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Abstract: The prevalence of rheumatoid arthritis (RA) subtypes, including seropositive and
seronegative, is influenced by lifestyle factors and exhibits high heterogeneity, resulting
in reduced drug efficacy. This study aims to identify cytokines mediating the effects of
different lifestyles on RA subtypes and to discover new drugs for personalized treatment.
Mendelian randomization revealed that three cytokines (MIP1b, SCGFb, and TRAIL)
partially mediated the effects of different lifestyles on RA overall or its subtypes. The
pretrained model, i.e., DrugBAN, predicted the probability of 723,000 small molecule drugs
binding to these three targets. In molecules with high binding rates, we calculated the
structural similarity between known drugs for RA and other drugs to screen for new drugs,
followed by molecular docking and molecular dynamics simulations for validation. The
results indicate that these targets had promising binding affinity with known drugs and
other drugs with high similarity. Our findings may guide therapeutic approaches for
heterogeneous RA patients with specific lifestyle habits.

Keywords: rheumatoid arthritis subtypes; cytokines; pretraining model; drug prediction

1. Introduction
Rheumatoid arthritis (RA) is a prevalent chronic inflammatory disease characterized

by chronic synovial joint inflammation, leading to musculoskeletal deficits and an increased
risk of other diseases, such as pulmonary involvement and cardiovascular disease, thereby
increasing patient mortality risk [1]. Based on the presence of several autoantibodies, such
as rheumatoid factor and anti-citrullinated protein antibodies, RA can be classified into
seropositive and seronegative types [2]. Seropositive RA is associated with worse outcomes,
including more serious joint injury, more severe bone loss, and higher mortality [3]. While
the course of seronegative RA, characterized by greater heterogeneity, is relatively mild, it
can still lead to joint destruction and even disability [4]. Patients with different subtypes
typically have distinct etiologies. HLA-DRB1 alleles are the strongest genetic loci for
seropositive RA [5], whereas HLA-DR3 alleles contribute more to seronegative RA [6].
Furthermore, genetic factors account for approximately 50% of seropositive RA risk but
only 20% of seronegative disease risk, with environmental factors contributing more to the
latter [7].
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RA pathogenesis involves a complex interplay between cells (such as T cells, B cells,
macrophages, and synovial fibroblasts) and a network of pro-inflammatory cytokines [8].
Cytokines such as tumor necrosis factor (TNF)-α and interleukin-6 (IL6) play a central role
in the disease process. TNF-α induces the expression of the receptor activator of nuclear
factor κB ligand (RANKL) and synergistically promotes osteoclast differentiation, leading
to bone erosion [9]. IL6 promotes the differentiation of Th17 cells, a subset of T cells, and
stimulates RANKL expression, thereby inducing osteoclast formation and contributing to
joint damage [10]. Combined stimulation with IL-6 and TNF-α can also induce macrophage
differentiation into osteoclasts via a non-RANKL-dependent pathway [10]. However,
compared with seropositive patients, seronegative individuals exhibit increased numbers
of M1-like macrophages and higher levels of TNF-α expression [11].

Research on the pathology of RA led to the development of therapeutic drugs. The
primary strategy for RA involves disease-modifying drugs, primarily methotrexate [12].
However, the therapeutic effect of methotrexate in seronegative patients is unsatisfac-
tory [13], they respond better to anti-TNF [14]. Additionally, 77.5% of patients receiving
methotrexate treatment experience at least one adverse event, and lifestyle may also play a
role [12].

Smoking, a recognized risk factor, increases the risk of RA, especially seropositive
subtypes, and exacerbates disease progression [15]. Additionally, other lifestyle factors,
including diet, coffee, alcohol consumption, and body mass index (BMI), can also lead to
different subtypes of RA [16–19]. For example, research by Junxiang Wang et al. shows
that coffee consumption increases the risk of seronegative rather than seropositive RA [20].
Given the documented roles of certain cytokines in RA [8], and considering that lifestyle
factors can modulate cytokine levels [21–25], incorporating cytokines as mediators in
analyses may elucidate the biological mechanisms linking lifestyles to RA and its subtypes.
Drugs targeting these proteins could be used for personalized therapy.

To better understand the causal relationships between lifestyle factors and RA sub-
types, and to explore the potential mediating role of cytokines, we conducted two-sample
Mendelian randomization (MR) analyses based on genome-wide association study (GWAS)
summary statistics. This method uses genetic variants as instrumental variables for expo-
sures, thereby minimizing confounding and reverse causality [26]. Compared to conven-
tional observational studies, MR enables more robust causal inference. Additionally, to
translate the findings into therapeutic implications, we employed the DrugBAN model [27]
to predict the binding probabilities between small molecule drugs and cytokines with po-
tential mediating roles. DrugBAN takes molecular graphs and protein sequences as inputs
and learns joint representations through a bilinear attention mechanism. In benchmark
evaluations, DrugBAN outperformed both traditional machine learning and other deep
learning models, particularly in predicting drug–target pairs across different data distribu-
tions. These advantages make it a suitable tool for identifying candidate drugs targeting
cytokines related to RA. Our findings, based on the integration of MR and DrugBAN,
could identify novel therapeutic targets and drugs for patients with specific RA subtypes
associated with particular lifestyle habits, potentially leading to more personalized and
effective treatment strategies.

2. Results
To investigate the cytokines that mediate the impact of lifestyle factors on RA and its

subtypes, and to identify new targeted drugs, we collected available large-scale GWAS
summary data of lifestyles, cytokines, and RA (Table 1) and designed the following pipeline
(Figure 1).
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Table 1. Summary information of data in this study.

Type Trait Sample Size (Cases) Unit Citation

Exposure Relative carbohydrate intake 268,922 % of total energy intake [28]
Relative fat intake 268,922 % of total energy intake [28]

Relative protein intake 268,922 % of total energy intake [28]
Relative sugar intake 235,391 % of total energy intake [28]
Coffee consumption 375,833 50% change [29]

Alcohol consumption 941,280
1-SD increase in

log-transformed alcoholic
drinks per week

[30]

Smoking initiation 1,232,091
Ever smoked regularly
compared with never

smoked
[30]

BMI 681,275 kg/m2 [31]

Outcome RA overall 1,026,690 (31,313) Odds ratio [32]
Seropositive RA 1,009,623 (18,019) Odds ratio [32]
Seronegative RA 1,023,986 (8515) Odds ratio [32]

Mediator 28 cytokines 840–8293 SD [33]
These studies were all based on European ancestry. RA: rheumatoid arthritis; SD: standard deviation.

Figure 1. Flow chart of the study designed in this MR study. AUROC, area under the receiver
operating characteristic.
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2.1. Total Effects of Lifestyles on RA and Its Subtypes

To evaluate the total effects of lifestyles on RA and its subtypes, we conducted two-
sample MR analyses using genetic variants as instrumental variables. In total, 9, 4, 7, 6, 14,
83, 334, and 752 SNPs were selected for relative intake of four nutrients (carbohydrate, fat,
protein, and sugar), coffee consumption, alcohol consumption, smoking initiation, and BMI,
respectively (Tables S1–S8). Four MR methods were applied, including inverse variance
weight (IVW), weighted-median (WM), MR-Egger, and MR pleiotropy residual sum and
outlier (MR PRESSO). The results of the IVW method are considered the primary findings.

As shown in Figure 2, the risks of RA overall and its subtypes were positively as-
sociated with smoking initiation and BMI, consistent with previous observational stud-
ies [34,35]. We also observed subtype-specific effects for several lifestyle factors. Increased
relative sugar intake was associated with a higher risk of seronegative RA (odds ratio [OR]
= 2.688, p = 0.005) but not seropositive RA (OR = 1.284, p = 0.359). Higher coffee consump-
tion was causally associated with a higher risk of seronegative RA (OR = 1.008, p = 0.001)
but did not significantly affect seropositive RA (OR = 1.002, p = 0.369). However, no sig-
nificant associations were found between RA risk and relative intake of macronutrients
(carbohydrate, fat, and protein) or alcohol consumption.

Figure 2. Forest plot of the causal associations of lifestyles with RA and its subtypes. p < 0.05 was
considered as significant evidence of associations.

Most results of sensitivity analyses (WM, MR-Egger, and MR PRESSO) were consistent
with the IVW method (Figures S1–S3). Cochran’s Q statistics indicated no significant
heterogeneity (p > 0.05, Table S9). MR-Egger showed pleiotropy in the effects of BMI on RA
overall and its subtypes (p < 0.05). However, the MR PRESSO method detected no outliers
and supported these associations (Table S9).



Int. J. Mol. Sci. 2025, 26, 5686 5 of 16

2.2. Cytokines as Potential Targets

Cytokines are critical in the development of RA and its subtypes [8–10], and lifestyles
can modulate cytokine levels [22–24]. Therefore, we conducted two-step MR analyses to
elucidate the mediating pathways through which lifestyle factors influence RA and its
subtypes via 28 cytokines. We concentrated on pathways from lifestyles to diseases that
demonstrated significant associations (p < 0.05) in the two-sample MR analyses (Figure 2).
Cytokines involved in these pathways might be potential therapeutic targets for RA patients
with specific lifestyle exposures.

In the first step, we used genetic variants for lifestyles to assess their causal ef-
fects on cytokines. We identified five cytokines significantly associated with lifestyles
(Figures 3 and S4–S7). In the second step, we evaluated the causal effects of these five
cytokines on the risk of RA overall and its subtypes. There were 51, 19, 297, 36, and 65 SNPs
USED as instrumental variables for eotaxin, IL12p70, macrophage inflammatory protein-1b
(MIP1b), stem cell growth factor-beta (SCGFb), and TNF-related apoptosis inducing ligand
(TRAIL), respectively (Table S10). Our findings indicate that decreased levels of MIP1b
and TRAIL led to a higher risk of RA overall and its subtypes. Eotaxin and SCGFb levels
were positively associated with the risk of seropositive and seronegative RA, respectively
(Figures 3 and S8–S10). Sensitivity analysis results show no heterogeneity and horizontal
pleiotropy within the MR analyses (Tables S11 and S12).

Figure 3. Significant associations in the two-step MR analyses. The results with p < 0.05 are consid-
ered significant.

Finally, we estimated the indirect effects of lifestyles on RA and its subtypes via these
cytokines. By integrating the results from two-sample MR analyses and two-step MR
analyses, we identified that seven mediation pathways (Table 2) and six pathways were
statistically significant (p < 0.05), in total involving three cytokines (MIP1b, TRAIL, and
SCGFb). We observed significant indirect effects of relative sugar intake on RA overall and
seronegative RA through MIP1b, with mediation proportions of 12.19% (p = 0.004) and
9.36% (p = 0.004), respectively. TRAIL partially mediated the effects of smoking initiation
on RA overall, seropositive RA, and seronegative RA, with mediation effects of −0.005
(p = 0.033), −0.007 (p = 0.033), and −0.008 (p = 0.039), and mediated proportions of 1.41%,
1.80%, and 1.84% in the total effect, respectively. The mediation effect of coffee consumption
on seronegative RA through SCGFb was −0.001 (p = 0.047), with a mediated proportion
of 7.84%.
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Table 2. Mediating effects of lifestyles on RA and its subtypes via cytokines.

Outcome Exposure Mediator
Total Effect Mediation Effect Mediated

Proportionβ (95% CI) β (95% CI) p

RA overall Relative sugar
intake MIP1b 0.704

(0.054, 1.355)
−0.086

(−0.144, −0.028) 0.004 12.19%

RA overall Smoking
initiation TRAIL 0.369

(0.306, 0.432)
−0.005

(−0.010, 0.000) 0.033 1.41%

Seropositive RA Smoking
initiation Eotaxin 0.366

(0.284, 0.448)
0.005

(−0.001, 0.011) 0.097 1.42%

Seropositive RA Smoking
initiation TRAIL 0.366

(0.284, 0.448)
−0.007

(−0.013, −0.001) 0.033 1.80%

Seronegative RA Relative sugar
intake MIP1b 0.989

(0.302, 1.676)
−0.093

(−0.156, −0.029) 0.004 9.36%

Seronegative RA Coffee
consumption SCGFb 0.008

(0.003, 0.012)
−0.001

(−0.001, 0.000) 0.047 7.84%

Seronegative RA Smoking
initiation TRAIL 0.415

(0.308, 0.522)
−0.008

(−0.015, 0.000) 0.039 1.84%

Among the three significant mediators mentioned above, TRAIL has been proposed as
a potential therapeutic target for RA [36]. The association between MIP1b and RA remains
debated in the literature [37–39], while research on SCGFb is relatively sparse.

2.3. Candidate Drugs Prediction

To identify small molecules targeting cytokines with mediating roles (MIP1b, TRAIL,
and SCGFb), we trained the DrugBAN model using a comprehensive dataset from Bind-
ingDB, which included over 4300 human protein targets and 723,000 small molecule ligands,
and identified 1.45 million valid binding data pairs.

Then, we used the model with the highest area under the receiver operating charac-
teristic (AUROC = 0.980) score to predict the binding probabilities of the three cytokines
mentioned above with small molecules. Among these, eleven small molecules for MIP1b,
three for TRAIL, and eight for SCGFb were found to be validated for RA treatment in the
DrugBank database (Table 3).

Table 3. Drugs with the potential to bind to SCGFb that have been approved for the treatment of RA.

DrugBank ID Name Summary Binding
Probability

Lowest Docking
Score (kcal/mol)

DB00461 Nabumetone Nabumetone is an NSAID used to treat
osteoarthritis and rheumatoid arthritis. 0.89 −7.60

DB00465 Ketorolac

Ketorolac is an NSAID used to treat
moderate to severe pain, rheumatoid

arthritis, osteoarthritis, ankylosing
spondylitis, menstrual disorders, and

headaches.

0.81 −7.70

DB00500 Tolmetin

Tolmetin is an NSAID used to treat acute
flares of various painful conditions and is

used for the long-term management of
osteoarthritis, rheumatoid arthritis, and

juvenile arthritis.

0.75 −6.40

DB00533 Rofecoxib

Rofecoxib is a COX-2 inhibitor NSAID
used to treat osteoarthritis, rheumatoid

arthritis, acute pain, primary
dysmenorrhea, and migraine attacks.

0.83 −8.10
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Table 3. Cont.

DrugBank ID Name Summary Binding
Probability

Lowest Docking
Score (kcal/mol)

DB00586 Diclofenac
Diclofenac is an NSAID used to treat the
signs and symptoms of osteoarthritis and

rheumatoid arthritis.
0.76 −6.40

DB00605 Sulindac

Sulindac is an NSAID used to treat
osteoarthritis, rheumatoid arthritis,

ankylosing spondylitis, acute subacromial
bursitis or supraspinatus tendinitis, and

acute gouty arthritis.

0.77 −7.70

DB00712 Flurbiprofen
Flurbiprofen is an NSAID used to treat the
signs and symptoms of osteoarthritis and

rheumatoid arthritis.
0.70 −7.50

DB00788 Naproxen

Naproxen is an NSAID used to treat
rheumatoid arthritis, osteoarthritis,

ankylosing spondylitis, polyarticular
juvenile idiopathic arthritis, tendinitis,

bursitis, acute gout, primary
dysmenorrhea, and mild to moderate pain.

0.72 −8.00

To further validate the model prediction results, we used AutoDock Vina to analyze
the binding sites and interactions between the three cytokines (MIP1b, TRAIL, and SCGFb)
and RA treatment drugs. We selected the conformation with the lowest docking score as
the best conformation. For instance, the lowest binding scores for the eight small molecules
docked with SCGFb ranged from −6.40 to −8.10 kcal/mol (Table 3), indicating the good
binding affinity of these small molecules. Notably, the lowest docking score for SCGFb
with Rofecoxib was −8.10 kcal/mol, suggesting its potential as a strong inhibitor (Figure 4).
In addition to Rofecoxib, Figure 4 also presents the docking scores of SCGFb with the
other seven drugs identified from our search in the DrugBank database for approved RA
treatments. Similarly, the docking simulations for MIP1b and TRAIL showed promising
binding affinities (MIP1b: −6.0 to 7.6 kcal/mol and TRAIL: −7.7 to 8.2 kcal/mol, respec-
tively), and supported their potential therapeutic relevance in RA treatment. These docking
scores confirmed the binding potential of these small molecules, suggesting that these three
protein targets are likely involved in RA treatment.

Figure 4. The simulated docking conformations of SCGFb with the identified drugs. (a) Nabumetone;
(b) ketorolac; (c) tolmetin; (d) rofecoxib; (e) diclofenac; (f) sulindac; (g) flurbiprofen; and (h) naproxen.
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For other small molecules predicted by DrugBAN, those with high binding proba-
bilities to MIP1b, TRAIL, and SCGFb and with structural similarities to drugs already
approved for RA treatment were considered potential candidates for further investigation.
We used the Tanimoto similarity coefficient [40], a widely used metric in the field of drug
discovery, to evaluate the structural similarity between molecules. Given that TRAIL is a
known drug target for RA [36] and SCGFb has potential as a novel target, we calculated
the similarity between known approved drugs and the top 20,000 ranked molecules for
these two targets. For SCGFb, we conducted molecular docking simulations on the eight
molecules with the highest similarity, as shown in the Figure 5, which demonstrated strong
binding potential, with scores ranging from −5.9 to −7.6 kcal/mol. Similarly, for TRAIL,
the top eight molecules had binding scores ranging from −6.7 to −8.3 kcal/mol, indicat-
ing strong binding potential. This approach suggests that screening for small molecules
with similar functions is feasible and may yield new candidate drugs for personalized
RA treatment.

Figure 5. Docking conformations of the top eight molecules ranked by similarity to approved drugs
for SCGFb. PubChem CID: (a) 10359269; (b) 3032; (c) 1548885; (d) 44305866; (e) 5352624; (f) 6926388;
(g) 116964097; and (h) 20334995.

To further validate their binding probabilities, molecular dynamics (MD) simulations
were performed for each of the eight candidate molecules with the highest structural sim-
ilarities in the SCGFb complexes, followed by the MM-GBSA energy calculations. Two
ligands (PubChem CID: 6926388 and 20334995) dissociated from the binding site of SCGFb
(Figure S11); thus, their binding energies were not computed. Table 4 shows qualitative
agreement among the predicted binding probabilities, docking scores, and calculated bind-
ing energies. The ligand with the highest binding probability (PubChem CID: 44305866) had
the second strongest binding strength indicated by both the docking score and MM-GBSA
energy. In addition, the two ligands dissociated from the SCGFb binding site (PubChem
CID: 6926388 and 20334995) had the second and third weakest binding strengths accord-
ing to the docking scores, one of which (PubChem CID: 20334995) also had the lowest
binding probability (Table 4). Although the linear correlation among the binding probabil-
ities, docking scores, and binding energies was not obvious, their qualitative agreement
from the MD simulations and MM-GBSA energy calculations provided additional support
for the predictions from the DrugBAN model and their subsequent validation through
molecular docking.
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Table 4. Comprehensive evaluation of SCGFb binding to the candidate molecules with the highest
similarities using the DrugBAN model, molecular docking, and molecular dynamics simulations.

Ligand PubChem
CID

Binding
Probability

Docking Score
(kcal/mol)

Binding Free
Energy

(kcal/mol) 1

3-(4-Hydroxy-phenyl)-4-(4-methanesulfonyl-
phenyl)-5H-furan-2-one 10359269 0.80 −7.6 −11.2 ± 2.5

Solaraze 3032 0.85 −5.9 −9.8 ± 2.1
trans-Sulindac 1548885 0.83 −7.2 −11.4 ± 4.8

2-[6-Fluoro-3-(4-methanesulfinyl-benzylidene)-
2-methyl-3H-inden-1-yl]-N-

hydroxy-N-methyl-acetamide
44305866 0.96 −7.2 −14.4 ± 2.7

Sulindac sulfide 5352624 0.77 −7.6 −16.0 ± 3.9
sodium;(2R)-2-(6-methoxy-2-naphthyl)

propionate 6926388 0.86 −6.1 Not stable

2-(6-Methoxynaphthalen-2-yl)-3-
methylbutanoic acid 116964097 0.77 −6.7 −8.8 ± 3.5

2-(6-Ethoxynaphthalen-2-yl)propanoic acid 20334995 0.72 −6.2 Not stable
1 Calculated by MM-GBSA.

3. Discussion
This study identified three cytokines (MIP1b, TRAIL, and SCGFb) as mediators of

lifestyle-induced RA and its subtypes through MR analyses. To discover personalized
drugs targeting these targets, we trained the DrugBAN model to predict the binding
probabilities of small molecules to these targets. The reliability of our predictions was
supported by summary data from the DrugBank database and molecular docking scores.
Small molecules with high predictive probabilities and structural similarities to known RA
drugs may represent promising new drugs.

In terms of cytokine-mediated effects, our two-step MR analyses provide genetic
evidence supporting a causal pathway from smoking to TRAIL expression and further
to the risk of RA and its subtypes, extending previous findings. TRAIL, a member of the
TNF superfamily, is involved in immune and inflammatory responses [36]. Microarray
analysis has shown that smoking is associated with increased TRAIL levels, triggering an
inflammatory response in adipocytes [41]. RA synovium is characterized by the presence of
aggressively activated synovial fibroblasts that destroy cartilage and bone. Research shows
that patient synovial cells can express TRAIL receptors, thereby inducing apoptosis [42].
However, TRAILs may trigger the formation of a secondary signal complex, activating
nuclear factor-κB and mitogen-activated protein kinases, leading to a proinflammatory
reaction [42]. In vitro experiments further support this, demonstrating that TRAIL induces
rapid apoptosis in up to 30% of synovial cells within the initial 24 h, followed by increased
synovial cell proliferation activity, potentially rendering them more resistant to TRAIL-
induced apoptosis [43]. Moreover, our study highlights subtype-specific mediation effects.
We found that the mediation proportion of TRAIL was smaller in seropositive RA than in
seronegative RA. This may be related to differences in T cell subsets expressing TRAIL, as
seronegative patients tend to exhibit lower levels of T cells [44,45]. The stronger protective
mediation effect of TRAIL in seronegative RA suggests that TRAIL signaling may be of
therapeutic relevance in this subgroup, especially among smokers. Nevertheless, this
hypothesis warrants experimental validation.

Additionally, SCGFb played a mediating role in the pathway from coffee consumption
to seronegative RA. However, to the best of our knowledge, there is limited data on the
pathophysiological role of SCGFb. SCGFb is a shorter form of SCGF encoded by the gene
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CLEC11A, which supports the growth of hematopoietic progenitor cells [46]. SCGF is
highly expressed in the endothelium of synovial tissue in RA patients and may participate
in synovial infiltration by regulating endothelial cell function [47]. Some other activating
C-type lectins, such as CLEC5A, demonstrated pro-inflammatory activity, and the loss or
inhibition of related receptors has shown a protective effect in a murine model of RA [48].

MIP1b, also known as CCL4, a CC chemokine, significantly mediated the effects
of relative sugar intake on RA in our study, especially in the seronegative rather than
seropositive subtype. While previous studies established a causal relationship between
MIP1b and RA [37,38], our findings highlight MIP1b as a mediator linking sugar intake
to RA, a pathway that remains underexplored in RA research. However, the negative
association between MIP1b and RA in this study contradicts previous reports of higher
MIP1b levels in RA patients [39]. Further investigation is necessary to elucidate how MIP1b
influences the development of RA.

Although targeted drugs have been developed for some cytokines, many problems still
remain. TNF and IL6 inhibitors can increase the incidence of some malignant tumors [48]
and the risk of Mycobacterium tuberculosis reactivation [49]. Anakinra, a recombinant IL-
1R antagonist, is safer than anti-TNF therapies, but has lower efficacy in most patients [50].
Therefore, it is necessary to develop new drugs to achieve better safety and higher response
rates. Yu Jeong Kim et al. developed ionic complex systems based on hyaluronic acid and
polyethylene glycol-derivatized TRAIL, which showed excellent therapeutic effects for
RA treatment in an arthritis mouse model [51,52]. Moreover, in patients with confirmed
RA, TRAIL concentrations increased more in those with heart failure compared to those
without [53]. This finding suggests that treatment aimed at reducing the inflammatory
burden caused by TRAIL in RA patients may prevent heart failure. Although there is
no strategy aimed at SCGFb for RA treatment, the relevant drugs are still worthy of
consideration due to the key role of SCGFb in osteoblast differentiation [54].

Some small molecules predicted by DrugBAN to bind these targets have been validated
in the DrugBank. By evaluating structural similarities between small molecules with high
binding probabilities and known drugs using the Tanimoto similarity coefficient [40], we
suggest that screening small molecules with similar functions could identify new candidate
drugs for RA treatment.

4. Materials and Methods
4.1. MR Data Sources

We collected GWAS summary statistics for eight lifestyle factors: relative intake of car-
bohydrate, fat, protein, and sugar [28], coffee consumption [29], alcohol consumption [30],
smoking initiation [30], and BMI [31] (Table 1). The summary data for RA and its sub-
types were obtained from a recent GWAS meta-analysis, comprising 31,313 RA cases (68%
seropositive) and approximately one million controls from European populations [32]. The
samples were subclassed as seropositive and seronegative RA based on rheumatoid factor
and anti-cyclic citrullinated peptide measurements [32]. We utilized 28 available cytokines
as potential mediators, selected from a GWAS involving 8293 participants [33].

4.2. Two-Sample MR Analysis and Sensitivity Analysis

We first selected single nucleotide polymorphisms (SNPs) achieving genome-wide
significance (p < 5 × 10−8) as instrumental variables to represent genetic susceptibility to
exposure [55]. Subsequently, SNPs were clumped to exclude those with linkage disequilib-
rium (r2 > 0.01 and clump window < 10 kb) [55]. Additionally, SNPs directly associated
(p < 5 × 10−8) with the outcome were excluded [56] to ensure that instrumental variables
influenced the outcome solely through exposure. SNPs were then harmonized to ensure
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allele correspondence between exposure and the outcome. We also employed the RadialMR
(version 1.0) package [57] to remove outlier pleiotropic SNPs (p < 0.05). SNPs with an F
statistic (β2/SE2 < 10) were excluded to avoid weak instrument bias [58]. The remaining
SNPs were utilized for MR analyses.

We employed two-sample MR analyses to evaluate the total effects of lifestyles on
RA and its subtypes, using the IVW model as the primary method [59]. For associations
with p < 0.05, we estimated the causal effects of these lifestyles on cytokines. Subsequently,
cytokines associated with lifestyles (p < 0.05) were used to evaluate their causal effects on
RA and its subtypes. Finally, we applied the “product of coefficients” method [60] to assess
the indirect effects of lifestyles on RA and its subtypes through cytokines. The Aroian
test was used to calculate standard errors for the indirect effects using the online tool
(http://www.quantpsy.org/sobel/sobel.htm, accessed on 25 November 2023). Cytokines
with p < 0.05 are considered potential therapeutic targets.

Three additional methods, including WM [61], MR-Egger [62], and MR PRESSO
(MRPRESSO package, version 1.0) [63], were also employed to enhance the robustness of
our MR analyses. Cochran’s Q statistic was used in the IVW and MR-Egger methods to
evaluate heterogeneity [64].

4.3. Candidate Drug Prediction Using Deep Learning Models
4.3.1. Principle of DrugBAN

To identify small molecule drugs that interact with potential targets, we trained the
DrugBAN model and predicted the probability of small molecules binding to these targets.

DrugBAN, based on a bilinear attention network, is designed to capture local inter-
actions between drugs and proteins. In DrugBAN, protein sequences are encoded using
a three-layer one-dimensional convolutional neural network. Drug compounds are rep-
resented as two-dimensional molecular graphs derived from SMILES strings, with each
atom node initialized based on its chemical properties to form a node feature matrix. A
three-layer graph convolutional network is employed to learn graph representations by
aggregating neighborhood information. The BAN module captures pairwise local inter-
actions between drug and protein features using third-layer hidden representations to
generate a joint representation through bilinear pooling. This is followed by sum pooling to
create a compact feature map, which is fed into a fully connected layer, with the predicted
probability obtained via the sigmoid function.

4.3.2. Datasets and Model Training

To train the DrugBAN model, we sourced a comprehensive dataset of small molecule
protein-binding interactions from BindingDB (https://www.bindingdb.org/rwd/bind/
index.jsp, accessed on 16 May 2024). This dataset included over 4300 human protein targets
and 723,000 small molecule ligands. We followed the same training procedures described
in the original study [27] and selected the optimal model based on the highest AUROC
score achieved on the validation set for subsequent screening.

4.3.3. Model Validation

The trained DrugBAN model was used to screen small molecules for their potential
to bind with protein targets. Molecules were ranked according to their predicted binding
probabilities. We selected the top 20,000 small molecules as candidate drugs based on their
rankings and searched the DrugBank database (https://go.drugbank.com/) for any that
have been approved for RA treatment. We then used the Tanimoto similarity coefficient [40]
to evaluate the structural similarity between candidate drugs and known RA drugs to
identify new potential drugs.

http://www.quantpsy.org/sobel/sobel.htm
https://www.bindingdb.org/rwd/bind/index.jsp
https://www.bindingdb.org/rwd/bind/index.jsp
https://go.drugbank.com/
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To further validate these results, we performed molecular docking simulations using
AutoDock Vina v1.1.2 [65]. Potential targets identified through MR analyses were docked
with their corresponding small molecules for RA treatment. Protein structure data were
downloaded from the PDB (https://www.rcsb.org/), and small molecules were retrieved
from DrugBank in sdf format. All files were converted to pdbqt format before docking.
Each protein–ligand pair generated eight conformations along with their corresponding
docking scores. We selected the conformation with the lowest docking score as the best
conformation, indicating the strongest binding affinity.

The stability of the top 8 SCGFb-binding candidates in the binding site was further
validated by MD simulations. The top-ranked docked pose in each docking result was
extracted and used to build the molecular models for SCGFb-binding complexes by the
tLEaP module with valence parameters from the GAFF force field in AMBER18 [66].
The atomic partial charges for the 8 SCGFb-binding candidates were computed by the
AM1-bcc method [67]. Each complex structure was solvated with TIP3P water using
an 8 Å buffer in a truncated octahedral box using the tLEaP module of the AMBER18
software package. Sodium counter ions were added to neutralize the solvated system.
The MD simulation protocol for each system was adopted from Roe’s study [68]. The
restraint weight in the relaxation steps was increased to 10 kcal/mol·Å2 in the present
study. The production MD simulations for each system were performed with the GPU
implementation [69] of the PMEMD.CUDA module for 100 ns and trajectory frames were
collected at every 1 ps. In all MD simulations, covalent bonds involving hydrogen atoms
were constrained using the SHAKE algorithm [70], allowing a simulation time step of 2 fs.
A nonbonded cutoff of 8 Å was applied to van der Waals interactions, with long-range
electrostatics treated with the particle mesh Ewald approximation. The interaction energies
in each SCGFb-binding complex were computed with the molecular mechanics-generalized
born solvent-accessible surface area (MM-GBSA) methodology under the single trajectory
methodology [71,72]. The MMPBSA.py.MPI module and 10,000 evenly extracted snapshots
from each MD simulation were applied for each MM-GBSA calculation, in which the
GB1

OBC model [73] (igb = 2) and internal dielectric constant (εint) of 4.0 were used [74].

5. Conclusions
The effects of lifestyles on RA, including subtypes, were partially mediated by MIP1b,

TRAIL, and SCGFb, informing interventions for RA patients with specific lifestyle habits.
Drugs predicted for these targets have the potential to be used for personalized therapy.
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