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Abstract

It has long been recognized that sample size calculations for cluster randomized trials re-

quire consideration of the correlation between multiple observations within the same

cluster. When measurements are taken at anything other than a single point in time,

these correlations depend not only on the cluster but also on the time separation be-

tween measurements and additionally, on whether different participants (cross-sectional

designs) or the same participants (cohort designs) are repeatedly measured. This is par-

ticularly relevant in trials with multiple periods of measurement, such as the cluster

cross-over and stepped-wedge designs, but also to some degree in parallel designs.

Several papers describing sample size methodology for these designs have been pub-

lished, but this methodology might not be accessible to all researchers. In this article we

provide a tutorial on sample size calculation for cluster randomized designs with particu-

lar emphasis on designs with multiple periods of measurement and provide a web-

based tool, the Shiny CRT Calculator, to allow researchers to easily conduct these sample

size calculations. We consider both cross-sectional and cohort designs and allow for a

variety of assumed within-cluster correlation structures. We consider cluster heterogene-

ity in treatment effects (for designs where treatment is crossed with cluster), as well as

individually randomized group-treatment trials with differential clustering between arms,

for example designs where clustering arises from interventions being delivered in

groups. The calculator will compute power or precision, as a function of cluster size or

number of clusters, for a wide variety of designs and correlation structures. We illustrate
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the methodology and the flexibility of the Shiny CRT Calculator using a range of

examples.

Introduction

In this tutorial we provide an overview of different types of

cluster randomized trial designs, with particular emphasis

on designs with multiple periods. We outline a number of

different within-cluster correlation structures that are ei-

ther commonly used or plausible structures for these

designs. We outline how empirical estimates for these

within-cluster correlations might be obtained. We then

summarize what is known about the statistical efficiency

of these competing designs, before introducing the Shiny

CRT Calculator to allow users to not only determine re-

quired sample sizes in their own settings, but also to com-

pare statistical efficiency for different designs on a case-by-

case basis. We include designs with differential clustering

across arms (for example group therapy trials) and con-

sider designs in which treatment effect heterogeneity across

clusters is expected.

Our objectives are to help researchers navigate the liter-

ature on sample size calculations for multiple-period clus-

ter randomized trials. By additionally providing an easy-

to-use online calculator that nonetheless allows for much

complexity, our intention is to promote more rigorously

designed and powered cluster randomized trials.

We present several examples to illustrate this methodol-

ogy and the Shiny CRT Calculator. Our objectives are to

illustrate how researchers can: (i) determine sample size or

power for a range of cluster randomized designs; (ii) iden-

tify cluster sizes under which all observations make a non-

negligible contribution to the power; (iii) compare power

achievable across different designs; (iv) incorporate more

comprehensive correlation structures than the simple ex-

changeable structure; and (v) explore sensitivity to key

correlation parameters, which are often estimated with un-

certainty. We also illustrate how to modify these calcula-

tions when the study will evaluate interactions with

treatment effect and cluster; and we illustrate how to iden-

tify optimal designs (with respect to minimizing the total

sample size) for individually randomized arms with cluster-

ing in one arm only. The examples are based on real stud-

ies, but results may differ from those studies as some

details may have been changed for illustration.

Overview of different types of cluster randomized

trial designs

In the two-arm parallel cluster randomized trial (CRT),

clusters (for example, wards, hospitals, communities) are

randomly allocated to one of two ‘arms’ that would typi-

cally represent an intervention condition and a control

condition, see Figure 1a. 1–3 Because observations from

participants in the same cluster are usually correlated, the

design is statistically less efficient than a comparable indi-

vidually randomized trial. That is, for an equivalent num-

ber of observations, a cluster randomized trial will usually

provide less power to detect the target effect size. One

common variation on the standard parallel-arm design

with a single measurement is to take a measurement at the

start of the study (a baseline assessment, see Figure 1b) in

addition to a follow-up assessment, which we refer to as a

CRT with a baseline measure.4 Baseline and follow-up

measurements might be taken on the same participants (a

cohort design) or on different participants (a cross-

sectional design). This design can be statistically more effi-

cient than a two-arm parallel CRT, depending on the

Key Messages

• Cluster randomized trials are increasingly being designed with variations from the conventional two-arm design, with

many including multiple periods of measurement.

• Alongside this rapid increase in the use of the designs there has also been a rapid development in the methodology

of sample size calculations for these trials.

• In cluster randomized trials with multiple time periods, such as the multiple-period cluster cross-over and the

stepped-wedge designs, an exchangeability correlation structure is unlikely to be appropriate.

• This paper provides a tutorial on sample size calculations for cluster randomized trials, with particular emphasis on

designs with multiple periods of measurement with allowance for time-dependent correlation structures, and introdu-

ces an online calculator for practical implementation.
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strength of the correlation between baseline and follow-up

measurements.5

The two-period cluster cross-over design (CRXO),

which is more statistically efficient than the CRT with a

baseline measure, randomly allocates clusters to one of

two different sequences: either the control condition fol-

lowed by the intervention condition; or the intervention

condition followed by the control condition, see

Figure 1. Schematic representation of different multi-period cluster randomsied trials.
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Figure 1c.6,7 Although only feasible in some settings (e.g.

where it is possible to remove a cluster-level intervention),

the CRXO design is a very appealing design as it allows

mitigation, at least in part, of some of the power loss

due to cluster randomization.8,9 The multi-period CRXO

design is an extension of the two-period CRXO design,

with multiple-cross overs within each sequence, see

Figure 1d. 10

Other types of cluster randomized designs have seen in-

creasing interest in recent years. The stepped-wedge cluster

randomized trial (SW-CRT), for example, allocates clus-

ters to sequences that involve periods in the control condi-

tion followed by periods in the intervention condition.11,12

This design often starts off with all clusters in the control

condition; clusters are randomly allocated to cross over to

the intervention condition, at different times, typically un-

til all are exposed to the intervention condition (Figure 1e).

Both the CRXO and the SW-CRT can be designed either

to take repeated measurements on the same participants at

each measurement occasion (closed cohort design); or on

different participants at each measurement occasion (cross-

sectional design).12,13 Within the class of stepped-wedge

designs, variants may include designs in which not all clus-

ters are observed in all periods of the trial. This ‘incom-

pleteness’ in the design may be for practical reasons (for

example to allow implementation or transition periods11)

or may be to improve efficiency (for example with the use

of a dog-leg design14).

Treatment effects and time adjustment

In this tutorial we consider how to determine sample size

or power for these study designs under the assumption of a

time-averaged treatment effect and assume adjustment for

fixed time effects.15 This is somewhat different to infer-

ences concerning trends in treatment effects over time or

the sustainability of treatment effects, which have been

covered in texts on longitudinal cluster randomized tri-

als.16 For all outcomes the results assume large sample

theory; and for binary and count outcomes we approxi-

mate variances of differences using standard formulas

(Supplementary Appendix 1, available as Supplementary

data at IJE online) and allow for over-dispersion for count

outcomes. Of note, for count outcomes the implied stan-

dard deviation in the treatment arm will decrease with in-

creasing target effect size; and any over-dispersion is

assumed the same across treatment conditions.

Within-cluster correlation structures

Sample sizes for the conventional two-arm parallel CRT

are typically derived by inflating the sample size needed

under individual randomization by a design effect (DE). In

its simplest form this design effect is [1þ(m-1) ICC] where

m is the cluster size (assumed constant across all clusters)

and the ICC represents the intra-cluster correlation coeffi-

cient (ICC), that is the correlation between two randomly

chosen observations in the same cluster.17,18 This implies

an exchangeable or compound symmetry correlation struc-

ture, whereby the correlation between any two observa-

tions in the same cluster is assumed to be identical.

Correlation structures become more complex when the

measurements are taken at more than a single point in

time. There are various ways of parameterizing these corre-

lations. One common method, used in multiple-period

designs, is to distinguish the within-period ICC (which

measures the correlation between any two observations

from the same cluster in the same measurement period)

from the between-period ICC (which measures the correla-

tion between any two observations from the same cluster

but in different measurement periods).14,19 An equivalent

parameterization, the one we use here, is in terms of the

within-period ICC and the cluster auto-correlation (CAC)

where the CAC is the ratio of the between-period ICC to

the within-period ICC.20 A correlation structure with a

within-period and between-period ICC (equivalently a

common between-period CAC), referred to henceforth as a

two-period correlation structure, is intuitive in studies

where there are two periods, such as a two-period cross-

over design or a parallel design with a baseline measure-

ment, but may be less intuitive in a design with more than

two periods. However, the two-period correlation struc-

ture has also been advocated in study designs with more

than two-periods, such as the SW-CRT and the multiple-

period cluster randomized cross-over design.14 Under this

parameterization of the within-cluster correlation struc-

ture, design effects have been published for the CRT with

any number of before and after measures, the two-period

CRXO, the multiple-period CRXO and the SW-CRT de-

sign, among others.14 These design effects are a function of

the cluster size per period (not to be confused with the total

cluster size), the number of sequences (in the SW-CRT)

and the correlation between repeated measurements on the

same clusters and possibly the same participants (Table 1).

All design effects assume an equal number of clusters allo-

cated to each arm or sequence.21

For the multi-period CRXO, the SW-CRT design and

any other design with multiple periods, correlation struc-

tures that allow for a within-period ICC and a common

between-period CAC may not be realistic: the CAC may

depend on the length of time between periods.22

Intuitively, the between-period ICC for two temporally ad-

jacent periods is generally expected to be larger than for

two periods further apart in time. Thus, instead of one
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between-period ICC, there could potentially be one for

each pair of periods within a cluster. Several possible ex-

tended correlation structures can be defined: the most gen-

eral requiring only that the entire within-cluster

correlation matrix be positive definite. The simplest of

these correlation structures, and the one that we consider

here, supposes that the CAC decays exponentially as a

function of the distance between two periods. We call this

a discrete time decay correlation structure. For example,

the CAC for two periods ‘j’ periods apart in a study would

be the CAC for temporally adjacent periods to the power

of j. The power of studies for this discrete time decay corre-

lation structure can be determined by numerically inverting

matrices.22 These more complicated correlation structures

might also be of importance for parallel CRTs where the

observations are measured at anything other than a single

cross-section (see Example 1 below; and, Supplementary

Appendix 2, available as Supplementary data at IJE online

for an illustration of this).22

Finally, where the study involves repeated measure-

ments on the same participants over time, the individual

auto-correlation coefficient (IAC) measures the strength of

the correlation between two observations on the same par-

ticipant (irrespective of how far apart the measurements

are taken).23

Empirical estimates for within-cluster correlations

To implement any sample size calculation for a cluster ran-

domized trial, researchers need some a priori estimates for

within-cluster correlations. When trial outcomes will be

obtained from routinely collected data and historical data

are available at the design stage, then tailored estimates

may be obtained, for example by fitting general linear

mixed models to the data. To match assumptions made un-

der the derivation of the design effects outlined above (i.e.

two-period correlation structure), linear mixed models

with fixed period effects, random cluster effects and ran-

dom cluster by period effects can be fitted to provide esti-

mates of both the within-period and the between-period

ICCs. For binary outcomes, ICCs on the proportions scale

are required for sample size calculations and so this means

that linear mixed models should be fitted and not logistic

models.24 As there is still uncertainty on how to obtain

estimates for between-period ICCs (or equivalently CACs)

in the case of binary proportions, until further work has

been done, we suggest fitting linear mixed models to the bi-

nary data, as has been suggested by others.25 Estimates of

correlation structures, which allow the CAC to decay ex-

ponentially as a function of time between periods, can be

obtained by fitting models with fixed period effects and

random cluster-by-period effects, where particular struc-

tures (e.g. discrete time decay) can be assumed for the cor-

relation matrix of the cluster by period random effects.

Currently SAS appears to be the only standard statistical

software package that allows for specification of correla-

tion structures at all levels of the cluster hierarchy.22 More

details on the estimation of these correlations are provided

in Example 2 below.

When only small datasets are available, for example

from pilot studies, it has been shown that the uncertainty

associated with estimated correlations will often be so

great as to render these estimates uninformative.26 In such

situations, recommendations are to use patterns observed

Table 1. Design effects for various cluster trials

Design Design effect for

clustering (DEc)

Design effect for

repeated measures

on same cluster (DER)

var�1 trtð Þ

Parallel CRT (s ¼ 2; t ¼ 1) ½1þ ðm� 1Þq� 1 k�m
2�DEC�DER

Parallel CRT with baseline (s ¼ 2; t ¼ 2) ½1þ ðm� 1Þq� 1� r2 k�m
2�DEC�DER

Two-period cluster crossover (s ¼ 2; t ¼ 2) ½1þ ðm� 1Þq� 1�r
2

k�m
2�DEC�DER

Stepped-wedge (s ¼ w; t ¼ w þ 1) ½1þ ðm� 1Þq� 3wð1�rÞð1þwrÞ
ðw2�1Þð2þwrÞ

w�k�m
4�DEC�DER

Multi-period cluster cross-over (s ¼ 2; t ¼ v) ½1þ ðm� 1Þq� 1�rð Þ
v

k�m
2�DEC�DER

Differential clustering across arms

(parallel two arms)(s ¼ 2; t ¼ 1)

TSS*[
1þ mc�1ð Þqc½ �

mckc
þ 1þ mt�1ð Þqt½ �

mtkt
] 1 k�m

2�DEC�DER

Power is U�1 �z1�a
2
þ sesffiffiffiffiffiffiffiffiffiffiffi

varðtrtÞ
p� �

where U is the cumulative distribution of the standard normal; s number sequences (or arms); t number time-periods; k number

of clusters per sequence (arm); m cluster size per period. TSS is total sample size in study, thus s*t*k*m; r ¼ mqCAC
DEc

for cross-sectional designs and r ¼
mqCACþ 1�qð ÞIAC

DEc
for closed cohort designs; q and a are within-period ICC and significance level (ICC: intra-cluster correlation; CAC: cluster auto-correlation); ses

is standardized effect size (Supplementary Appendix 1, available as Supplementary data at IJE online). For designs with differential clustering, mcis the cluster size

in the control arm; mt is the cluster size in the treatment arm; kc is the number of clusters in the control arm; kt is the number of clusters in the treatment arm; qc

and qt represent the correlation within the control and treatment arms respectively; and TSS ¼ mckc þmtkt .
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from empirical studies of correlations.27,28 Important

determinants of ICCs are known to be: outcome type

(ICCs for process outcomes, such as an outcome which

records whether or not a patient has their blood pressure

measured, are typically higher than for clinical outcomes,

such as a patient’s blood pressure); setting (ICCs in second-

ary care are typically higher than ICCs in primary care);

and possibly cluster size and prevalence (ICCs from smaller

clusters and more prevalent outcomes tend to be

higher).27,29 There is much less published information

available on determinants of between-period ICCs or

CACs. Limited published information suggests values for

CACs (in the case of a constant between-period ICC) might

be anywhere between 0.3 and 0.9, with some indication

that CACs might decrease the longer the duration of the

study.30,31 Given the uncertainty in these estimates, sensi-

tivity analyses are particularly important to inform sample

size and power calculations.

For multiple-period trials, like those we are considering

here, correlation structures may depend not only on the

definition of the cluster but also on the duration of the

periods. This means that empirical correlations should be

estimated not only from data sources representing similar

types of clusters, but also similar period lengths. Likewise,

when estimating correlation and decay structures, the time

periods used in the estimation of these parameters should

be of a similar duration as in the planned trial.

Incomplete designs

Sometimes designs might incorporate a ‘transition period’

to allow the intervention to become embedded into prac-

tice. In these periods, clusters can be considered neither

fully exposed nor fully unexposed to the intervention. If

observations from these periods are not intended to be

used in the analysis, these transition periods should be

allowed for in the power calculation.11 There may be other

reasons for incomplete designs in which not all cluster peri-

ods contribute data. For example, incomplete designs may

deliberately include only cluster periods contributing more

statistical information, to reduce the data collection bur-

den.14,32 Cluster periods that contribute the most statistical

information, will depend on the assumed correlation struc-

ture but seem to be those immediately before and after the

cluster switches to the intervention condition, and cluster-

periods at the corners of the design.33 Some trials have

adopted staircase designs, where clusters are only mea-

sured in periods immediately before and after the treat-

ment switch.34 Closed-form expressions for design effects

do not exist for many of these incomplete designs, and so

the power of incomplete designs is determined using nu-

merical methods for inverting matrices.11 A related

concept are designs in which there is an unequal number of

clusters allocated to each sequence. These designs have

non-uniform allocation ratios (see Example 2 for an illus-

tration of this).

Statistical efficiency

Statistical efficiency of any given cluster randomized design

can be considered from different perspectives. In its sim-

plest form, the most statistically efficient design can be

viewed as the design that achieves the greatest power for a

fixed sample size. However, the total sample size in a clus-

ter trial is a function of the number of clusters, the number

of participants per cluster and the number of repeated

measurements. Exactly what is meant by ‘efficiency’—i.e.

what is being optimized and under what constraints—will

depend on the specific circumstances. For example, in sit-

uations where there are financial or ethical considerations

associated with the inclusion of individual participants,

there may be a desire to minimize the total number of par-

ticipants. In other situations there may be high costs associ-

ated with the enrolment of clusters, and there may be

desire to minimize the number of clusters. Alternatively, in

situations where there is a high burden associated with

data collection, there may be a desire to minimize the num-

ber of repeated measures per participant.

In a two-arm parallel CRT and assuming an exchange-

able correlation structure as the cluster size increases (for a

fixed number of clusters), the incremental increase in

power starts to plateau.35 Furthermore, cluster trials with

a small number of clusters are at risk of low internal valid-

ity (due to chance imbalances) and low external validity

(where the clusters are not representative of the wider pop-

ulation) and might run into complications in analysis when

using analytical methods that mostly appeal to large sam-

ple theory.36 Thus, even when restricting the design to a

two-arm parallel CRT, researchers need to be aware of the

trade-offs between increasing the number of clusters and

increasing the cluster sizes: it will usually be preferable to

increase the number of clusters where possible.37

If the research study allows the possibility of using

designs in which clusters are observed under both the con-

trol and treatment conditions, such designs might offer

greater statistical efficiency. Comparisons of efficiency

across these designs are possible. The choice of the most ef-

ficient design will depend, ultimately, on the assumed cor-

relation structure. Often this will thus depend on the

correlation between cluster period means from the same

cluster assessed in different periods. This correlation

depends in turn on the cluster period size and other corre-

lation parameters.32 Comparisons of efficiency need to en-

sure that the within-period ICC and CAC (and any other
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correlations) are transferable across designs. That is to say,

a within-period ICC calculated on the basis of a 1-month

time period should not be used in the sample size calcula-

tion where time is divided into 3-month periods. When

making comparisons of efficiency across designs, keeping

the cluster periods the same size will help ensure that a

like-with-like comparison is being made. Where unequal

numbers of clusters are allocated to sequences in a SW-

CRT, then allocating more to the first and last sequences

will generally maximize statistical power.38

Differential clustering across arms and treatment

effect heterogeneity across clusters

In addition to clustering arising based on the unit of ran-

domization, clustering can also arise based on how the in-

tervention is delivered. It is possible that an intervention

delivered in a group setting induces clustering in one arm

only, referred to here as differential clustering across arms.

For example, individuals might be randomized to group

therapy or to usual care where the usual care arm does not

receive any additional treatment and individuals remain in-

dependent. This differential clustering also needs to be

allowed for in sample size calculations. For a simple paral-

lel design with observations taken at a single cross-section,

a variation on the design effect for clustering is avail-

able39,40 (Table 1); see Example 3 below for an

illustration.

Related to this, for trials in which treatment is crossed

with cluster (e.g. cluster cross-over or stepped-wedge

designs), it is possible to test for treatment heterogeneity

across clusters, i.e. cluster-to-cluster variation in the treat-

ment effect.41 Varying treatment effects across clusters cre-

ates an implicit differentiation between the correlation of

observations within controls and that in treatment clusters

(hence the relationship to differential clustering).42 No

closed form design effects are currently available for this

formulation, but again power can be determined using nu-

merical methods for inverting matrices. Example 2 illus-

trates the notion of designing a study to detect treatment

effect heterogeneity across clusters.

Small sample corrections

For two-arm parallel CRTs with a small number of clus-

ters, it is conventional to use critical values from the t-dis-

tribution rather than the normal distribution in power

calculations, with the number of degrees of freedom set to

the number of clusters minus two.43,44 This approach is

based on the degrees of freedom that would be obtained

from a cluster-level analysis. A similar approach can be

taken in multiple-period designs, although exactly what

values of degrees of freedom should be used is unclear.

One approach is to use the degrees of freedom calculated

as the number of cluster periods minus the number of

time periods minus one. For a two-arm parallel CRT, this

implies the use of the conventional degrees of freedom (to-

tal number of clusters minus two). Any use of the t-distri-

bution as opposed to a normal approximation will always

be more conservative, irrespective of the degrees of free-

dom; however, different choices for degrees of freedom

might be more or less conservative. Research is still needed

on the optimal choice of degrees of freedom.

Varying cluster sizes

Cluster randomized trials that have varying cluster sizes

are, all other things being equal, less powerful than trials

with no variation between cluster sizes. In a parallel CRT,

under the assumption of stratified randomization to ensure

balance across arms in the total sample sizes, this variation

can be allowed for by a modification of the design effect.

Under this assumption the average cluster period size (m)

is replaced with m(1þCV^2) where CV is the coefficient of

variation of cluster sizes. This is known to be a conserva-

tive approach for allowing for varying cluster sizes.45–47 A

modification of this design effect has been shown to be

valid for multiple-period cluster trials, under a two-period

correlation structure.45 It is important to note that these

design effects are only valid under the assumption of a

stratified randomization scheme. This means that in an

SW-CRT for example, with one cluster allocated to each

sequence, this inflation might not be appropriate.48

Research is still needed on how these design effects per-

form under the discrete time exponential decay correlation

structure.

Implementing sample size calculations:
introducing the Shiny CRT Calculator

The Shiny CRT Calculator is a web-based app in which

we have implemented methodology to determine power

for cluster trials, including the parallel design, the parallel

design with one before and after measure, the two-period

cross-over design, the multiple-period cross-over design

and the stepped-wedge design. To maximize flexibility of

the Shiny CRT Calculator, users can also upload their

own designs using a csv file, which can contain missing

cluster period cells such as transition periods. This flexi-

bility enables hybrids between parallel and stepped-

wedge and other efficient designs such as the dog-leg.14,32

To verify the upload or to check that the design under cal-

culation corresponds to the intended design, it can be

viewed on a ‘Diagram of design’ tab. For parallel-arm

International Journal of Epidemiology, 2020, Vol. 49, No. 3 985



designs, users can opt to have clustering in one arm only

(‘differential clustering’). When the design has been

uploaded via the ‘upload own design’, the user is able to

select an option to allow for variation in treatment effects

across clusters.

Sampling structures allowed are those in which the

same participants are measured in each measurement pe-

riod (closed cohort design) and those in which different

participants are measured (cross-sectional design). The app

can also accommodate a range of different correlation

structures. This includes the conventional exchangeable

correlation structure (single within-cluster ICC), structures

with a different within- and between-period correlation

but where the between-period correlation is constant (two-

period correlation structure) and discrete time exponential

decay correlation structures. When the user selects any-

thing other than an exchangeable correlation structure,

and the number of periods is not implicit in the design (i.e.

a two-arm parallel CRT with a discrete time decay correla-

tion), the user must also specify the number of periods (see

Example 1 for explanation).

For correlation structures other than the exchangeable

correlation structure, the user specifies the within-period

ICC and the CAC (under a discrete time decay correlation

structure, this CAC is assumed to have an exponential de-

cay over time); for designs with repeated measures on the

same participant, the user also specifies the IAC. For an ex-

changeable correlation structure, the user specifies a single

ICC only. The power curve is plotted for a ‘base-case’

within-period ICC and CAC (where applicable), supplied

by the user. To allow examination of sensitivity to the

specified CAC, two additional power curves are produced

automatically, corresponding to a lower and upper ex-

treme for the CAC. These extremes are set at 80% and

120%, respectively (or 1, whichever is greater). The user

can also specify ranges for upper and lower limits of the es-

timated within-period ICC, which results in a total of six

curves for each plot. Users can remove any of these curves

by double-clicking the corresponding key on the legend.

The bounds for the discrete time decay are the same as for

the CAC. For trials with differential clustering, the user is

asked to specify the base-case ICC under the treatment

condition and the base-case ICC under the control condi-

tion (usually expected to be zero). When the option ‘varia-

tion in treatment effects’ is selected, the user is requested to

provide a standard deviation of the treatment effect across

clusters (see Example 2 for explanation). In this case, the

ICC represents the correlation under the control condition

(making the somewhat simplified assumption of indepen-

dence between the correlation in the control and interven-

tion condition).

The relationship between the power, the ICC and the

cluster period size is complex and whereas it may be the

case that power for a design increases (or decreases) as

the ICC increases (or decreases), this depends on the cluster

period size. As a result, the displayed curves for lower ICC

values will not always be lower than those curves for

higher ICC values (and vice versa) and furthermore, dis-

played curves for lower and higher ICC values may cross

each other. The relationship between CAC and power or

precision is also complex when CAC decays and the

bounds resulting from the lower and upper CAC values

may not necessarily fall either side of that using the origi-

nal CAC value.22

In addition to the usual sample size parameters, users

must supply specific parameter values for each design. For

the stepped-wedge design, users must specify the number

of sequences and the number of clusters allocated to each

sequence; and for the multiple-period cluster cross-over de-

sign, the user specifies the number of periods. The user

specifies their desired significance level (for a two-sided

test), which will allow calculations under superiority with

multiplicity adjustments where desired. For complete

designs, the user can explore the influence of varying clus-

ter size by specifying the coefficient of variation of cluster

period sizes (CV) (this option is not available when matrix

inversion methods have been used, i.e. for the exponential

decay correlation structure or when the user has uploaded

their own design).

Outcome types incorporated are continuous, binary and

count. The user has the option of either assuming the nor-

mal approximations or using a t-distribution with degrees

of freedom equal to the number of cluster periods minus

the number of time periods minus one. This will be of im-

portance when the planned analysis will include a small

sample correction.49 The option of a t-distribution is not

available when the user requests the plot to be cluster size

versus number of clusters.

The user can plot the resulting power (or precision) as a

function of the cluster size (for a fixed total number of

clusters), the number of clusters (for a fixed total cluster

size) or the number of clusters against cluster size (for a

fixed power). Where the design includes differential clus-

tering, the plot of the number of clusters against cluster

size (for fixed power) is three-dimensional and shows total

sample size, the number of individuals under the control

condition and the number of clusters under the treatment

condition (for fixed cluster sizes). The function allows the

user to vary the ranges of the x-axis on the plot, so as to

make the range more applicable to the scenario. Hovering

over the curve will provide the user with power values for

each point on the curve.
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The app is programmed in R and implemented using

the R Shiny application.50 The app can be used via the

following link: [https://clusterrcts.shinyapps.io/rshinya

pp]. Source code and updates are located on GitHub

[https://github.com/karlahemming/Cluster-RCT-Sample-

Size-Calculator]. For complete designs or the more

straightforward correlation structures, sample size calcu-

lations are implemented using design effects. For incom-

plete designs, designs with varying numbers of clusters

per sequence or designs with more complex correlation

structures, numerical methods are used to invert the vari-

ance covariance matrix and obtain the variance of the

treatment effect estimator. Supplementary Tables S1–S4,

available as Supplementary data at IJE online, validate

the implemented code by comparing for a range of

designs, estimating power with independent sources (sum-

marized in Supplementary Appendix 4, available as

Supplementary data at IJE online). Figure 2 illustrates the

interface of the application. Users can hover over buttons

to read a brief explanation of options. To reduce compu-

tational times, when the user has uploaded their own de-

sign, the curve is displayed after the user presses the

button ‘create curve’. Users can also download the corre-

sponding data behind the resulting power or precision

curve. The plot has various built-in options that can be

assessed using the bar on the top right-hand side of the

graph (hidden from view until the users hovers the mouse

in that area). These options include toggle bars (to see the

corresponding x- and y-values on the plot), an option to

download a copy of the plot and options to re-scale

the axis.

Example 1: Evaluating the effectiveness of a
screening programme for group B
streptococcus

Group B streptococcus (GBS) is a bacterium that is found

in the birth canal of approximately 20% of pregnant

women. In the UK, GBS screening is not routinely available

and a UK funding body commissioned a call for proposals

for a randomized trial to compare a GBS screening pro-

gramme with current practice. As the question of interest is

to evaluate a screening programme, a cluster randomized

trial has been chosen. The primary outcome is the propor-

tion of babies that develop septicaemia. Investigators

agreed that a two-period CRXO design was feasible, pro-

vided the wash-out period was sufficiently long, although a

cross-over design with multiple switches was not feasible.

Financial costs for each cluster included were large and a

maximum of 50 clusters was available within budgetary

constraints. The study duration needed to be less than

2 years, which implies a maximum average cluster size of

around 5000 (since the average number of births per hospi-

tal over a 2-year period is about 5000).

The trial is to have a superiority design, the outcome is

binary, the hypothesis test is two-sided, the level of signifi-

cance is set at 0.05 and 90% power is desirable. Various

sources have been used to inform the specification of the

Figure 2. Illustration of the interface of the Shiny CRT Calculator.
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prevalence of the outcome, which is anticipated to be 1%

in the control condition. We use asymptotic tests here,

since expected cluster period counts are greater than five,

based on the cluster period sizes of 2500.51 A relative risk

reduction of 30% is considered plausible, informed by

smaller individually randomized trials and meta-analyses,

although not necessarily the minimal clinically important

difference. There are no routinely collected data available

from which to estimate correlation parameters, and the

specified estimates were therefore informed by patterns ob-

served in the literature: the outcome is a clinical outcome

with low prevalence and from large clusters, suggesting

that the ICC is likely to be very small. We therefore consid-

ered a base-case value of 0.005 with lower and upper

ranges of 0.001 and 0.01, respectively. When considering

the two-period CRXO design, a natural correlation struc-

ture is the two-period correlation structure, for which we

additionally need to specify the CAC. There is little empiri-

cal evidence to inform likely values of the CAC, and we

use a value suggested in the literature of 0.86,14 as our base

case. The Shiny CRT Calculator automatically varied the

CAC between 0.64 (80% of the base-case value) and 0.96

(120% of the base-case value).

Figure 3a illustrates that 90% power is not achievable

under a two-arm parallel CRT, assuming an exchangeable

correlation structure (with assumed within-cluster correla-

tion ranging from 0.001 to 0.01) even when cluster sizes

are 5000 (assuming the trial runs for 2 years); see

Supplementary Appendix 2, available as Supplementary

data at IJE online, where we extend this example under the

parallel design for other correlation structures. Figure 3b

illustrates how under the two-period CRXO design with

these parameter values, 90% power is achievable under a

wide range of conditions and shows increasingly negligible

impact of increasing the cluster period size (note that here

the cluster period sizes represent the expected number of

observations over a 1-year period). For example, this exam-

ple illustrates that 25 clusters per sequence (i.e. 50 clusters

in total) with an average of 1000 births per cluster period

achieves 90% power when the ICC is 0.005 and the CAC is

0.8. The sensitivity analysis shows that if the CAC were as

low as 0.64, then 90% power would achievable with very

large cluster sizes; whereas if the CAC were as high as 0.96,

a cluster period size of less than 500 would be required.

Example 2: Evaluating the effectiveness of
the introduction of a national pre-
implantation biopsy histopathology service
for kidney transplantation (PITHIA trial)

The PITHIA trial is a SW-CRT designed to determine if the

introduction of a pre-implantation biopsy histopathology

service increases and improves outcomes of kidney trans-

plants.52 The intervention will be evaluated using an SW-

CRT; each measurement period is 4 months, with four

clusters being randomly allocated to each of five sequences.

The trial has a superiority design and has two co-primary

outcomes: a binary outcome representing acceptance of

transplant on first offer (called acceptance on first offer

henceforth); and a continuous outcome-recipient estimated

glomerular filtration rate (eGFR), measured at 1 year after

transplant. Hypothesis tests are two-sided; the level of sig-

nificance is set at 0.025 to allow for the two primary out-

comes. The study has a fixed number of clusters and is

needed to run for a fixed duration; thus, the design is fixed

by what was deemed logistically possible. We initially con-

sider invoking a two-period correlation structure and then

relax this to accommodate a discrete time decay correla-

tion structure.

In this example there were routinely collected data

available (UK Transplant Registry, held by NHS Blood

and Transplant) to estimate values of the outcomes under

the control condition and correlation parameters. For the

binary outcome of acceptance on first offer, the estimated

prevalence was 28% and the average cluster size per pe-

riod was 20. A linear mixed effects regression model was

fitted to the extracted data (22 clusters, six cluster peri-

ods, average cluster period size 20), with a binary out-

come (whether the offer resulted in a transplant), a fixed

effect for period (4 months), a random effect for cluster

and a random interaction between cluster and period (to

model a two-period correlation structure (Supplementary

Appendix 3, available as Supplementary data at IJE on-

line). From this model, the within-period ICC was esti-

mated as 0.025. We consider a lower limit of 0.01 and an

upper limit of 0.06, which also are the lower and upper

limits of the 95% confidence interval around the within-

period ICC. The CAC was estimated as 0.92. For the

CAC, the Shiny CRT Calculator automatically considers

the lower range of 0.74 and the upper range of 1, i.e.

80% and 120% (rounded down to 1), respectively, of the

specified value of 0.92. We specified a target absolute dif-

ference of 10% (i.e. prevalence 28% versus 38%).

Figure 4a shows that under a two-period correlation

structure, power in the region of 80% is achievable under

most scenarios. For example, when the within-period ICC

is 0.01 and the CAC is 0.92, then a cluster period size of

20 achieves 82% power.

For the continuous outcome (eGFR) we consider a stan-

dardized effect size (target mean difference divided by stan-

dard deviation) of 0.25. The average cluster size per period

was 10. We used the same procedure to obtain estimates

for the correlation parameters as described for the co-

primary outcome above. STATA and SAS code for doing
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these calculations are presented in Supplementary

Appendix 3, available as Supplementary data at IJE online.

The within-period ICC was estimated as 0.056, and we

consider the lower limit of 0.023 and upper limit of 0.13,

which correspond to the lower and upper limits of the 95%

confidence interval. The CAC was 0.08 with the lower range

of 0.064 and upper range of 0.096, corresponding to 80%

and 120%, respectively, of the base-case considered in the

Shiny CRT Calculator. This CAC value is much lower than

expected and so we also considered the implications of a

substantially larger CAC of 0.8. Figure 4b shows very large

variations in expected power (under an assumed two-period

correlation structure)—highly dependent on the estimated

within-period ICC. The power plateaus at a value close to

50% when the within-period ICC is 0.13 and not dependent

on the CAC (although of note: the considered range for the

CAC is narrow). If the CAC is closer to 0.8, then close to

80% power is achievable under all scenarios for a cluster pe-

riod size in the region of 20 (Figure 4c).

Discrete time exponential decay correlation

structure

We continue this example to illustrate the use of discrete

time decay correlation structures for the binary outcome

acceptance on first offer. SAS is used to fit a model to the

binary outcome with an exponential decay structure

for the between-period ICCs (code is provided in

Supplementary Appendix 3, available as Supplementary

data at IJE online). The within-period ICC was estimated

to be 0.03 (we consider lower and upper bounds of 0.01

and 0.1, respectively); and the CAC for temporally adja-

cent periods was estimated to be 0.90 (exact value 0.89 but

rounded up for illustration). This implies that the CAC for

study periods two periods apart (e.g. periods 1 and 3, or

periods 2 and 4) is 0.92 ¼ 0.81; for study periods three

periods apart (e.g. 1 and 4), the CAC is 0.93 ¼ 0.729; for

study periods four periods apart, the CAC is 0.94¼0.6561,

etc. Assuming the same settings as above, Figure 4d

indicates that the impact of incorporating discrete time

correlation decay structure is to reduce power for the same

cluster period size: with a decaying CAC of 0.90 with 20

participants per cluster period, the planned study has

78.6% power, compared with 82% power when the decay

in CAC is not accounted for (Figure 4a). More generally, it

is known that the relationship between power under a

model with a discrete time decay and a model with a two-

period correlation structure is complex, and depends on

the study design, the CAC and other design parameters.22

Incorporating incomplete designs

We also illustrate in this example how the Shiny CRT

Calculator can be used to incorporate incomplete designs

(for the binary outcome acceptance on first offer). The fo-

cus here is allowing for a transition period, but the concept

equally applies to other missing cluster periods. We con-

tinue with the PITHIA trial (an SW-CRT with five sequen-

ces and four clusters allocated to each sequence) but now

designate the cluster period immediately after a switch to

be a transition period with no data contribution (without

increasing the number of periods, see Supplementary

Figure S1, available as Supplementary data at IJE online).

For simplicity we assume an exchangeable correlation

structure. To obtain power and sample size for this design,

the user must upload a CSV representation of the study

and specify all other parameters as above (with blank cells

to denote any missing cluster periods). Supplementary

Table S2, available as Supplementary data at IJE online,

shows that the power reduces to 59% as a result of the

transition (the effect of the transition period on power

could be decreased by adding an extra period at the end of

the study).

Unequal number of clusters per sequence

We also illustrate in this example how the Shiny CRT

Calculator can be used to explore the power implications

Figure 3. (a) Two-arm parallel CRT. Scenario includes 25 clusters per arm; proportion under control condition is 0.010 and proportion under interven-

tion condition is 0.007; significance level is 0.05; within period ICC is 0.005 (lower value 0.001 and higher value 0.01). Expected cluster size (over 2

years) is 5000. (b) Two-period CRXO design. Scenario includes 25 clusters per sequence; proportion under control condition is 0.010 and proportion

under intervention condition is 0.007; significance level is 0.05; within period ICC is 0.005 (lower value 0.001 and higher value 0.01); CAC is 0.8 (lower

and higher values 80% and 120% of base case CAC, i.e. 0.64 and 0.96).Expected cluster-size per period (1 year) is 2500.
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of having an unequal number of clusters per sequence. We

do this for the second outcome (continuous outcome

eGFR), assuming a complete design and a two-period cor-

relation structure. Assuming the base-case values for the

CAC (0.08) and ICC (0.056) and cluster period size

(m¼ 10), the study will have 61% power. We now con-

sider the implications of an extra cluster that we can allo-

cate to any of the five sequences. We modify the design

(and upload a CSV file of the design) to allocate this cluster

to each of the five sequences in turn (see design diagrams

and resulting power in Supplementary Figure S1, available

as Supplementary data at IJE online). Allocating this clus-

ter to sequence 1 or 5, for example, will increase the power

to 69%.To maximize statistical efficiency, researchers

might thus consider a trial with five sequences, with four

clusters allocated to sequences 2 to 5 and five clusters allo-

cated to sequence 1 (all randomly allocated).

Treatment heterogeneity across clusters

We now use the Shiny CRT Calculator to illustrate the im-

pact of treatment effect heterogeneity across clusters for

the binary outcome (acceptance of transplant on first

offer). This option only occurs when users upload the de-

sign via the upload design option. One way of considering

the extent of treatment effect heterogeneity is by consider-

ing the expected range of treatment effects across clusters

(dividing the range by four, under an assumption of nor-

mality, to approximate the standard deviation for the clus-

ter treatment effect).41 We assume the target is 80% power

and assume an average intervention effect across clusters

of a 10% absolute difference. Furthermore, we assume

that the standard deviation of this treatment effect across

clusters is 1%. That is, we assume that the effect of the

treatment varies across the clusters such that 95% of the

cluster-specific treatment effects are within the range of

10% 6 2%. Note that in order to activate this option, the

user must upload the study design via the ‘Upload own de-

sign’ option. For a cluster period size of 20 under the sce-

nario of no treatment heterogeneity, the study would have

approximately 89% power (base-case within-period ICC

and base-case CAC). When specifying treatment heteroge-

neity by entering a standard deviation of 0.01 (calculated

as 0.04 for the range divided by four), power declines to

88%. In other examples the impact of treatment effect het-

erogeneity might be much greater.

Figure 4. (a) Binary outcome. Scenario includes four clusters per sequence and five sequences in a stepped-wedge design; proportion under control

condition is 0.28 and proportion under intervention condition is 0.38; significance level is 0.025; a two-period correlation structure; within period ICC

is 0.025 (lower value 0.01 and higher value 0.06); CAC is 0.92 (lower and higher values are 0.74 (80% of base-case) and 1). The expected average clus-

ter-period size is 20. (b) Continuous outcome. Scenario includes four clusters per sequence and five sequences in a stepped-wedge design; to detect

a standardized mean difference of 0.25; significance level is 0.025; a two-period correlation structure; within period ICC is 0.056 (lower value 0.023

and higher value 0.13); CAC is 0.08 (lower and higher values 80% and 120% of base case CAC, i.e. 0.064 and 0.096). The expected average cluster-pe-

riod size is 10. (c) Continuous outcome (high CAC). Scenario includes four clusters per sequence and five sequences in a stepped-wedge design; to

detect a standardized mean difference of 0.25; significance level is 0.025; a two-period correlation structure; within period ICC is 0.056 (lower value

0.023 and higher value 0.13); CAC is 0.8 (lower and higher values 80% and 120% of base case CAC, i.e. 0.64 and 0.96). The expected average cluster-

period size is 10. (d) Binary outcome, discrete time decay. Scenario includes four clusters per sequence and five sequences in a stepped-wedge

design; proportion under control condition is 0.28 and proportion under intervention condition is 0.38; significance level is 0.025; within period ICC

is 0.03 (lower value 0.01 and higher value 0.1); CAC is 0.9 (lower and higher values are 0.74 (80% of base-case) and 1). The expected average cluster-

period size is 20.
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Example 3: Differential clustering

The ABA trial is an individually randomized trial to answer

the question of whether the introduction of a peer support

network for new mothers increases numbers of women

breastfeeding at 6 weeks. The trial is to have a superiority

design and has a single binary outcome representing the

proportion of women breastfeeding at 6 months.

Hypothesis tests are two-sided; the level of significance is

set at 0.05. In this example there are no routinely collected

data available to inform estimates of correlations. The

study has a limited number of peer support workers (the

clusters). We therefore use the Shiny CRT Calculator to il-

lustrate the determination of sample size in a trial with

clustering in one arm only.

The estimated prevalence of the primary outcome is

around 50%. We considered a target effect size of 10% ab-

solute difference (i.e. prevalence of 50% versus 60%).

Under individual randomization, this design would need

about 400 per arm for 80% power. We use a moderate

value of 0.1 for the ICC, as this is a process outcome

(lower range of 0.05 and the upper range of 0.15). To rep-

resent individual randomization and no clustering in the

control arm, we select the differential clustering option. In

this example, clustering occurs only in the intervention

arm, but the calculator nevertheless requires specification

of the ‘cluster size’ and ICC in the control arm. In the ab-

sence of clustering in the control arm, the ‘cluster size’ un-

der the control condition is set to 1 (i.e. each individual is

their own cluster) and the ICC to 0. We then fix the num-

ber of clusters under the treatment condition (‘number of

clusters (per arm)’) to be 30, as an initial start to exploring

design options.

Figure 5a shows that under the assumed values for the

correlation parameters and when the number of individu-

als under the control condition is set to be 400 (based on

that needed under individual randomization) 80% power

is never achieved with 30 clusters in the treatment arm (the

maximum achievable power is about 70% under base-case

ICC). Changing the number of individuals under the con-

trol condition to 700 (but retaining the number of clusters

in the intervention arm at 30), in spite of allowing a small

increase in power is of limited benefit (Figure 5b).

Consequently having 30 clusters in the intervention condi-

tion makes the design either infeasible or very inefficient.

Increasing the number of clusters under the intervention

condition to 40, and having 400 observations under the

control condition, enables 80% power to be achievable but

does require large cluster sizes under the intervention

(Figure 5c).

Figure 6 illustrates how the Shiny CRT Calculator can be

used to identify the combination of number of individuals in

the control arm and number of clusters in the intervention

arm (for a fixed cluster size in the intervention arm) which

minimizes the total sample size. This plot reveals that the

number in the control arm decreases rapidly as the number

of clusters in the intervention condition increases (Figure 6).

With a cluster size in the intervention arm of 20, the figure

shows that the total sample size is minimized (for 80%

power) when the number of clusters in the treatment arm is

around 45 and the number of observations in the control

arm around 550 (for the base-case ICC).

Conclusions

This paper presents a tutorial on the calculation of sample

sizes for different types of cluster randomized trials. The

accompanying validated and web-based Shiny CRT

Calculator will allow researchers to implement recent meth-

odological advances. In multiple-period cluster randomized

designs, correlations within clusters depend not only on clus-

ter membership but also on the time separation between

measurements. This is a shift in thinking which is now

widely appreciated in the methodological literature but

much less known in the applied literature. For researchers

who have routinely collected data to hand, we have outlined

ways of estimating these correlations. For researchers who

do not have routinely collected data, we have provided rec-

ommendations for how to determine base-case estimates

and then encouraged researchers to investigate sensitivity.

We have shown how researchers can use the Shiny CRT

Calculator to determine power across different designs,

different sampling structures and different correlation

structures, importantly allowing users to investigate the

implications of key correlation parameters (the ICC and

CAC), to allow for the correlation to decay over time, to

incorporate clustering in one arm only and to allow for

treatment effect heterogeneity across clusters in power cal-

culations. Finally, the Shiny CRT Calculator allows for in-

complete designs and flexibility with respect to the range

of designs that can be considered, including individually

randomized trials with clustering in one arm only.

Strengths and limitations

The methodology considered here makes some assump-

tions. First, the methodology used uses large-sample nor-

mal approximations and, for binary and count outcomes,

approximates the variances of a difference between two

proportions/counts. These approximations might break

down when there are low proportions/counts or small clus-

ter sizes. We have also assumed generalization of the con-

cept of estimation of ICCs for binary outcomes on the
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proportion scale using linear mixed models, to estimation

of CACs for binary outcomes on the proportion scale using

linear mixed models. Further work is required to determine

the conditions under which the use of these methods is ap-

propriate. We limit our models to the assumption that the

variance in the outcome is the same across both arms,

whereas others have relaxed this assumption.40,53

Furthermore, we have relaxed large-sample assump-

tions by using critical values from the t-distribution, but

the corresponding degrees of freedom used have not been

verified for designs other than the simple parallel CRT

with continuous outcomes.49,54 For parallel CRTs, these

degrees of freedom corrections result in up to four extra

clusters being added to each arm, and our calculations sug-

gest that in stepped-wedge trials the extra number of clus-

ters per sequence might also be high (Supplementary Table

S5, available as Supplementary data at IJE online).

However, we do urge caution in the use of the t-distribu-

tion for stepped-wedge studies and other multiple-period

designs with small numbers of clusters, as the appropriate-

ness of this degree of freedom correction is unclear.

Finally, whereas the correlation structures considered

allow for correlations to decay with increasing separation

between periods of measurements, in settings where data

are continuously accrued a more intuitive correlation

structure is one that allows correlations to decay with in-

creasing separation between ‘actual times’ of measure-

ment.31 Furthermore, although we have allowed for

within-cluster correlations to depend on time period of

measurement at least in some form, in designs that repeat-

edly measure the same individual we have not allowed for

individual-level correlations to depend on time of measure-

ment. Importantly, where the correlation structure is mis-

specified, sample size can be under- or over-estimated.19

The Shiny CRT Calculator provides a user-friendly and

flexible means of estimating power across a full range of

different cluster trial designs. Yet there are some limita-

tions in its functionality that users should consider. First,

we do not recommend that researchers use the Shiny CRT

Calculator to identify the minimum number of clusters

necessary, as studies with a small number of clusters risk

lack of internal and external validity and questionable

Figure 5. (a) Example 3: power as a function of cluster size in treatment arm for a trial with clustering in one arm only (30 clusters in treatment arm;

400 in control arm). Scenario includes individuals randomized to one of two arms. Assumes 400 individuals are randomized to the control arm [intra-

cluster correlation (ICC) 0]; and that there are 30 clusters in the intervention arm (ICC 0.1; lower value 0.05 and higher value 0.15); proportion under

control condition is 0.5 and proportion under intervention condition is 0.6; significance level is 0.05. X-axis is cluster size under treatment condition.

(b) Example 3: power as a function of cluster size in treatment arm for a trial with clustering in one arm only (30 clusters in treatment arm; 700 in con-

trol arm). Scenario includes individuals randomized to one of two arms. Assumes 700 individuals are randomized to the control arm [intra-cluster cor-

relation (ICC) 0]; and that there are 30 clusters in the intervention arm (ICC 0.1; lower value 0.05 and higher value 0.15); proportion under control

condition is 0.5 and proportion under intervention condition is 0.6; significance level is 0.05. X-axis is cluster size under treatment condition. (c)

Example 3: power as a function of cluster size in treatment arm for a trial with clustering in one arm only (40 clusters in treatment arm; 400 in control

arm). Scenario includes individuals randomized to one of two arms. Assumes 400 individuals are randomized to the control arm [intra-cluster correla-

tion (ICC) 0]; and that there are 40 clusters in the intervention arm (ICC 0.1; lower value 0.05 and higher value 0.15); proportion under control condition

is 0.5 and proportion under intervention condition is 0.6; significance level is 0.05. X-axis is cluster size under treatment condition. (d) Example 3:

power as a function of cluster size in treatment arm for a trial with clustering in one arm only (40 clusters in treatment arm; 700 in control arm).

Scenario includes individuals randomized to one of two arms. Assumes 700 individuals are randomized to the control arm [intra-cluster correlation

(ICC) 0]; and that there are 40 clusters in the intervention arm (ICC 0.1; lower value 0.05 and higher value 0.15); proportion under control condition is

0.5 and proportion under intervention condition is 0.6; significance level is 0.05. X-axis is cluster size under treatment condition.
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suitability of statistical design and analysis methods.36

Second, for multiple-period designs, the methodology

assumes that intervention effects of interest are expressed

as time-averaged treatment effects; and alternative

approaches are needed where this is not the primary fo-

cus.55 Perhaps more importantly, the Shiny CRT

Calculator does rely on asymptotic approximations and

users should be mindful of this fact. Whenever cluster sizes,

numbers of clusters or proportions of events are small, the

calculations will be at increased risk of not meeting the re-

quired assumptions. In such circumstances, it might be nec-

essary to consider power by simulation as an alternative,

or perhaps complementary, approach.56

Supplementary Data

Supplementary data are available at IJE online.
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