotype

control. Right panel: red histogram, anti-CCR2, grey histogram, isotype control; black histogram, unstained cells. (D)

Chemotaxis of human endothelial colony-forming cells (hECFC) in response to purified human CCL2. Cultured ECFCs were

plated in the upper well of a Boyden chamber, and increasing concentrations of CCL2 were added to the lower chamber.

Migrated cells were stained with methyl green, and ten randomly chosen fields were counted. Migratory index was

normalized to the number of migrated cells in medium only (artificially set to 10−1 pM on the plot). Comparisons were made by

t-tests. *: p<0.05; **: p<0.01; ***: p<0.001. (E) Serum VEGF levels are higher in tumor-bearing animals. VEGF

concentrations were measured by ELISA in sera from 4 wild type and 6 neu+ mice at the indicated ages. The difference

between wild type and tumor bearing mice was significant by two-way ANOVA (p < 0.05).

doi:10.1371/journal.pone.0165595.g010
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These murinemodeling results are consistent with clinical studies. For example, CCL2 concen-
trations in human breast cancers are higher than in normal breast tissue [20] and serumCCL2 is
higher in breast cancer patients than in healthy controls [18]. Elevated serumCCL2 is associated
with increased tumor macrophage infiltration, angiogenesis, and shortened survival [18].

Our results are also consistent with other mouse models in which CCL2 attracts tumor-pro-
moting macrophages to metastatic sites of mammary carcinomas driven by polyoma middle T
antigen [16, 24]. However, tumor-promoting macrophages are not present in primary cancer
sites in that model. This contrasts with the MMTV-neu primary tumors reported here, in
which TAMs are present in the primary tumor, and this discrepancy is likely due to differences
between the transgenes used in the models; tumor-associated inflammation is more pro-
nounced in polyoma middle T-driven tumors than in those driven by HER2/neu [40]. How-
ever, similar to the MMTV-neu model, anti-CCL2 treatment decreases the growth rate and
microvessel density of primary polyoma middle T-driven tumors [20]. Another difference
between these models is that the polyoma middle T tumors produce frequent pulmonary
metastases while this is an extremely rare occurrence in MMTV-neu mice, highlighting the fact
that our observations are restricted to the effects of CCL2 and CCR2 on primary tumors [41].
Although we did not documentM2 polarization of TAMs in our model, our results could be
consistent with models in which CCL2 expression drives M2 polarization of TAMs in mela-
noma xenografts [42] and in human peripheral bloodmononuclear cells [43]. However, the
most profound effect of CCL2/CCR2 appears to be on endothelial precursor cells (see below).

Paradoxically, we observed that targeted disruption of Ccr2, which encodes the only high affin-
ity signaling receptor for CCL2, promotes HER2/neu-driven tumor growth and shortens overall
survival.Although the phenotypes of CCL2- and CCR2-deficientmice are concordant in models
of inflammatory disease such as atherosclerosis or experimental allergic encephalitis [13, 28, 44–
46], they differ in other settings. For example, Ccl2-/- mice are deficient in TH2 T lymphocyte func-
tion [30] whileCcr2-/- mice are TH1-deficient [27]. Speculative explanations for these differences
have included the possibility that the other high affinity ligands of CCR2 such as CCL7, CCL8,
CCL12, and CCL13may signal through CCR2 in Ccl2-/- mice while all such signalingwould be
abrogated in Ccr2-/- mice. However, the levels of these chemokines have generally been reported
to be unchanged inCcl2-/-mice [29, 44], although there is one report of decreasedCCl7 expression
[47]. Alternatively, CCL2might signal through an as yet unidentified receptor in Ccr2-/- mice.

Here, however, we considered the additional possibility that genetic disruption of Ccl2 or
Ccr2might lead to asymmetric secondary changes in gene expression which could produce
divergent phenotypes. In fact, even though Ccl2-/- monocytes showed differences in the expres-
sion of several genes compared to wild type monocytes,Ccr2-/- monocytes differed in the
expression of three times as many. Furthermore, GSEA showed that CCR2-deficientmono-
cytes divergedmore profoundly from wild type monocytes in functional and developmental
pathways than did CCL2-deficientmonocytes. These results suggest that the degree of pheno-
typic divergence from wild type is far greater in Ccr2-/- mice than Ccl2-/- mice. The potential for
this difference to produce artifacts is highlighted by the fact that highly specific pharmacologic
inhibition of CCR2 phenocopiesCcl2 disruption rather than Ccr2 disruption. The MMTV-neu
model may specifically highlight this discrepancy since the phenotypes of Ccl2-/- and Ccr2-/-

mice are similar in polyoma middle T antigen-drivenmammary carcinoma [48].
Our results also reveal the effects that actively growing carcinomas have on monocyte devel-

opment, trafficking, and physiology. Wild type mice withHER2/neu-driven tumors have many
fewer circulatingmonocytes than tumor-free animals. Because these tumors have no effect on
the number of monocytes in bonemarrow, spleen, or tumors themselves, we infer that they
influencemonocyte survival in the periphery. Such a process might be expected to be influenced
by the CCL2/CCR2axis and, in fact,Ccl2 disruption appears to reverse some of the decrease in
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monocyte numbers induced by the presence of tumors (see Fig 3A) although we have not identi-
fied the mechanism.We also found that CCR2 deficiency leads to accumulation of monocytes in
the bonemarrow, an effect first describedby Serbina and Pamer in a Listeriamodel [35]. How-
ever, this may not be a direct result of CCL2 signaling through CCR2 sincemonocytes do not
accumulate in the bonemarrow in Ccl2-/- mice. This is consistent with the much more profound
effect of Ccr2 disruption than Ccl2 disruption on retention of bonemarrow monocytes in the Lis-
teriamodel [49]. This may be another example of the developmental influence of CCR2 loss lead-
ing to a discrepancy between the phenotypes of Ccl2-/- and Ccr2-/- mice.

Although the highly aggressive behavior of tumors in Ccr2-/- mice appears to be a conse-
quence of more than just loss of CCR2 signaling, the tumors in these mice provided a clue
about a mechanism by which intact CCL2/CCR2 signaling influences tumor progression. The
sudden increase in neovascularization in the tumors of CCR2-deficientmice suggests that they
underwent an angiogenic switch around 100 days of age. This led us to examine endothelial
progenitor cells (EPCs), a minor population of bone marrow-derived circulating cells that have
endothelial markers and are recruited to both primary tumor and pre-metastatic niches to ini-
tiate tumor neovascularization [36, 37]. We found that the number of circulating EPCs
increased in tumor-bearingmice compared to tumor-free mice and that disruption of Ccl2 and
Ccr2 had profound effects on circulating EPC numbers: EPCs were greatly reduced in Ccl2-/-

mice and increased in Ccr2-/- mice. In contrast to CCL2’s effects on monocytes, which seems
restricted to mobilization or trafficking,CCL2 deficiency greatly reduced the number of EPCs
in the bonemarrow. Furthermore, the stimulation of EPC generation and mobilization by
tumors was abrogated in the absence of CCL2. These observations suggest that CCL2 directly
influences both the development and the mobilization of EPCs [37]. We propose a model in
which (1) CCL2 stimulates EPC development in the marrow, (2) mammary carcinomas mobi-
lize EPCs in a CCL2-dependentmanner, and (3) EPCmigration into tumors is mediated by
other factors such as VEGF which rises in the serumof tumor-bearingmice.

A potential limitation of our model is that it is driven by an activating mutation of rat
HER2/neuwhich leads to much more aggressive tumor behavior than the amplification seen
most commonly in human breast cancer [38]. On one hand, this might lead to differences in
the way CCL2/CCR2 affects murine tumors compared to human tumors; on the other hand,
this aggressive model may mask to some extent the effects of CCL2/CCR2.The impact of this
chemokine ligand/receptor pair might actually be more profound in slower growing, non-
mutated HER2/neu-amplified tumors. Still, recent reports of activating mutations of HER2/neu
in breast cancer support the relevance of the murine model to human disease [50]. Taken
together, our data support the validity of CCR2 as a therapeutic target in breast cancer.

Supporting Information
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