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Abstract

There is an established relationship between primary DNA sequence, secondary and ter-

tiary chromatin structure, and transcriptional activity, suggesting that observed differences

in one of these properties may reflect changes in the others. Here, we exploit these relation-

ships to show that variations in DNA structure can be used to identify a wide range of geno-

mic alterations in mammalian samples. In this proof-of-concept study we characterized and

compared genome-wide histone occupancy by ChIP-Seq, DNA accessibility by ATAC-Seq,

and chromosomal conformation by Hi-C for five CRISPR/Cas9-modified mammalian cell

lines and their unmodified parent strains, as well as in one modified tissue sample and its

parent strain. The results showed that the impact of genomic alterations on each of the lev-

els of DNA organization varied depending on mutation type (insertion or deletion), size, and

genomic location. The largest genomic alterations we identified included chromosomal rear-

rangements and deletions (greater than 200 Kb) in four of the modified cell lines, which can

be difficult to identify by standard whole genome sequencing analysis. This multi-level DNA

organizational analysis provides a sensitive approach for identifying a wide range of geno-

mic and epigenomic perturbations that can be utilized for biomedical and biosecurity

applications.

Introduction

DNA does not exist in the cell as a naked, linear molecule, but rather is compacted into a

highly organized three-dimensional structure that exerts genome-wide influence over gene

expression levels [1, 2]. The first level of compaction is achieved through the regular wrapping

of DNA around histone octamers, forming a compact chain of nucleosomes that restricts

access of the transcriptional machinery to the associated DNA (secondary DNA structure) [3,

4]. The DNA accessibility, and subsequently transcriptional activity, of a given locus can vary

between cell types or physiological conditions depending on the presence of specific DNA-

binding proteins that can covalently modify histone proteins and disrupt nucleosome stability

[5, 6]. These strings of nucleosomes are further organized into a higher level tertiary structure

consisting of loops that are formed by protein-mediated promoter-enhancer interactions,

which in turn are contained within larger topological associating domains (TADs) [7, 8].
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TADs promote looping by providing a local structure to facilitate promoter-enhancer interac-

tions. TAD boundaries are thought to be established by the sequence-specific DNA-binding

protein CTCF and to be invariant between tissue types [8, 9]. TADs are organized into larger,

functionally related compartments [10, 8]. As all of these levels of organization are affected by

the underlying DNA sequence, measurable variations in these structures may provide new

power in mutation detection as well as allow for the characterization of the effect of environ-

mental exposure on the epigenomic landscape, as we previously suggested [11].

Genomic and epigenomic perturbations can result from exposure to a variety of environ-

mental factors [12–14], physiological stressors [15–17] as well as direct manipulation of the

host organism (e.g., genome editing) [11, 18–20]. Genome editing mediated by CRISPR/Cas9

has enabled the manipulation of nearly any organism and has been widely utilized in basic

research through the modification of cell lines and model organisms [18]. In addition, its effec-

tive delivery of targeted genomic alterations, direct or indirect, has also been reported [21–24].

In this regard, CRISPR-Cas9 modified eukaryotes can serve as examples for developing com-

prehensive methods toward agnostic detection of target and secondary genomic and epige-

nomic modifications. Existing approaches have shown power in identifying secondary

mutations in CRISPR/Cas9-modified samples when the sequence of the utilized guide RNA

(gRNA) is known [25–28], but their search is often restricted to genomic regions that are

accessible to Cas9 in vitro or have homology to the gRNA sequence, thus resulting in a partial

capture of secondary mutation sites. None of these methods can be applied to identify genome

editing sites when the gRNA sequence is not known as required for agnostic detection of

genome editing for biosecurity. Whole genome sequencing provides greater coverage of the

genome than gRNA-centric approaches, but some mutation types (chromosomal rearrange-

ments, large insertions and deletions) can be challenging to identify from these data [29].

To test the detection of genomic alterations through variations in DNA structures, three com-

plementary next generation sequencing (NGS)-based assays were selected, which, collectively,

provide a comprehensive interrogation of the impact of CRISPR/Cas9-induced mutations on the

structural organization of mammalian genomes (Fig 1). These assays are: 1) Chromatin Immuno-

precipitation followed by Sequencing (ChIP-seq), which captures secondary structure in the form

of DNA-protein interactions by crosslinking proteins to the DNA, fragmenting the DNA, immu-

noprecipitating out a specific histone variant, and sequencing the associated DNA-fragments [30–

31]; 2) Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-Seq), which cap-

tures secondary structure in the form of DNA accessibility by adding a hyper-active transposase

that cuts accessible regions of the genome and ligates an adapter to the cut region for direct NGS-

based sequencing [32]; and 3) Chromosome Conformation Capture (Hi-C), which captures ter-

tiary structure in the form of inter- and intra-chromosomal associations by treating crosslinked

chromatin with a restriction enzyme, labeling the digested ends with an affinity purification tag,

ligating proximal loci, followed by affinity-enrichment and sequencing of the ligation junctions

[10]. Because these technologies are all NGS-based, primary sequence information is also captured

by simply combining raw sequencing reads from all platforms. Here, we show that identifying sta-

tistically significant changes in each of these structural levels can guide the identification of geno-

mic alterations across the genome and provides increased confidence in called mutations through

multiple, independent validations.

Results

Multi-dimensional DNA structural data analysis

We obtained 5 mammalian cell lines and a mouse tissue sample where a targeted deletion was

induced by CRISPR/Cas9, and the parent strains from which these mutants were derived
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(Table 1). The mutant samples consisted of three edited human cell lines (BRD4, TOP2B,

SMARCA4) derived from a single HAP1 parent strain, two edited mouse embryonic stem cell

lines (Sox2, SE15) derived from a single F123 parent strain [33–34], and one edited mouse

liver tissue sample (Kcnc3) derived from a C57BL/6NJ parent strain. All samples are named

based on the gene or regulatory element that contained the targeted deletion. Sox2 and SE15

are deletions to super-enhancers (SEs); all other samples contain deletions in exons. Samples

were selected covering a range of deletion sizes (4 bp—40 Kb) in order to probe the resolution

of mutation detection for each structural feature. High quality ChIP-Seq, ATAC-Seq, and Hi-

C data were generated for two biological replicates of all modified samples and their reference

backgrounds (S8 Table). ChIP-Seq was performed against the histone variants H3K27Ac and

H3K36me3 which mark transcriptionally active enhancers and exons respectively [35–36].

There were at least 17 million uniquely mapped ATAC-Seq and ChIP-Seq reads for each

experiment and 450 million reads for each Hi-C experiment. For the HAP1-derived samples,

these combined data covered approximately 85% of the genome at 1X coverage, 70% at 5X

coverage, and 60% at 10X (S1 Fig). ChIP-Seq and ATAC-Seq peak densities were highly corre-

lated between samples of the same background for each data type (S2 Fig), suggesting that bio-

logical and technical variation between samples are low.

Fig 1. Holistic capture of DNA organizational levels. We use three different NGS-based assays that capture DNA structural levels genome-wide. These are: Hi-C,

which identifies regions of the genome that are close to each other in 3D space (Tertiary Structure), and has shown power in identifying local and global structural

changes, as well as large deletions and chromosomal rearrangements. ATAC-Seq, which identifies regions of the genome that are accessible to protein binding, like

Cas9, providing enriched coverage in potential sites of off-target modification. ChIP-Seq on histone variants, which characterizes histone modification and occupancy

indicative of variations in transcriptional state. Sequencing data derived from aforementioned platforms can also be combined to generate nearly complete primary

sequence coverage.

https://doi.org/10.1371/journal.pone.0208054.g001

Table 1. Sample information.

Sample Species Background Del Size (bp) Location Gene Description

BRD4 Human HAP1

Cell Line

4 Exonic Histone binding protein that helps maintain chromatin structure during mitosis

TOP2B Human HAP1

Cell Line

19 Exonic DNA Topoisomerase subunit that helps regulate topological state of DNA

SMARCA4 Human HAP1

Cell Line

41 Exonic Transcriptional regulator that functions through chromatin remodeling

Kcnc3 Mouse C57BL/6NJ Liver Tissue 1,182 Exonic Voltage-dependent potassium channel

Sox2 Mouse F123 ES

Cell Line

12,984 Intergenic Super-enhancer that controls expression of the Sox2 gene that regulates pluripotency

SE15 Mouse F123 ES

Cell Line

40,744 Intergenic Super-enhancer that regulates at least 100 loci

https://doi.org/10.1371/journal.pone.0208054.t001
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We performed differential ATAC-Seq, ChIP-Seq, and Hi-C analysis on all modified sam-

ples relative to their reference background strain. For the ATAC- and ChIP-Seq data, differen-

tial peak analysis was performed using DESeq2 [37], where regions that have significantly

different DNA accessibility or histone occupancy between the CRISPR/Cas9-modified sample

and the reference background are identified. A summary of the number of differential peaks

for each assay is given in Fig 2. On average, there was 6.2 times more significantly different

H3K27Ac ChIP-Seq peaks than H3K36me3 peaks, suggesting that the H3K27Ac modification

is more transient than H3K36me3. Significantly different ATAC-Seq peaks were less common

than differential peaks for either of the histone variants, but this is largely explained by differ-

ences between these methods in the library preparation and analysis of these data (see Materi-

als and Methods). Fewer than 20 differential ATAC-Seq peaks were observed for all samples

except for Sox2 mutant, which had around 3,100 (Fig 2). Sox2 is one of three transcription fac-

tors that regulate pluripotency [38], therefore differential regulation of this gene could dramat-

ically impact the transcriptome and the DNA accessibility profile. This result is consistent with

a large number of differential H3K27Ac and H3K36me3 ChIP-Seq peaks in the Sox2 mutant

sample, which also reflect variations in transcriptional state. The SE15 mutant sample had the

greatest number of differential H3K27Ac and H3K36me3 peaks out of all of the strains, but

only a small number of differential ATAC-Seq peaks. To better understand how changes in

DNA accessibility, H3K27Ac modification, and H3K36me3 modification are related, we deter-

mined how often differential peaks in one data type were proximal to (within 5 Kb) differential

peaks in the others. The extent of overlap between data types varied between samples, but gen-

erally H3K27Ac differential peaks were proximal to ATAC-seq and H3K36me3 peaks more

frequently than they were to each other (Fig 2).

We performed differential Hi-C analysis using diffHiC [39] to identify 25 Kb blocks that

were differentially associated between the mutant and parent strains (Differential Interaction

Analysis), and called peaks that were differentially associated (Differential Peak Analysis, see

Materials and Methods). For the HAP1-derived mutants, a few significant changes were called.

Fig 2. Intersection of differential ATAC- and ChIP-Seq peaks. Venn Diagrams show the overlap between

differentially accessible/occupied ATAC-Seq (Red), H3K27Ac ChIP-Seq (Green), and H3K36me3 ChIP-Seq (Blue)

peaks for all six mutants relative to their parent strain (see Materials and Methods). Peaks were counted as overlapping

if they were within 5Kb of a peak of a different platform (see Materials and Methods). Arrows designate which

differential analyses identified the associated mutation. The large deletions and insertion indicated in the BRD4 and

TOP2B samples are new mutations identified in our analysis and further characterized in S5 Fig and S6 Fig.

Information for each called differential peak is reported in S1–S6 Tables.

https://doi.org/10.1371/journal.pone.0208054.g002
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Differential interaction analysis identified one significantly different region for the BRD4

mutant on Chromosome 11, which is proximal to differential ATAC-Seq and H3K27Ac

ChIP-Seq peaks, and five significantly different interactions for the TOP2B mutant contained

within the same region on Chromosome 10; these interactions are proximal to differential

peaks for all other platforms. The SMARCA4 mutant sample had no significantly differential

interactions. Differential peak analysis identified one significantly different peak for the BRD4

mutant that overlapped three differential H3K27Ac peaks, and one and two differential peaks

for SMARCA4 and TOP2B mutants, respectively, neither of which were proximal to an

ATAC- or ChIP-Seq differential peak. The F123-derived Sox2 mutant had tens of thousands of

called differential interactions spread across Chromosomes 7, 8, 13, and 14. Chromosomes 8,

13, and 14 all appear to have undergone inter-chromosomal rearrangements, likely explaining

these differences (S3 Fig). Hundreds of called differential peaks were also observed for Chro-

mosomes 8 and 13. The SE15 mutant sample had more than 15,000 called differential interac-

tions, and 140 differential peaks called on Chromosome 15, suggesting intra-chromosomal

rearrangement (S4 Fig). No differential interactions or peaks were called for the Kcnc3 mutant

sample. Differential analysis results for all platforms are provided in S1–S6 Tables.

Characterization of targeted deletion sites

Our initial analysis focused on the impact of the six known CRISPR/Cas9 target site mutations

on all structural levels. We did not observe a significant change in histone occupancy or DNA

accessibility at the primary deletion site or its proximity (±5Kb) for the 4 bp BRD4 deletion,

the 19 bp TOP2B deletion, or the 41 bp SMARCA4 deletion (Fig 3). The BRD4 and SMARCA4

mutations were both contained within a called H3K36me3 ChIP-Seq peak, but neither muta-

tion significantly affected histone occupancy in these regions. Interestingly, the 4 bp BRD4

deletion did result in the loss of a loop in the encompassing region as well as in a neighboring

area that were both called in all other HAP1 strains (Fig 3). The SMARCA4 deletion, which

was contained within a loop, had no impact on tertiary structure, and neither did the TOP2B

deletion, which was not contained within a loop (Fig 3). All three deletions were identified in

the cumulative primary sequencing data from all three platforms by FreeBayes [40] (p� 1e-

28).

In contrast, the larger deletions in the mouse strains were all detectable by differential

ATAC- and/or ChIP-Seq analysis (Fig 4). The 1 Kb Kcnc3 deletion resulted in the loss of an

H3K36me3 ChIP-Seq peak. The ~13 Kb Sox2 deletion resulted in the loss of ATAC-Seq,

H3K27Ac ChIP-Seq, and H3K36me3 ChIP-Seq peaks, and the ~40 Kb SE15 deletion resulted

in the loss of ATAC-Seq and H3K27Ac peaks. Of the mouse strains, only the Sox2 mutant had

a tertiary structural change at the primary deletion site, which was the loss of the encompassing

loop. The Sox2 mutant was also the only sample to have a significant change in a secondary

structure (H3K27Ac modification) proximal to the primary site (Fig 4). All other differential

peaks were contained within the boundaries of the deleted regions. The larger deletions in the

Sox2 and SE15 mutants are visible in the Hi-C contact maps (Fig 4).

Identification of secondary mutations

To determine whether we could identify secondary mutations (i.e., mutations not at the

directly targeted site) using multi-level DNA structural data, we performed a comprehensive

analysis on a single modified HAP1 strain, BRD4. We were able to agnostically identify four

different mutation types (small indels, insertion, large deletion, and chromosomal rearrange-

ment) in the BRD4 mutant as described below (Fig 5). To identify short indels (� 60 bp) and

small nucleotide variations (SNVs) in the cumulative primary sequencing data from all

Genomic alterations detection by multidimensional DNA structural interrogation
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platforms, we used FreeBayes [40] as described in Materials and Methods. The BRD4 mutant

contained 358 short indels and 1,240 SNVs that were neither present in the parent strain nor

in the additional modified cell lines in this study. These numbers were similar to those

observed for the TOP2B (329 indels and 1,185 SNVs) and SMARCA4 (380 indels and 1,348

SNVs) mutant samples. The parent HAP1 strain only contained one indel and four SNVs that

were not observed in any of its derived mutant strains. To assess the potential source of the

additional mutations observed in the modified cell lines, we determined the similarity between

the sequences surrounding each identified mutation and the 20 bp gRNA used to modify that

strain. Only one mutation for each modified strain (the targeted deletion sites) had� 15 bp

homology to the gRNA sequence and were proximal to a PAM site of “NGG", suggesting these

changes have arisen through a non-Cas9 mediated mechanism (i.e., genetic drift during cell

culturing) [41].

An advantage of Hi-C is the identification of gross chromosomal rearrangements in chro-

mosomal-contact maps. The BRD4 mutant contained a de novo translocation, where the first

32 Mb of Chromosome X was fused to Chromosome 13 (Fig 5, S3A Fig). There was a 15 bp

match to the 20 bp gRNA downstream of the breakpoint on Chromosome X (Fig 5, S3 Fig),

with a perfect match to the last 5 bps of the gRNA, which are thought to be the most important

for CRISPR/Cas9 binding specificity [42]; although there was not a canonical PAM sequence

Fig 3. Structural impact of CRISPR/Cas9-targeted mutations in human cell lines. Left three images: Read depth (y-

axis) is shown as a function of genomic position (x-axis) for representative ATAC-Seq, H3K27Ac ChIP-Seq, and

H3K36me3 ChIP-Seq data for the specified HAP1 cell line at the location of the targeted CRISPR/Cas9 deletions (i.e.,

HAP1-ATAC is ATAC-Seq sequencing read depth for the HAP1 parent strain). The red number on each trace

designates the scale for that trace. Vertical blue lines designate the deletion site. Differentially accessible or occupied

regions are marked with red boxes in the top three rows labeled “-Diff". No differential peaks were observed for these

deletions. Right six images: Hi-C contact maps show which regions of the genome are proximal to each other. Darker

red regions exhibit relatively higher levels of association. Contact maps are shown for the same region in the CRISPR/

Cas9 modified strain (left) and the unmodified parent strain (right). The location of the primary deletion is at the

intersection of the two dashed lines. Blue boxes designate called loops for each data set. Loops are only marked on one

half of the contact map to allow visualization of the corresponding region on the other half.

https://doi.org/10.1371/journal.pone.0208054.g003
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of “NGG" next to the match. The region containing the putative break site could not be ampli-

fied by flanking PCR primers in the BRD4 strain, but could be amplified in all other HAP1

strains, confirming the breakage of Chromosome X was present only in the BRD4 mutant.

Two translocations were observed for the Sox2 mutant: a fusion of Chromosome 13 to

Fig 4. Structural impact of CRISPR/Cas9-targeted mutations in mouse tissue and embryonic stem cells. Read

depth traces (left images) and Hi-C contact maps are as described in Fig 3.

https://doi.org/10.1371/journal.pone.0208054.g004

Fig 5. Summary of mutation types identified by multi-level structural analysis. Impact of the four different

mutation types that were agnostically identified through our holistic analysis on secondary and tertiary DNA

structures. All four mutations are found in the BRD4 mutant. The name listed under the mutation type is the gene or

chromosome impacted by this mutation. ATAC- and ChIP-Seq read depth traces are as described in Fig 3. Hi-C

contact maps for the left three mutation types show data for the modified strain in the lower left portion of the heat

map, and for the un-modified strain in the upper right portion. Hi-C contact data for the translocation is only shown

for the mutant strain. Black boxes designate loops called for each respective data sets. Colored boxes on the read traces

designate the deleted region (red), insertion site (green), or putative chromosomal breakpoint (blue). Boxes that have a

red border designate platforms where there structural change was significantly different as determined by differential

analysis. ChIP-Seq data is for the H3K27Ac antibody only. Expanded analyses for these mutations are given in Fig 3, S5

Fig, S3 Fig, and S6 Fig.

https://doi.org/10.1371/journal.pone.0208054.g005

Genomic alterations detection by multidimensional DNA structural interrogation

PLOS ONE | https://doi.org/10.1371/journal.pone.0208054 November 29, 2018 7 / 17

https://doi.org/10.1371/journal.pone.0208054.g004
https://doi.org/10.1371/journal.pone.0208054.g005
https://doi.org/10.1371/journal.pone.0208054


Chromosome 8 and a fusion of Chromosome 17 to Chromosome 14, with 15 bp matches to

gRNA that are proximal to the suspected breakpoints on Chromosomes 8 and 14 (S3B Fig).

To guide our search for additional mutations, we focused on the intersection of differential

signals between platforms (Fig 2). In the BRD4 mutant, differential ATAC-Seq, H3K27Ac

ChIP-Seq, and Hi-C interaction analysis all pointed to a *260 Kb deletion on Chromosome

11 (S5 Fig) that was not present in any other strain. Two 15 bp matches to the gRNA sequence

were present within and upstream to the deletion, but these matches were not proximal to a

PAM site. Similarly, differential analysis for all platforms pointed to a new *280 Kb deletion

on Chromosome 10 in the TOP2B mutant. Six, 15 bp matches to the gRNA were contained

within this deletion, but again none were proximal to a PAM site (S5 Fig). Both deletions were

confirmed through targeted PCR and sequencing (see Materials and Methods). We did not

identify any new deletions by looking at intersectional analysis in the mouse samples.

The analysis described above primarily focused on differential peaks that showed a signifi-

cant reduction in read depth in the mutant relative to the parent strain, which is indicative of a

deletion. We were also interested in finding out whether a significant increase in read depth in

the mutant strain was also indicative of a genomic modification. To test this, we PCR-ampli-

fied and sequenced the areas containing several significantly up-regulated differential ATAC--

Seq peak in the BRD4 mutant. Surprisingly, we identified the incorporation of a mammalian

expression vector commonly used in genome engineering into the host genome immediately

upstream of one of these peaks (S6 Fig). Since ATAC-Seq measures changes in DNA accessi-

bility, this significant increase in accessibility likely reflects the high transcriptional activity of

the incorporated expression vector. To determine if this exogenous insertion could be detected

de novo from the sequencing reads, we assembled all unmapped reads from the NGS data

using velvet and used blastn to determine which non-human sequences were among

these assemblages (see Materials and Methods). Sequences that matched a different portion of

the same expression construct were identified by this method, but their location in the genome

could not be inferred directly just from the assembled reads, illustrating the advantage of utiliz-

ing structural data to agnostically identify insertion sites.

Discussion

Here, we describe how multi-level DNA structural analysis can be leveraged to identify muta-

tions in the genome that range in scale from SNVs to small (bp) and large (Kb) indels and

chromosomal rearrangements (Mb) (Fig 5). While mutation detection from whole-genome

sequencing data is effective for small mutations (� 10 bp), large deletions and chromosomal

structural changes can be difficult to identify from short-read sequencing data because of chal-

lenges in accurately aligning sequences that vary from the reference genome [29]. The use of

differential structural analysis to identify these larger changes is successful because it effectively

bins short read data into larger structural units for comparison. By searching for mutations in

different levels of DNA organization, we gain a comprehensive view of the genome at multiple

resolutions that guide search efforts and improve confidence in called mutations through

cross-validating evidence from independent platforms.

Based on the limited number of samples in this study, DNA organization structures appear

to be relatively insensitive to short genomic changes; for example, of the 1,598 unique SNVs

and small indels identified in the BRD4 mutant, 109 were contained within called peaks, and

only 4 of these peaks were identified as being significantly different between BRD4 and the

HAP1 parent strain. It is unknown if these significant variations in peak densities were the

direct result of these mutations, but the majority of peaks containing small mutations were not

significantly different between the BRD4 mutant and the HAP1 parent strain. Notably, this

Genomic alterations detection by multidimensional DNA structural interrogation
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insensitivity was observed for the targeted 4 bp and 41 bp deletions in the BRD4 and

SMARCA4 mutants respectively, which are contained within H3K36me3 peaks, and exhibited

no discernible effect on the presence of the H3K36me3 mark to the encompassing regions (Fig

3). The three CRISPR/Cas9-targeted deletions� 1,000 bp (Fig 4) and the two newly identified

large deletions (S5 Fig) resulted in significant changes to ATAC-Seq and/or ChIP-Seq peaks

that overlapped these regions as expected. Structural elements proximal to the deleted regions

appeared to be robust to neighboring large deletions. The targeted deletion site to the Sox2

super enhancer was the only deletion that significantly affected a nearby peak (Fig 4). Nucleo-

some shifts may occur in the regions flanking these mutations, but the resolution of our ChIP-

and ATAC-Seq data did not allow us to accurately call nucleosome boundaries. However, this

is possible using ATAC-Seq data sequenced at a high depth [43], and can be explored in future

studies.

When we applied this approach to identify genomic alterations in the six modified mam-

malian samples, we were able to identify six large secondary mutations (chromosomal rear-

rangements and deletions� 200 Kb) in four of the modified samples. Similarities between

proximal sequences and the gRNA used to modify that strain suggest they may be CRISPR/

Cas9- induced. This finding is consistent with the observation by Kosicki et al., that CRISPR/

Cas9 often induces large genomic structural changes at targeted editing sites [44]. However, as

all of these cell lines were obtained from commercial vendors, where detailed information

about culturing time post-editing was not available, and which are more prone to spontaneous

mutations [45–48], we cannot conclusively attribute these mutations to off-target CRISPR/

Cas9 binding, cell culturing, or genomic instability caused by the targeted deletions in these

strains. Furthermore, CRISPR/Cas9 efficacy has been shown to be higher in cells with an

impaired DNA damage response, suggesting these compromised cells may be artificially

selected for when generating CRISPR/Cas9 mutants [21–22], which could also lead to a higher

rate of mutations in subsequent culturing. Regardless of the origin of the large structural

changes identified in our analysis, these mutations were reliably detected using analysis of vari-

ation in different levels of DNA organization. We suggest that the approach described here

offers a significant improvement over standard WGS for the identification of genomic and epi-

genomic perturbations as it facilitates the discovery of these large changes, while still capturing

nearly whole genome sequencing data.

Each of the NGS-based methods used here have unique advantages for mutation detection.

Hi-C proved to be the most powerful, as it provides nearly whole-genome sequencing data

while facilitating the detection of large structural changes which can be difficult to identify

with short-read data alone. Dixon et al. recently demonstrated that structural variants in can-

cer genomes can be reliably detected using Hi-C analysis with as little as 1X coverage [49],

attesting to the mutation detection power of this method. While we observed added value for

using ATAC-Seq and ChIP-Seq data for mutation detection here, these assays alone do not

provide sufficient genomic coverage to capture all potential mutations (S1 Fig). As CRISPR/

Cas9 binding is dependent on DNA accessibility [42], the use of these platforms enrich for

those areas of the genome most likely to be modified by Cas9, and provide valuable informa-

tion to enhance mutation discovery from higher genomic coverage data sets like Hi-C.

ATAC-Seq and ChIP-Seq also provide information on the functional state of the genome,

which proved useful in the identification of inserted expression elements (S6 Fig). These

expression elements are commonly used in genetic engineering [50], and this approach can be

applied to identify the undisclosed insertion of these elements for commercial, biomedical, or

biodefense purposes. A limitation of a multidimensional DNA analysis approach is the

increased cost and labor necessary to generate these data sets over WGS. The commercializa-

tion of ATAC-Seq, ChIP-Seq, and Hi-C has reduced the time and cost needed to perform
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these assays, making them feasible alternatives to WGS. The integration of these platforms

into a single assay would further reduce costs and enable unbiased, agnostic detection of

genome editing for use in the field, clinic or research laboratories.

Materials and methods

Modified and control samples

The CRISPR/Cas9 modified HAP1 cell lines and the HAP1 parent strain were obtained from

Horizon Discovery Group plc as follows: BRD4 mutant strain (catalog number: HZGHC

000937c007); TOP2B mutant strain (catalog number: HZGHC003697c011); SMARCA4

mutant strain (catalog number: HZGHC000922c004); and HAP1 parent strain (catalog num-

ber: C631). The gRNAs for generating the mutant HAP1 strains were selected through an in-

silico process that calculates the likelihood of potential off-targets containing up to five base

mismatches. Out of these off-targets a score per gRNA was calculated that considers the num-

ber of mismatches, location of mismatch on the gRNA sequence [51] and the distance between

mismatches on the gRNA. The guide RNAs with the best scores are manually chosen for the

knockout generation. Targeted deletions were validated through targeted PCR followed by

Sanger sequencing. The modified and parental HAP1 cells were cultured in Iscove’s Modified

Dulbecco’s Medium (IMDM) with 10% FBS and 1% Pen/Step.

Mouse liver tissue samples were obtained from the Jackson Laboratory: Kcnc3 mutant

strain (catalogue number 028540) and C57BL/6NJ background (catalogue number 005304).

Mouse embryonic cell lines (F123, Sox2, and SE15) were obtained through the Ludwig Insti-

tute for Cancer Research Ltd in agreement with the Whitehead Institute for Biomedical

Research. These strains are derived from the F123 parent strain [33], and the Sox2 strain is fur-

ther described in [34]. Briefly, target gRNAs were designed to minimize off-targets using an

online tool developed by the Feng Zhang group (MIT) and target deletions were validated

through targeted PCR followed by Sanger sequencing. Mouse ESC lines were cultured in Dul-

becco’s Modified Eagle’s Medium (DMEM) with 15% KnockOut Serum Replacement (Ther-

moFisher Sciences), 0.1mM non-essential amino acids (ThermoFisher Sciences), 1x Glutamax

(ThermoFisher Sciences), 50 μM B-mercaptoethanol, and 100 U/ml LIF (Cell Guidance Sys-

tems). For the first two passages, cells were grown on mouse embryonic fibroblast (MTI-Glo-

balStem) feeder plates prepared on 0.2% gelatin-coated plates and cultured in DMEM with

10% FBS. Accutase was used as a more gentle method of passing the F123 mESC cells, and

cells were split very densely at about 1:2 for the first passage and about 1:4 for subsequent

passages.

ATAC-Seq library preparation and data analysis

The ATAC-Seq was performed by Active Motif as described by Buenrostro et al. [32], with

some modifications based on Corces et al. [52]. Briefly, cell pellets were resuspended in lysis

buffer, pelleted, and tagmented using the enzyme and buffer provided in the Nextera Library

Prep Kit (Illumina, Inc.). Tagmented DNA was then purified using the MinElute PCR purifica-

tion kit (Qiagen), amplified with 10 cycles of PCR, and purified. The ATAC-Seq libraries were

sequenced as 45 bp paired-end libraries on a NextSeq 500 and mapped to the human (version

hg19) or mouse (version mm10) genomes using BWA [53] with default parameters. Reads were

filtered using Illumina’s sequence quality filters, and PCR duplicates were removed. Peaks

were called using MACS1.4.2 at a cutoff of p-value = 1e-7, without control file, and with the–

nomodel option [54]. Peaks were merged for all samples of the same background, reads were

counted for each region, and differential analysis was performed between each modified sam-

ple and its parent strain using DESeq2 [37].
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ChIP-Seq library preparation and data analysis

ChIP-Seq was performed by Active Motif using the following method. Mouse and human

samples were fixed with 1% formaldehyde for 15 minutes and quenched with 0.125 M glycine.

Cell lysates were sonicated and the DNA was sheared to an average length of 300–500 bp.

Genomic DNA (Input) was prepared by treating aliquots of chromatin with RNase, proteinase

K, and heat for de-crosslinking, followed by ethanol precipitation. An aliquot of chromatin

(30 μg) was precleared with protein A agarose beads (Invitrogen). Genomic DNA regions of

interest were isolated using 4 μg of antibody against the histone modifications H3K27Ac and

H3K36me3. Complexes were washed, eluted from the beads with SDS buffer, and subjected to

RNase and proteinase K treatment. Crosslinks were reversed by incubation overnight at 65˚C,

and ChIP DNA was purified by phenol-chloroform extraction and ethanol precipitation.

Illumina sequencing libraries were prepared from the ChIP and Input DNAs by the standard

enzymatic steps of end-polishing, dA-addition, and adapter ligation. After a final PCR amplifica-

tion step, the resulting DNA libraries were quantified and sequenced on Illumina’s NextSeq 500

(75 bp single end reads). These sequencing reads were mapped to the human (version hg19) or

mouse (version mm10) genomes using BWA [53] with default parameters. Reads were filtered

using Illumina’s sequence quality filters, and PCR duplicates were removed. Peaks were called

using MACS2 with the parameters ‘-f BAM -g hs -s 36 -–nolambda -–nomodel’

[54]. Non-immunoprecipitated chromatin input libraries were also generated and sequenced for

each strain and used to improve peak calling accuracy by MACS2.

Differential peak analysis was performed for each mutated sample relative to the unmodi-

fied parent strain using DESeq2 [37]. Called peaks were not merged prior to differential anal-

ysis as done with ATAC-Seq analysis to maximize the detection resolution. Instead, peaks for a

single replicate for each sample were used to determine read counts in those regions for all

other samples of the same background using the countRangeset function in the system-
PipeR library for R [55]. Differential analysis was then performed on all peaks called for a sin-

gle mutated sample relative to its parent strain. As some peaks present in the parent strain may

have been lost in the modified strains, the same analysis was repeated for all called peaks for

the parent strain. Differential peaks identified using the mutated and parent strain peak sets

were combined and overlapping peaks in this set were then merged. Read counts were subse-

quently determined for these merged peaks for the mutated and parent strains, and differential

analysis was repeated.

Venn diagrams that show the overlap in differential peaks across platforms (Fig 2) were

generated using the VennDiagram library for R. Peaks from two platforms were counted as

overlapping if they were within 5 Kb from each other. As multiple peaks for one platform can

overlap the same peak in a different platform, overlapping peak counts can vary depending on

which platform is used as the reference. For each platform comparison, we used the platform

with the smaller number of peaks as the reference. Overlap data for each called differential

peak for each platform are reported in S1–S6 Tables.

Hi-C library preparation and data analysis

Hi-C data were generated using a pre-commercial version of the Arima-Hi-C technology,

whereby only a single restriction enzyme (as opposed to multiple) is used for chromatin diges-

tion. To prepare mouse tissue samples for Hi-C analysis, tissues were harvested and snap-fro-

zen, pulverized, and crosslinked as previously described [56]. Then, tissue was further

dissociated and nuclei were isolated as described previously [57]. The resulting nuclei were

input into the Hi-C protocol. For cell lines, 1 million crosslinked cells were used as input into

the Hi-C protocol. Briefly, chromatin from crosslinked cells or nuclei was solubilized, and
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then digested using a single restriction enzyme recognizing the GATC motif. The digested

ends were then labeled using a biotinylated nucleotide, and ends were ligated to create ligation

products. Ligation products were purified using solid phase reversible immobilization (SPRI)

magnetic beads, fragmented, and size-selected using SPRI beads. Biotinylated fragments were

then enriched using streptavidin beads, and Illumina-compatible sequencing libraries were

constructed on-bead using a modified workflow of the KAPA Biosystems, Inc.’s Hyper Prep

kit. The bead-bound library was then amplified, and amplicons were purified using SPRI

beads and subject to deep sequencing.

Hi-C data pre-processing was conducted using Juicer [58]. Human data were aligned to

the hg19 reference genome, and mouse data were aligned to the mm10 reference genome.

After pre-processing and generating .hic files using Juicer Pre, loops were called using

HICCUPS [8] and TADs were identified using the “Arrowhead" algorithm within the Juicer
tool. Hi-C data were visualized using Juicebox [59] with Balanced normalization applied to

the matrices. For differential Hi-C analysis we used the diffHiC software [39], a tool that

models biological variability between biological replicates to test for statistically significantly

differential interactions between two biological conditions. Because diffHiC contains its

own data normalization strategy, raw Hi-C contact matrices were generated at 25 Kb resolu-

tion using Juicebox “dump". These matrices were re-formatted and then matrices from

biological replicates of Condition 1 and matrices from biological replicates of Condition 2

were input into diffHiC to conduct two types of analyses: differential interaction analysis

and differential “peak" analysis. After data normalization and filtering low abundance bin-

pairs, all differential interactions were identified genome-wide and are herein referred to as

Differential Interactions. For differential loop (or “peak") analysis, the ‘filterPeaks’ function

was used to identify peaks and then these peak positions were compared across conditions.

For both differential Hi-C analyses as well as False Discovery Rate (FDR) calculations, a cutoff

of 0.05 was used to define statistical significance.

PCR verification and identification of exogenous insertions

PCR primers were designed to amplify the regions surrounding differential peaks, putative dele-

tion boundaries, or putative chromosomal break points. Following PCR, the amplified regions

were visualized on an agarose gel to confirm expected fragment size, and then select samples were

sequenced by Sanger Sequencing. A list of all PCR primers is provided in S7 Table. To identify the

presence of exogenous insertions: unmapped reads were identified from BWA generated BAM

files using samtools view -b -f 4 [53], assembled using velvetg with the options

-cov_cutoff 5.2 [60], and aligned to all publicly available sequences using blastn [61].

Supporting information

S1 Fig. Genomic coverage of each platform. The number of sequencing reads at each base

(fold coverage) was determined for each platform individually and cumulatively. Here, we

show the fraction of the genome (y-axis) that has at least some specified depth of sequencing

coverage (x-axis). The key in the right corner designates which curve corresponds to which

platform.

(TIF)

S2 Fig. Peak densities are correlated between modified and parent strains. The number of

reads within each called peak was plotted for the reference strain (x-axis) against the CRISPR/

Cas9-edited strain (y-axis). We show a representative plot for each data type and background
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strain used. A fit regression line and corresponding R2 are shown in red.

(TIF)

S3 Fig. Unique translocations present in modified samples. (A) The top image is an all chro-

mosome by all chromosome Hi-C contact map for the BRD4 mutant (bottom/left half) and

the HAP1 parent strain (top/right half). Each row and column represents a single chromo-

some. For simplicity, we only labeled those chromosomes where there was a difference

between the mutant and parent strain, which is marked with a gray box. The lower image is an

enlargement of the above boxed region to show the extent of inter-chromosomal linkage in the

mutated sample. Sequences near the putative breakage point that are homologous to gRNA

sequences are shown below. Red bases signify match to gRNA at that position. (B) is the same

as (A) except for the Sox2 mutant which had two new translocations relative to its parent

strain.

(TIF)

S4 Fig. Unique intra-chromosomal rearrangements present in a modified sample. Hi-C

contact map for Chromosome 15 for the SE15 mutant (left) and the F123 parent strain (right).

The sites of intra-chromosomal rearrangements specific to the SE15 mutation are marked

with black boxes.

(TIF)

S5 Fig. Large deletions identified in modified HAP1 cell lines. Read depth traces (left

images) and Hi-C contact maps (right images) are as described in Fig 3. Dashed lines mark the

center of large deletions in Hi-C contact maps. Vertical blue line in the “Gene Annotation"

track signify location of sequences with� 15 bp homology to the gRNA sequence.

(TIF)

S6 Fig. Identification of inserted expression vector through altered DNA accessibility. (A)

Read depth traces (left images) and Hi-C contact map are as described in Fig 3. Dashed lines

mark the insertion location in the Hi-C contact map. (B) Blue arrows below the read traces

mark the region of the genome amplified by PCR and sequenced. These sequencing data iden-

tified the insertion of a mammalian expression plasmid pFB-Neo-E-hA20 immediately

upstream of the differential ATAC-Seq peak. (C) Alignment of inserted sequence identified by

targeted PCR of ATAC-Seq peak (green bar) and contigs assembled from unaligned sequenc-

ing reads (red bars) to the pFB-Neo-E-hA20 expression plasmid.

(TIF)

S1 Table. Summary of differential analysis for all platforms for BRD4 mutant. Each tab

contains all significantly different regions between BRD4 and its parent strain for each data

type. Tab 1 is for H3K27Ac ChIP-Seq data; Tab 2 is for H3K26me3 ChIP-Seq data; Tab 3 is for

ATAC-Seq data; Tab 4 is for Differential Hi-C interaction analysis; and Tab 5 is for Differential

Hi-C peak analysis. The last 4 columns for each Tab reports the number of differential regions

for the indicated platform that overlapped or was within 5 Kb of that called region. For Tabs

1–3, each column corresponds to the following: chr—chromosome containing differential

peak; start- peak start coordinate; stop—peak stop coordinate; meanXXX is the average read

density for that peak in that strain; pval—calculated p-value; padj—adjusted p-value as deter-

mined by DESeq2. For Tabs 4–5, two sets of coordinates are given (chrom, start, end) to desig-

nate genomic regions that are interacting. Differential Hi-C analysis was performed using

diffHiC, which reports FDR instead of adjusted p-value. S1–S6 Tables have the same format.

(XLS)
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S2 Table. Summary of differential analysis for all platforms for TOP2B mutant.

(XLS)

S3 Table. Summary of differential analysis for all platforms for SMARCA4 mutant.

(XLS)

S4 Table. Summary of differential analysis for all platforms for Kcnc3 mutant.

(XLS)

S5 Table. Summary of differential analysis for all platforms for Sox2 mutant.

(XLS)

S6 Table. Summary of differential analysis for all platforms for SE15 mutant.

(XLS)

S7 Table. PCR primers used to validate identified mutations.

(XLS)

S8 Table. Summary of the number of biological replicates per sequencing platform for

each sample.

(XLSX)
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