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Simple Summary: A high Ki-67 index usually suggests accelerated and uncontrolled cell proliferation
correlated with tumor growth and is a prognostic factor that is associated with an increased recurrent
risk in meningioma patients. The aim of our study is to predict the Ki-67 proliferative index in
meningioma patients using machine learning technology. With 371 cases collected from two centers,
we systematically analyzed the relevance between clinical/radiological features and the Ki-67 index.
Moreover, with radiomic features extracted from postcontrast images, we built three radiomic models
and three clinical radiological–radiomic models to predict the Ki-67 status. The models showed good
performance, with an AUC of 0.837 in the internal test and 0.700 in the external test. The results
provide a quantitative method to facilitate clinical decision making for meningioma patients.

Abstract: Background/aim This study aimed to explore the value of radiological and radiomic
features retrieved from magnetic resonance imaging in the prediction of a Ki-67 proliferative index
in meningioma patients using a machine learning model. Methods This multicenter, retrospective
study included 371 patients collected from two centers. The Ki-67 expression was classified into
low-expressed and high-expressed groups with a threshold of 5%. Clinical features and radiologi-
cal features were collected and analyzed by using univariate and multivariate statistical analyses.
Radiomic features were extracted from contrast-enhanced images, followed by three independent
feature selections. Six predictive models were constructed with different combinations of features
by using linear discriminant analysis (LDA) classifier. Results The multivariate analysis suggested
that the presence of intratumoral necrosis (p = 0.032) and maximum diameter (p < 0.001) were in-
dependently correlated with a high Ki-67 status. The predictive models showed good performance
with AUC of 0.837, accuracy of 0.810, sensitivity of 0.857, and specificity of 0.771 in the internal test
and with AUC of 0.700, accuracy of 0.557, sensitivity of 0.314, and specificity of 0.885 in the external
test. Conclusion The results of this study suggest that the predictive model can efficiently predict the
Ki-67 index of meningioma patients to facilitate the therapeutic management.

Keywords: Ki-67; magnetic resonance imaging (MRI); radiomics; machine learning; meningioma

1. Introduction

Meningioma is the most common type of intracranial tumor, which has an incidence
rate of 37.6% among all primary central nervous system tumors [1–3]. According to the

Cancers 2022, 14, 3637. https://doi.org/10.3390/cancers14153637 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14153637
https://doi.org/10.3390/cancers14153637
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-4724-8778
https://orcid.org/0000-0001-7536-2549
https://doi.org/10.3390/cancers14153637
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14153637?type=check_update&version=2


Cancers 2022, 14, 3637 2 of 12

2021 EANO guideline, surgery is considered to be the primary treatment of rapid growing
meningioma, while observation is recommended for asymptomatic incidental tumors with
a self-limited growth pattern [4]. The Ki-67 index, a histopathological marker defined
by calculating the percentage of cells by immunostaining with a specific antibody in a
section of confirmed tumor tissue, is reported to be significantly related to both treatment
scheming and prognostic prediction [5–7]. A high Ki-67 index usually suggests accelerated
and uncontrolled cell proliferation correlated with tumor growth, which is one of the
main features indicating necessary clinical intervention [4,8]. Moreover, accumulated
evidence has suggested that a high Ki-67 index is an independent prognostic predictor
that is associated with an increased recurrent risk following surgical resection [9–13].
However, even though there is a correlation between the meningioma WHO grade and Ki-
67 percentage, Ki-67 is not part of the WHO grading criteria of meningiomas. Therefore, an
accurate prediction of the Ki-67 index status in meningiomas can facilitate clinical decision
making and is important in individual treatment planning.

Magnetic resonance imaging (MRI) is the preferred modality for noninvasive detection
and pretreatment diagnosis of meningiomas [4,14]. Previous research has shown that
some MRI findings were useful in predicting the Ki-67 status for meningioma patients [15].
However, a manual analysis is subjective to both radiological variations and personal
experience. A quantitative analysis with less interpretation by human expert evaluation is
therefore warranted to better reflect intratumoral heterogeneity.

Radiomic analysis with machine learning has attracted considerable interest in neuro-
oncological research [16]. Advances in the extraction of high-throughput computational
features encourage oncologists to convert the gray-level intensity of clinical digital im-
ages into mineable data [17], which can be subsequently analyzed by machine learning
algorithms [18,19]. Recently, evidence suggested machine learning was feasible to stratify
the Ki-67 status in WHO grade I meningiomas based on a radiomic analysis from mul-
tiparametric MRI [20]. However, the following concerns remain to be addressed: first,
the generalization of this method has not been tested on multicenter data; second, it re-
mains unknown if the results are applicable to high-grade meningiomas; third, clinical and
radiologic features were not yet incorporated into the model.

In this research, based on the standard preoperative MRIs collected from two insti-
tutions, we developed machine learning models to predict the Ki-67 proliferative index
in meningioma patients. Moreover, clinical parameters and radiological findings were
analyzed and introduced to the predictive models. The ability to predict Ki-67 preopera-
tively provides clinicians with fast yet important evidence that can be used to guide patient
management and surgical strategy.

2. Methods and Materials
2.1. Patient Selection

This is a retrospective, multicenter study. From 1 January 2014 to 31 December
2020, 347 cases from Center A and 75 cases from Center B were initially collected in the
present study. Their pathology reports were reviewed to ensure they met criteria for
meningioma using the 2021 World Health Organization (WHO) Classification of Tumors
of the Central Nervous System [2]. Inclusion criteria for selecting the subjects were as
follows: (1) histologically confirmed meningioma and (2) available standard MR scans
before any clinical intervention (including biopsy and radiotherapy). Exclusion criteria
were (1) incomplete electronic clinical data (n = 27), (2) presence of significant motion artifact
on MR scans (n = 18), and (3) irrelevant intracranial disease history, such as subarachnoid
hemorrhage and cerebral infarction (n = 7). Based on the above criteria, 310 patients and
61 patients were identified from Center A and Center B, respectively. The flow chart of
the patient selection process is demonstrated in Figure 1. In all patients, the Ki-67 labeling
index was assessed by immunohistochemistry using an avidin–biotin–peroxidase complex
method by using Aperio IHC image analysis software, as provided in Figure 2.
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2.2. MR Scan Protocols

In Center A, standard MRI was performed in all patients on 3.0 T Siemens Trio Scanner.
The detailed protocols and parameters were set as: Slice Thickness = 1 mm; Repetition
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Time = 1550; Echo Time = 1.98 s; Echo Number(s) = 1; Percent Phase Field of View = 90.625;
Acquisition Matrix = 0\256\232\0; Flip Angle = 9 degrees.

In Center B, contrast-enhanced MRI was performed using 3.0 T Skyra. The detailed
protocols and parameters were set as: Thickness = 1 mm; Repetition Time = 1550; Echo
Time = 2.44 s; Echo Number(s) = 1; Percent Phase Field of View = 75; Acquisition Ma-
trix = 0\256\154\0; Flip Angle = 8 degrees.

All the contrast-enhanced MR scans were acquired following the injection of gadopen-
tetate dimeglumine (dose: 0.1 mmol/kg) as the contrast agent. The scanning of dynamic-
enhanced MRI was conducted within 250 s after injection of the contrast agent.

2.3. Image Preprocessing and Tumor Segmentation

Image preprocessing was required to standardize radiomic feature extraction. Image
preprocessing for each of the patients included normalization at a scale of 100, a resampling
of the images to 1 × 1 × 1 mm3 resolution, and gray-level intensity normalization in the
range of 0 to 255.

The study used 3D slicer software (version 4.11, Kikinis et al, Boston, MA, USA)
to gain satisfying image segmentation. Among all MRIs, contrast-enhanced images can
clearly describe the tumor boundary and were selected for radiomic feature extraction.
Blinded to the electronic medical record and Ki-67 proliferation index, regions of interests
(ROIs) were separately segmented along the boundary of the enhancing tumors by two
neuroradiologists with more than 10 years of experience in image reading and were checked
by a senior neuro-radiologist with more than 20 years of experience in image reading.
Enhanced tumor dual tails were excluded in the ROIs in the present study.

2.4. Collection of Clinical Features, Radiological Features, and Radiomic Features

Five radiological features were analyzed by two neuroradiologists with more than
10 years of experience in image reading, including peritumoral edema, cerebrospinal fluid
(CSF) space surrounding tumor, absent capsular enhancement, heterogeneous enhancement,
and intratumoral necrosis. The following clinical features and pathological features were
also retrieved: age, gender, and WHO grade. Tumor characteristics were calculated and
collected from drawn ROIs, including laterality, location, maximum tumor diameter, and
tumor volume.

The radiomic features were retrieved by using “PyRadiomics” package on Python.
In total, 1218 radiomic features were initially retrieved, including shape features, first
order radiomic features, and higher-order radiomic features from four different matrices,
including gray-level cooccurrence matrix (GLCM), gray-level run length matrix (GLRLM),
gray-level size zone matrix (GLSZM), and gray-level dependence matrix (GLDM). Then, the
radiomic features were standardized by removing the mean and scaling to unit variance.

2.5. Feature Selection and Machine Learning Model Establishment

Figure 3 describes the workflow for establishing machine learning models. The
extensive number of extracted texture features must be selected properly at first to avoid
overfitting the machine learning algorithms. For clinical features and radiological features,
multivariate logistic regression was performed to select the significantly correlated features
for the machine learning model, and p values less than 0.05 were considered statistically
significant in multivariate analysis. In addition, for radiomic features, three methods
were independently used to select relatively important features, including least absolute
shrinkage and selection operator (LASSO), extra tree classification (ETC), and linear support
vector classification (LinearSVC).
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Three radiomic-based machine learning models and three clinical radiological–radiomic-
based machine learning models were established for five-fold cross-validation to predict
the Ki-67 index in the meningioma patients. Cases from Center A were randomly divided
into the training group and the internal test group at a ratio of 4:1; cases from Center B were
used as the external test group. Although the Ki-67 index was determined as a prognostic
predictor for meningioma patients, the optimal threshold had not been identified yet. Based
on previous machine learning research, the Ki-67 index was stratified as binary variable by
defining <5% as low and ≥5% as high [12]. The machine learning classifier used in this
research was the linear discriminant analysis (LDA). Performances were demonstrated with
areas under curve (AUC), accuracy, sensitivity, and specificity, respectively. The predictive
models were performed with Python programming language (version 3.9).

2.6. Statistical Analysis

Categorical variables were presented with percentages and frequencies, whereas
continuous variables were presented with means and standard deviation. In univariate
analysis, point-biserial correlation analysis and chi-square test were used to assess the
associations between the Ki-67 index and clinical/radiological features, and p value less
than 0.10 were considered statistically significant. Interobserver agreement was evaluated
by calculating intra-/interclass correlation coefficients (ICCs) of two extracted features,
and only the radiomics features with high ICCs (ICCs ≥ 0.75) were taken into modeling.
Statistical analysis was performed with IBM SPSS Statistics 22.
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3. Results
3.1. Patient Characteristics

The patient baseline clinical characteristics and demographics are summarized in
Table 1. The mean patient age was 52.6 ± 11.8 years (range: 5–82%), and the sex ratio of the
study cohort was Male: Female =113: 258. For 310 cases from Center A, the mean Ki-67 of
tumor specimens was 4.63 ± 2.96%, range between 1% and 20%. There were 152 patients
(49.0%) with a low Ki-67 status and 158 patients with a high Ki-67 status (51.0%). For
the 61 cases from Center B, the mean Ki-67 of tumor specimens was 3.57 ± 1.93% (range
1–10%), and a total of 14 subjects (23.0%) had a high Ki-67 status in this group. The vast
majority of the included tumors were histologically proven as low-grade meningioma in
both the high Ki-67 group (59.3%) and low Ki-67 group (87.9%).

Table 1. Baseline clinical and radiological characteristics of the study population.

Characteristics

Center A (n = 310) Center B (n = 61) Total
p ValueKi-67 ≥ 5%

(n = 158)
Ki-67 < 5%
(n = 152)

Ki-67 ≥ 5%
(n = 14)

Ki-67 < 5%
(n = 47)

Ki-67 ≥ 5%
(n = 172)

Ki-67 < 5%
(n = 199)

Age
mean 51.7 ± 14.8 56.0 ± 10.0 51.7 ± 14.2 55.0 ± 12.1 51.7 ± 14.5 55.2 ± 11.7 0.546
range 5−82 39−76 9−77 31−77 5−82 31−77

Gender
male 53 (33.6%) 42 (27.6%) 5 (35.7%) 13 (27.7%) 58 (33.7%) 55 (27.6%) 0.215
Female 105 (66.4%) 110 (72.4%) 9 (64.3%) 34 (72.3%) 114 (66.3%) 144 (72.4%)

Location
Cerebral
convexity 90 (57.0%) 78 (51.3%) 5 (35.7%) 25 (53.2%) 95 (55.2%) 103 (51.8%) 0.433

Falx 23 (14.5%) 32 (21.1%) 2 (14.3%) 7 (14.9%) 25 (14.5%) 39 (19.6%)
Skull base 45 (28.5%) 42 (27.6%) 7 (50%) 15 (31.9%) 52 (30.3%) 57 (28.6%)

Laterality
Left 70 (44.3%) 69 (45.4%) 7 (50%) 21 (44.7%) 77 (44.8%) 90 (45.2%) 0.715
Right 71 (44.9%) 71 (46.7%) 6 (42.9%) 22 (46.8%) 77 (44.8%) 93 (46.7%)
Midline 17 (10.8%) 12 (7.9%) 1 (7.1%) 4 (8.5%) 18 (10.4%) 16 (8.1%)

WHO grade
Low grade
WHO I 94 (59.5%) 133 (87.5%) 8 (57.1%) 42 (89.4%) 102 (59.3%) 175 (87.9%) <0.001
High grade
WHO II 57 (36.1%) 19 (12.5%) 5 (35.7%) 5 (10.6%) 62 (36.0%) 24 (12.1%) <0.001
WHO III 7 (4.4%) 0 (0%) 1 (7.2%) 0 (0%) 8 (4.7%) 0 (0%) <0.001
Peritumoral
edema 125 (79.1%) 110 (72.4%) 10 (71.4%) 30 (63.8%) 135 (78.5%) 140 (70.4%) 0.076

CSF space
surrounding
tumor

92 (58.2%) 78 (51.3%) 8 (57.1%) 20 (42.6%) 100 (58.1%) 98 (49.2%) 0.095

Absent capsular
enhancement 39 (24.7%) 25 (16.4%) 4 (28.6%) 9 (19.1%) 43 (25.0%) 34 (17.1%) 0.072

Heterogeneous
enhancement 93 (58.9%) 75 (49.3%) 9 (64.3%) 21 (44.7%) 102 (59.3%) 96 (48.2%) 0.037

Intratumoral
Necrosis 48 (30.4%) 35 (23%) 5 (35.7%) 10 (21.3%) 53 (30.8%) 45 (22.6%) 0.078

Maximum
diameter 5.76 ± 2.56 4.53 ± 1.63 5.16 ± 3.74 4.52 ± 2.13 5.72 ± 2.70 4.53 ± 1.76 <0.001

Tumor volume 43.1 ± 52.4 23.0 ± 26.5 24.8 ± 33.5 27.4 ± 28.6 41.57 ± 51.32 24.03 ± 27.00 <0.001

3.2. Morphologic Analysis and Radiological Findings

There were wide overlaps in both the maximum diameter and tumor volumes between
lesions with a low Ki-67 index and a high Ki-67 index, as illustrated in Figure 4. The mean
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and standard deviation of maximum tumor diameters in high Ki-67 group were 5.72 ±
2.70 cm, compared with 4.53 ± 1.76 cm in the low Ki-67 group. Meningiomas with a high
Ki-67 index were also larger in volume compared to tumors with a low Ki-67 index (41.57
± 51.32 cm3 and 24.03 ± 27.00 cm3, respectively). Moreover, in the high Ki-67 group,
the percentage of peritumoral edema, CSF space surrounding tumor, absent capsular
enhancement, heterogeneous enhancement, and intratumoral necrosis was 78.5%, 58.1%,
25.0%, 59.3%, and 30.8%, respectively, while the percentages in the low Ki-67 group were
70.4%, 49.2%, 17.1%, 48.2%, and 22.6%, respectively.
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3.3. Clinical and Radiological Features Related to Ki-67 Index

The results of the chi-square test and point-biserial correlation suggest that the pres-
ence of peritumoral edema (p = 0.076), CSF space surrounding tumor (p = 0.095), absent
capsular enhancement (p = 0.072), intratumoral tumor necrosis (p = 0.078), heterogeneous
enhancement (p = 0.037), higher WHO grade (p < 0.001), larger maximum tumor diameters
(p < 0.001), and larger tumor volumes (p < 0.001) was significantly associated with a high
Ki-67 status. A multivariate analysis of logistic regression suggested that intratumoral
tumor necrosis (p = 0.032) and maximum tumor diameters (p < 0.001) were independently
associated with the Ki-67 status. The results of the univariate analysis and multivariate
analysis are demonstrated in Table 2.

Table 2. Univariate and multivariate statistical analyses of clinical and radiological features.

Variables (Ki-67 ≥ 5% vs.
Ki-67 < 5%)

Odds Ratio, 95% CI
p Value

Univariate Analysis Multivariate Analysis

Peritumoral edema 1.538 (0.957–2.470) 0.076 0.279
CSF space surrounding tumor 1.403 (0.930–2.116) 0.095 0.216
Absent capsular enhancement 1.618 (0.976–2.681) 0.072 0.602
Heterogeneous enhancement 1.536 (1.035–2.361) 0.037 0.320

Intratumoral necrosis 1.524 (0.959–2.424) 0.078 0.032
Tumor volume (cm3) 1.013 (1.006–1.019) <0.001 0.672

Maximum diameter (cm) 1.025 (1.014–1.035) <0.001 <0.001
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3.4. Radiomic Feature Selection and Model Performances

Based on the results of feature selection, 14, 11, and 8 radiomic features were deter-
mined to be important and were separately introduced into predictive models wrapped by
the LDA algorithm. The distribution of each selected feature is demonstrated in Table 3.
Three radiomic-based models were constructed based on radiomic features, and three
clinical radiological–radiomic-based models were constructed using different combinations
of radiomic features and clinical features. The model performance in both the internal test
and external test is listed in Table 4.

Table 3. The number of features selected by different feature selection methods.

Radiomic Features Lasso (n = 14) SVC (n = 11) ETC (n = 8)

First-Order Features 3 3 0
Shape Features (2D) 1 1 0
Shape Features (3D) 0 0 0

GLCM Features 3 5 1
GLSZM Features 5 1 4
GLRLM Features 0 0 1
GLDM Features 2 1 2

GLCM: Gray-Level Co-occurrence Matrix; GLSZM: Gray-Level Size Zone Matrix; GLRLM: Gray-Level Run
Length Matrix; GLDM: Gray-Level Dependence Matrix.

Table 4. Predictive model performance in the internal test and external test.

Features Features Test AUC Accuracy Sensitivity Specificity

Radiomics

Lasso + LDA
Internal Test 0.795 ± 0.033 0.722 ± 0.042 0.724 ± 0.043 0.719 ± 0.046
External Test 0.631 ± 0.015 0.508 ± 0.027 0.278 ± 0.017 0.840 ± 0.019

SVC + LDA
Internal Test 0.782 ± 0.034 0.730 ± 0.042 0.703 ± 0.058 0.769 ± 0.029
External Test 0.646 ± 0.013 0.590 ± 0.021 0.323 ± 0.018 0.867 ± 0.030

ETC + LDA
Internal Test 0.764 ± 0.038 0.645 ± 0.039 0.708 ± 0.033 0.605 ± 0.030
External Test 0.56 ± 0.017 0.525 ± 0.032 0.143 ± 0.031 0.725 ± 0.23

Radiomics+
Clinics

Lasso + LDA
Internal Test 0.837 ± 0.036 0.810 ± 0.042 0.857 ± 0.040 0.771 ± 0.044
External Test 0.700 ± 0.026 0.557 ± 0.027 0.314 ± 0.017 0.885 ± 0.030

SVC + LDA
Internal Test 0.798 ± 0.033 0.698 ± 0.046 0.676 ± 0.056 0.731 ± 0.046
External Test 0.702 ± 0.015 0.492 ± 0.017 0.282 ± 0.010 0.864 ± 0.014

ETC + LDA
Internal Test 0.754 ± 0.024 0.710 ± 0.039 0.760 ± 0.038 0.676 ± 0.028
External Test 0.607 ± 0.025 0.574 ± 0.027 0.286 ± 0.024 0.818 ± 0.021

ETC: Extra tree classifier; Lasso: Least absolute shrinkage and selection operator; LDA: Linear discriminant
analysis; SVC: Support vector machine.

Among the radiomic-based models, a relatively better performance was yielded from
the model constructed by the features selected by Lasso. In the internal test, the AUC,
accuracy, sensitivity, and specificity were 0.795, 0.722, 0.724, and 0.719, respectively. In
the external test, the model showed a decline in these indexes and the AUC of 0.631,
accuracy of 0.508, sensitivity of 0.278, and specificity of 0.840. When combined with clinical
features, this method showed improvement and achieved the highest performance among
all the models, with AUC of 0.837, accuracy of 0.810, sensitivity of 0.857, and specificity
of 0.771 in the internal test, and with AUC of 0.700, accuracy of 0.557, sensitivity of 0.314,
and specificity of 0.885 in the external test. The ROC curves of the Lasso + LDA models are
illustrated in Figure 5. All of the model performance is demonstrated in Table 4.
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4. Discussion

Although the majority of meningiomas are classified as low-grade, benign tumors,
there is wide heterogeneity in the rate of growth, clinical presentation, and risk of recurrence
after treatment [21]. The prediction of Ki-67 is clinically relevant as it may reveal prognostic
insights to predict tumor behavior and to assist in choosing a more individual treatment
strategy [7,10,13]. In the current study, we systematically analyzed the relationship between
the Ki-67 status and traditional radiological findings. Moreover, machine learning models
fusing radiomic features and radiological features were trained to predict the Ki-67 status
in meningiomas, and the performance of models was tested in both the internal cohorts
and external cohorts. The results may guide surgical timing and operative strategy in that
a more aggressive operative intervention with an earnest attempt should be considered for
patients known to harbor tumors with a high Ki-67 status.

This study revealed five radiological features, which were significantly different be-
tween the high Ki-67 meningioma group and the low Ki-67 meningioma group. In our
datasets, a univariate analysis suggested that compared to low Ki-67 meningiomas, high
Ki-67 meningiomas were more likely to present peritumoral edema (p = 0.076), larger tumor
volume (p < 0.001), and larger tumor maximum diameter (p < 0.001). These results are con-
sistent with the long-held point that the rapid growth of tumors, for which a high-expressed
Ki-67 is a surrogate marker, may induce a greater degree of peritumoral edema [15]. In addi-
tion, the results of this study also suggest that higher Ki-67 meningiomas were more likely
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to present intratumoral necrosis (p = 0.078) and heterogeneous enhancement (p = 0.037),
which corroborated earlier findings that necrosis and “fluid-secreting” low-grade neo-
plasm were strong predictors of meningioma progression [22–24]. Another important
finding was that absent capsular enhancement was significantly different between high
Ki-67 and low Ki-67 meningiomas (p = 0.072), and this could result from the adaption of
a rapid tumor, causing a less fibrous part and a more venous vascular component in the
capsule [25]. Taken together, these morphologic findings indicated that tradition radio-
logical features were useful in predicting Ki-67 status, highlighting the benefits of using
clinical radiological–radiomic features instead of solely radiomic features to improve the
performance of machine learning models.

There is a growing body of literature that has applied radiomic-based machine learning
to meningiomas. These studies received promising results in prognostic analysis, grading
prediction, and image-guided molecular diagnosis [5–7]. Generally, models involving
multiparametric feature sets are superior to models involving single-sequence feature
sets [26–28]. Similarly, in previous research, radiomic-based machine learning algorithms
were built to predict the Ki-67 status in meningiomas by enrolling the features extracted
from multiple MR sequences, including T1/T2-weighted, T1-weighted contrast-enhanced
(T1CE), and FLAIR [20]. Their radiomic model outperformed our model with an AUC of
0.84. This result undoubtedly suggests that multiparametric feature sets could provide more
information and assist in classification, which corroborated previous findings that some
radiological features were more apparent on multiparametric MRI sequences. However,
overfitting should be considered and investigated if the model can generalize the learning
of the training data [20]. One major concern should be noted that there were too many
features involved in their modeling compared to ours (60 vs. 14). The most convincing
method to identify whether the trained model is overfitted is externally testing it on unseen
data obtained from another institution [29,30]. The results of our external test suggest there
was a moderate overfitting in our models, even if only 14 features were used as classifier
inputs. Therefore, the generalization of the radiomic-based model was limited, and the
improved method should be explored in future research.

The present study further enrolled statistically significant clinical findings and ra-
diological findings into the classifiers. The clinical radiological–radiomic-based models
showed better performance in both the internal test and external test, with an AUC of
0.837 and 0.700, respectively. It has long been demonstrated in previous studies that some
combined models may serve to outperform the single radiomic models or clinical mod-
els [31–33]. In contrast to the higher-order radiomic features, the relationship between
these image parameters and tumor growth has long been established by researchers and
provided a clearer interpretation of the models [25,34]. Considering that all the image find-
ings included in this study can be easily collected in routine clinical practice, robust clinical
radiological–radiomic-based models are more recommended to facilitate the treatment
strategy and perform the surveillance of meningioma patients.

Our study has several limitations. First, this is a retrospective analysis, and inherent
selection bias is inevitable. Second, the external test illustrates insufficiency in the sensitivity,
as high Ki-67 patients only account for a small percentage of total patients in Center B. A
large-scale validation from multicenter research is required to further support our results.
Third, the methodology of this study is mainly restricted to machine learning algorithms,
and advanced deep learning technology can provide an end-to-end approach without
complicated preprocessing steps. Deep learning models should be investigated in future
research. Finally, the model robustness should be examined in future studies. Since the
radiomic features in the present study were extracted from MP-RAGE sequence, radiomics
from different sequences including 3D-SPGR and TSE should be investigated.

5. Conclusions

This study set out to use machine learning algorithms to construct predictive models
of the Ki-67 index before any invasive examinations in all grades of meningioma patients.
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We built three radiomic models along with three clinical radiological–radiomic-based
models and proved them to be efficient and accurate. The findings will be of interest to the
therapeutic management of meningioma patients in clinical practice. Further multicenter
studies with advanced machine learning algorithms are required to validate the results.
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