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Objective: Arterial spin labeling (ASL) studies have revealed inconsistent regional
cerebral blood flow (CBF) alterations in patients with type 2 diabetes mellitus (T2DM).
The aim of this systematic review and meta-analysis was to identify concordant regional
CBF alterations in T2DM.

Methods: A systematic review was conducted to the published literatures comparing
cerebral perfusion between patients with T2DM and healthy controls using ASL. The
seed-based d mapping (SDM) was further used to perform quantitative meta-analysis
on voxel-based literatures and to estimate the regional CBF alterations in patients with
T2DM. Metaregression was performed to explore the associations between clinical
characteristics and cerebral perfusion alterations.

Results: A total of 13 studies with 14 reports were included in the systematic review and
7 studies with 7 reports were included in the quantitative meta-analysis. The qualitative
review found widespread CBF reduction in cerebral lobes in T2DM. The meta-analysis
found increased regional CBF in right supplementary motor area and decreased regional
CBF in bilateral middle occipital gyrus, left caudate nucleus, right superior parietal gyrus,
and left calcarine fissure/surrounding cortex in T2DM.

Conclusion: The patterns of cerebral perfusion alterations, characterized by the
decreased CBF in occipital and parietal lobes, might be the neuropathology of visual
impairment and cognitive aging in T2DM.

Keywords: type 2 diabetes mellitus, arterial spin labeling, cerebral blood flow, meta-analysis, seed-based d
mapping

INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a common metabolic disease in middle-aged and older
adults characterized by chronic hyperglycemia, which leads to long-term macrovascular and
microvascular complications of various organ systems. The epidemic of T2DM and its
complications raise a global health threat (Zheng et al., 2018). The present literatures have proved
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that T2DM is a significant risk factor of developing certain
mental disorders, including cognitive dysfunction, dementia, and
depression (Biessels and Despa, 2018; van Sloten and Schram,
2018; Xue et al., 2019), and older individuals with T2DM progress
to dementia at faster rates (Xu et al., 2010; Morris et al.,
2014). Although the underlying mechanisms of these disorders
are still unaddressed, growing evidences indicate that cerebral
microvascular dysfunction is one of the key mechanisms, which
may be driven by hyperglycemia, obesity, insulin resistance, and
hypertension (van Sloten et al., 2020). Therefore, characterizing
the phenotype of cerebral perfusion alterations may advance our
understanding of the underlying mechanisms of cognitive aging
and mental impairments in T2DM.

As the brain is a highly metabolic organ with limited energy
reserves, the metabolically active regions need abundant supply
of glucose and oxygen via cerebral perfusion (Coucha et al.,
2018). Cerebral blood flow (CBF), commonly defined as the
volume of blood delivered to a unit of brain tissue per minute,
is responsible for the delivery of nutrients to the brain (Fantini
et al., 2016). CBF is also correlated to brain activity, and
there is a coupling between metabolically active regions and
CBF under normal circumstances (Hoge et al., 1999). Recent
studies have observed neurovascular decoupling in T2DM (Hu
et al., 2019; Yu et al., 2019; Zhang et al., 2021). Therefore, the
cerebral perfusion impairment may cause oxidative metabolism
dysfunction of brain and neuronal damage, leading to mental
disorders in T2DM.

CBF can be quantitatively measured using single-photon
emission computerized tomography (SPECT), positron emission
tomography (PET), perfusion computed tomography (PCT),
dynamic susceptibility contrast magnetic resonance imaging
(DSC-MRI), and arterial spin labeling (ASL). However, SPECT
and PET require injection of radiotracers while PCT and DSC-
MRI require injection of intravenous contrast agent (Wintermark
et al., 2005). Besides, SPECT, PET, and PCT are associated
with radiation exposure. Compared with the aforementioned
methods, ASL is a non-invasive method to measure CBF by
magnetically labeling the inflowing arterial blood water in vivo
as an endogenous tracer (Williams et al., 1992). Due to its non-
radiation, non-invasiveness, and reliability, ASL is proposed as
a promising method to reveal cerebral perfusion biomarkers in
various mental disorders (Alsop et al., 2015; Haller et al., 2016;
Zhang, 2016).

In the last three decades, growing literatures have attempted
to characterize cerebral perfusion patterns in T2DM, but the
findings are varied across studies. A recent study systematically
reviewed literatures on cerebral perfusion in T2DM and
found the reduction of regional cerebral perfusion in multiple
locations, including occipital lobe, domains involved in the
default mode network and the cerebellum (Wang et al.,
2021). However, this study involved various modalities
including SPECT, DSC-MRI, and ASL. More importantly,
no quantitative synthesizing method was used to conduct
meta-analysis of voxel-based studies. As the region of interest
(ROI) method has inherent bias and is more liberal in statistical
threshold than voxel-based analysis (VBA) method (Radua
and Mataix-Cols, 2009; Yao et al., 2021), the quantitative

meta-analysis of voxel-based studies can objectively identify
regional CBF differences at whole-brain level without any
priori hypothesis.

Therefore, we first systematically reviewed literatures on
cerebral perfusion in T2DM using ASL and then conducted
a quantitative meta-analysis on these voxel-based literatures
using Seed-based d Mapping (SDM, formerly Signed Differential
Mapping) as primary tool. The SDM is a well-recognized
synthesizing method for voxel-based studies and has been used
in meta-analysis of cerebral structural and functional alterations
in T2DM (Liu J. et al., 2017; Liu et al., 2021; Yao et al.,
2021). This study aimed to identify consistent regional CBF
alterations in T2DM and explore the potential effects of the
clinical characteristics on these perfusion alterations.

METHODS

Search Strategy and Study Selection
A systematic search was conducted for relevant studies in the
PubMed, Web of Knowledge, and Embase databases before
November 30, 2021 according to the Preferred Reporting
Items for Systematic reviews and Meta-Analyses (PRISMA)
guidelines (Page et al., 2021a,b). The keywords were (“diabetes”
or “diabetic”) and (“arterial spin labeling” or “ASL”). Besides,
the references of the retrieved studies and suitable reviews were
manually checked for additional eligible studies.

Studies were included in systematic review according to the
following criteria: (1) Original article published in peer-reviewed
journal and in English; (2) conducted group comparison between
patients with T2DM and healthy controls; (3) measured whole-
brain or regional CBF using ASL. Studies were further included
in meta-analysis according to the additional criteria: (1) Used
VBA to estimate CBF changes; (2) reported coordinates of
significant clusters in Montreal Neurological Institute (MNI) or
Talairach space. The exclusion criteria were as follows: (1) studies
that re-analyzed previously published data; (2) studies without
available full-text record; (3) studies that only reported ROI
findings or without available coordinates were further excluded
in meta-analysis.

For each included study in systematic review, the extracted
information included sample size, gender, age, comorbidity,
brain regions and their CBF alterations. For each included
study in meta-analysis, additional information was recorded as
follows: (1) Clinical characteristics including years of education,
diabetic duration, onset age, body mass index (BMI), hemoglobin
A1c (HbA1c), and Mini Mental State Examination (MMSE)
score; (2) acquisition parameters including scanner, sequence,
labeling duration, post labeling delay (PLD), and spatial
resolution; (3) analytic methods including software package,
full width at half maximum (FWHM), partial volume effect
(PVE) correction, and statistical threshold. The corresponding
author were contacted via email for additional data that were
required in the meta-analysis. Two radiologist (JL and XY)
independently conducted the literature search and extracted
data. The discrepancies between the two radiologists were
resolved by consensus.
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Voxel-Based Meta-Analysis
Voxel-based meta-analysis was conducted with SDM software
package (version 5.15)1. The procedures including the data
preparation, preprocessing, mean analysis, and statistic test were
summarized here in brief (Radua and Mataix-Cols, 2009; Radua
et al., 2012, 2014).

First, the peak coordinates and t-values were written in
a text file for each study. Only the peak coordinates at the
whole-brain level were extracted to avoid biases toward liberally
thresholded brain regions in ROI studies (Friston et al., 2006;
Radua and Mataix-Cols, 2009). The studies with non-statistically
significant unreported effects (NSUEs) were also included, and
their text files were recorded with no content and named with
the extension of “.no_peaks.txt.” Second, an anisotropic non-
normalized Gaussian kernel was used to recreate an effect-size
map and its variance map for each study. Both positive and
negative coordinates were reconstructed in the same map to
avoid any voxel erroneously appearing positive and negative
simultaneously. The FWHM was set at 20 mm as it was found
to optimally balance the sensitivity and specificity in SDM,
according to previous simulations (Radua et al., 2012). Third, the
mean map was obtained by performing a voxel-wise calculation
of the mean of the study maps, weighted by the sample size,
the inverse of the variance of each study, and the inter-study
heterogeneity. Finally, the statistic test was conducted with
the default SDM threshold, which were proposed to optimally
balance sensitivity and specificity and to be an approximate
equivalent to a corrected P-value of 0.05 for effect-size in SDM
(p < 0.005, peak height z = 1, cluster extent > 50 voxels) (Radua
and Mataix-Cols, 2009; Radua et al., 2012).

Reliability, Heterogeneity and Publication
Bias Analyses
The jackknife sensitivity analysis was performed to test the
replicability of the results by iteratively repeating the analyses,
discarding one dataset each time. We presumed that the findings
might be highly conclusive and replicable if previous significant
results could be replicated in all or most study combinations.

The inter-study heterogeneity of each significant cluster was
tested using a random-effects model. Magnitude of heterogeneity
was estimated using I2 index, computed as 100% × (Q—
df )/Q, where df is the degree of freedom, which estimated the
proportion of variability due to non-random differences between
studies. The value of I2 less than 25% indicated low heterogeneity
(Higgins et al., 2003).

The funnel plot of each significant cluster was created
by Egger’s test to estimate the publication bias. The result
with p < 0.05 was considered significant for publication bias
(Egger et al., 1997).

Subgroup Meta-Analysis
To explore the potential biases that were introduced by the
different acquisition parameters and analytic methods between
the studies, we conducted subgroup analyses. We repeated the

1http://www.sdmproject.com

analysis for those studies acquiring images with pulsed ASL
(PASL), with pseudo-continuous ASL (PCASL), and with a slice
thickness 4 mm. We also repeated the analysis for those studies
using PVE correction.

Metaregression Meta-Analysis
The potential effects of relevant clinical variables on regional
brain CBF alterations in patients with T2DM were examined by
a random-effects general linear metaregression. The independent
variables explored by the metaregression included percentage of
males, mean age, years of education, diabetic duration, onset age,
body mass index (BMI), hemoglobin A1c (HbA1c), Mini Mental
State Examination (MMSE) score. The dependent variable was
the SDM-Z value. As reported in a previous study, we decreased
the probability threshold to 0.0005 to reduce false positives
(Radua and Mataix-Cols, 2009). In the findings of metaregression
analysis, the regions that did not overlap with those in the main
between-group analysis were discarded. Finally, regression plots
were visually inspected to discard fittings driven by few studies
(Radua and Mataix-Cols, 2009; Radua et al., 2012).

RESULTS

Included Studies and Sample
Characteristics
A total of 369 records were identified through database searching
and citation searching, and Figure 1 shows the flowchart of
literature search and study selection. We finally included 13
studies with 14 reports in the systematic review (Last et al., 2007;
Jor’dan et al., 2014; Novak et al., 2014; Rusinek et al., 2015; Xia
et al., 2015; Jansen et al., 2016; Cui et al., 2017; Dai et al., 2017;
Shen et al., 2017; Bangen et al., 2018; Zhang et al., 2019; Chau
et al., 2020; Huang et al., 2021). One study performed analysis
using both ROI and VBA methods (Jansen et al., 2016). As 1 of 8
VBA reports had no available coordinate (Novak et al., 2014), 7
studies with 7 reports were finally included in the meta-analysis
(Xia et al., 2015; Jansen et al., 2016; Cui et al., 2017; Dai et al.,
2017; Shen et al., 2017; Zhang et al., 2019; Huang et al., 2021).

The search revealed 407 patients with T2DM and 443
healthy controls in the systematic review and 253 patients with
T2DM and 247 healthy controls in the meta-analysis. The basic
characteristics of the studies in the systematic review including
sample size, gender, age, comorbidity, and the main findings
of brain regions and their CBF alterations are summarized
in Table 1. The relevant clinical characteristics, acquisition
parameters, and analytic methods of the included studies in the
meta-analysis are presented in Tables 2, 3.

Findings of Qualitative Review
In 3 of 6 ROI studies, researchers reported no significant regional
CBF alterations in T2DM patients compared with healthy
controls (Jor’dan et al., 2014; Rusinek et al., 2015; Jansen et al.,
2016). The other 3 ROI studies reported significant reduction
of regional CBF in T2DM patients, mainly involving frontal,
temporal, and parietal lobe (Last et al., 2007; Bangen et al., 2018;
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FIGURE 1 | PRISMA flow diagram for literature search and study selection. PRISMA, Preferred Reporting Items for Systematic reviews and Meta-Analyses; T2DM,
type 2 diabetes mellitus; HCs, healthy controls; CBF, cerebral blood flow; ROI, region of interest.

Chau et al., 2020), as well as occipital lobe (Last et al., 2007; Chau
et al., 2020). Another VBA study without available coordinate
reported reduced CBF in insular cortex (Novak et al., 2014;
Table 1).

Findings of Meta-Analysis
In the voxel-based meta-analysis, 2 of 7 reports had NSUE
(Jansen et al., 2016; Shen et al., 2017). Patients with T2DM
showed increased regional CBF in right supplementary motor
area compared with healthy controls, and decreased regional CBF
in bilateral middle occipital gyrus, left caudate nucleus, right
superior parietal gyrus, and left calcarine fissure/surrounding
cortex (Table 4 and Figure 2).

Reliability, Heterogeneity, and
Publication Bias Analyses
The jackknife analysis showed that decreased CBF in right
middle occipital gyrus and right superior parietal gyrus
were highly replicable and remained significant in all the
combinations. The increased CBF in right supplementary
motor area and the decreased CBF in left middle occipital
gyrus and left calcarine fissure/surrounding cortex remained
significant in 6/7 combinations. The decreased CBF in left

caudate nucleus remained significant in 5/7 combinations
(Supplementary Table 1).

All brain regions with CBF alterations showed low
between-study heterogeneity (I2 ranged from 3.35 to 22.65%)
(Supplementary Table 2). The Egger test was significant only in
the right supplementary motor area (p = 0.001). All the brain
regions with decreased CBF did not show publication bias (all
p > 0.05) (Supplementary Table 3).

Subgroup Meta-Analysis
The meta-analysis of PASL studies showed decreased regional
CBF in right middle occipital gyrus and superior parietal gyrus.
The meta-analysis of PCASL studies showed increased regional
CBF in right supplementary motor area and decreased regional
CBF in left middle occipital gyrus, caudate nucleus, and calcarine
fissure/surrounding cortex. The meta-analysis of studies with
a slice thickness 4 mm showed increased regional CBF in
right supplementary motor area and decreased regional CBF in
right middle occipital gyrus and superior parietal gyrus. The
meta-analysis of studies using PVE correction showed increased
regional CBF in right supplementary motor area and decreased
regional CBF in bilateral middle occipital gyrus, right superior
parietal gyrus, and left calcarine fissure/surrounding cortex
(Supplementary Table 4).
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TABLE 1 | Arterial spin labeling studies investigating cerebral blood flow alterations in patients with T2DM relative to healthy controls.

References T2DM Healthy controls Method Brain regions CBF
alteration

No.
(male/female)

Age
(years)

Comorbidity (No.) No.
(male/female)

Age (years)

Last et al.
(2007)

26 (13/13) 61.6 ± 6.6 Hyperlipidemia (10),
hypertension (10),
retinopathy (10)

25 (13/12) 60.4 ± 8.6 ROI Frontal, temporal, and
parieto-occipital lobe

↓

Jor’dan et al.
(2014)

61 (31/30) 65 ± 8 Hyperlipidemia (34),
hypertension (38),
peripheral
neuropathy (31)

67 (28/39) 67 ± 9 ROI Cerebellum, frontal,
temporal, parietal, and

occipital lobe

n.s.

Novak et al.
(2014)

15 (8/7) 62.0 ± 7.9 Hyperlipidemia (10) 14 (4/10) 60.1 ± 9.9 VBA Insular cortex ↓

Rusinek et al.
(2015)

23 (9/14) 54.2 ± 5.2 NA 37 (15/22) 51.8 ± 3.8 ROI Frontal and parietal lobe n.s.

Xia et al. (2015) 38 (17/21) 56.0 ± 6.1 Hypertension (29) 40 (21/19) 57.1 ± 7.6 VBA R middle occipital gyrus, R
and L inferior parietal lobe,

R precuneus

↓

Jansen et al.
(2016)

41 (NA) NA Hypertension (39),
cardiovascular
disease (8)

39 (NA) NA ROI Whole cerebral cortex,
frontal, temporal, parietal,
and occipital cortex, and
subcortical gray matter

n.s.

VBA n.s.

Cui et al. (2017) 40 (21/19) 60.5 ± 6.9 Lacunar infarcts (9) 41 (13/28) 57.9 ± 6.5 VBA Dorsal anterior cingulate
cortex

↑

R and L middle occipital
gyrus, R precuneus,

cuneus

↓

Dai et al. (2017) 41 (19/22) 65.5 ± 8.3 Hypertension (32) 32 (16/16) 67.3 ± 10.1 VBA Cerebellum, frontal lobe ↓

Shen et al.
(2017)

36 (17/19) 57.6 ± 6.2 Hyperlipidemia (9),
hypertension (20),
white matter
hyperintensities (29)

36 (14/22) 56.2 ± 6.8 VBA n.s.

Bangen et al.
(2018)

11 (8/3) 72.3 ± 2.8 Hypertension (11),
cardiovascular
disease (1), atrial
fibrillation (1)

38 (13/25) 73.6 ± 5.9 ROI R and L hippocampus, R
inferior parietal cortex, R

inferior temporal cortex, R
rostral middle frontal gyrus

↓

L inferior parietal cortex, L
inferior temporal cortex, R
and L medial orbitofrontal
cortex, L rostral middle

frontal gyrus

n.s.

Zhang et al.
(2019)

26 (10/16) 51.9 ± 10.7 Hyperlipidemia (9),
hypertension (7),
cardiovascular
disease (1)

26 (11/15) 48.2 ± 6.7 VBA R temporopolar, R superior
and middle frontal gyrus

↑

Chau et al.
(2020)

18 (15/3) 62.5 ± 3.7 Hyperlipidemia (16),
hypertension (9)

15 (3/12) 71.8 ± 6.1 ROI Global cortex, R and L
cerebral, prefrontal, rostral

anterior cingulate,
precuneus/posterior

cingulate, parietal, lateral
temporal, mesial temporal,
occipital, and sensorimotor

cortex

↓

Huang et al.
(2021)

31 (15/16) 53.4 ± 9.1 Retinopathy (31) 33 (12/21) 51.6 ± 9.8 VBA L middle temporal gyrus, R
and L supplementary motor

area

↑

R and L calcarine, and
caudate

↓

T2DM, type 2 diabetes mellitus; CBF, cerebral blood flow; ROI, region of interest; VBA, voxel-based analysis; NA, not available; R, right; L, left; n.s., no significant difference
between T2DM and healthy controls; downward arrow (↓), decreased CBF in T2DM; upward arrow (↑), increased CBF in T2DM.
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TABLE 2 | Clinical characteristics of the included studies in the meta-analysis.

References Education
(years)

Duration
(year)

Onset
(year)

BMI
(kg/m2)

HbAlc
(%)

MMSE

Xia et al. (2015) 9.6 ± 3.0 7.1 ± 3.5 48.9 24.4 ± 2.6 7.2 ± 1.1 29.0 ± 0.9

Jansen et al. (2016) NA 9.8 ± 6.7 NA 29.2 ± 3.5 6.7 ± 0.4 28.6 ± 1.4

Cui et al. (2017) 10.0 ± 3.4 8.9 ± 5.0 51.6 24.4 ± 2.7 7.7 ± 1.6 28.3 ± 1.0

Dai et al. (2017) 15.4 ± 3.8 9.9 ± 7.9 55.6 29.1 ± 6.8 7.3 ± 1.25 28.6 ± 1.5

Shen et al. (2017) 9.1 ± 1.5 5.4 ± 4.9 52.2 26.0 ± 2.9 NA NA

Zhang et al. (2019) 10.3 ± 3.7 9.2 ± 7.1 42.7 24.0 ± 3.6 NA 26.9 ± 3.9

Huang et al. (2021) NA NA NA NA 7.3 ± 1.4 NA

T2DM, type 2 diabetes mellitus; BMI, body mass index; HbA1c, hemoglobin A1c; MMSE, Mini Mental State Examination; NA, not available.

TABLE 3 | Acquisition parameters and analytic methods of the included studies in the meta-analysis.

References Acquisition parameters Analytic methods

Scanner Sequence Labeling
duration (ms)*

PLD
(ms)**

Resolution
(mm)

Software FWHM
(mm)

PVE correction Threshold

Xia et al.
(2015)

3T
Siemens Trio

PASL 600 1000 3.4 × 3.4 × 4 SPM8 6 NA Cluster-level FWE
p < 0.01 corrected

Jansen et al.
(2016)

3T
Philips Achieva

PCASL 1,650 1,525 3 × 3 × 7 SPM8 NA NA FDR
p < 0.05 corrected

Cui et al.
(2017)

3T
Siemens Trio

PASL 600 1,000 3.4 × 3.4 × 4 AFNI 6 GM + 0.4 × WM AlphaSim
p < 0.05 corrected

Dai et al.
(2017)

3T
GE Signa Hdxt

PCASL 1,500 1,500 1.9 × 1.9 × 4 SPM8 8 Volume of GM Cluster-level FWE
p < 0.05 corrected

Shen et al.
(2017)

3T
Siemens Skyra

PASL Multiple TI*** 3.4 × 3.4 × 4 SPM8 NA GM + 0.4 × WM FDR
p < 0.05 corrected

Zhang et al.
(2019)

3T
GE Discovery 750

PCASL 1,525 1,525 Thickness 4 SPM8 8 Volume of brain AlphaSim
p < 0.01 corrected

Huang et al.
(2021)

3T
GE Discovery 750

PCASL 1,525 1,525 Thickness 3.5 SPM8 6 NA Gaussian random field
p < 0.05 corrected

PASL, pulsed arterial spin labeling; PCASL, pseudo-continuous arterial spin labeling; PLD, post labeling delay PLD; TI, inversion time; SPM, Statistical Parametric Mapping;
AFNI, Analysis of Functional NeuroImages; FWHM, full width at half maximum; PVE, partial volume effect; GM, gray matter; WM, white matter; FWE, familywise error rate;
FDR, false discovery rate; NA, not available.
*The labeling duration in PCASL is analogous to the bolus duration (TI1) in PASL.
**The PLD in PCASL is analogous to the difference between TI and TI1 in PASL.
***The Multiple TI includes 16 TIs from 480 to 4,080 ms with a step of 225 ms.

Metaregression Meta-Analysis
The metaregression analysis showed that the percentage of males,
mean age, years of education, diabetic duration, onset age, BMI,
HbA1c%, and MMSE scores were not linearly associated with
regional CBF alterations in patients with T2DM.

DISCUSSION

To our knowledge, this is the first quantitative meta-analysis
to pool the ASL studies to identify the consistent pattern
of CBF alterations in T2DM. This systematic review and
meta-analysis revealed that the regional CBF was significantly
reduced in the patients with T2DM, mainly involving occipital
and parietal lobes. These findings indicated the potential
neuropathology of visual impairment and cognitive aging in
T2DM (Meusel et al., 2014).

The most consistent and significant finding was that the
perfusion of occipital lobe was impaired in T2DM. The middle

occipital gyrus and calcarine fissure/surrounding cortex in the
occipital lobe were important components of visual cortex,
which were responsible for vision processing and visual memory
(Tootell et al., 1998; Wandell et al., 2007). Previous studies
demonstrated that the decreased perfusion in middle occipital
gyrus was associated with impaired visuospatial function and
visual memory (Xia et al., 2015; Cui et al., 2017). A recent meta-
analysis study of functional magnetic resonance imaging (fMRI)
also revealed consistent hypoactivity in the middle occipital gyrus
and calcarine fissure/surrounding cortex in T2DM (Yao et al.,
2021). Beside, recent studies focusing on patients with diabetic
retinopathy observed decreased CBF in the bilateral calcarine
fissure/surrounding cortex (Huang et al., 2021) and hypoactivity
in the middle occipital gyrus (Wang et al., 2017; Qi et al.,
2020). These findings indicated that the perfusion and function
alterations in occipital lobe, which involving vasculopathy and
neuropathy along the visual pathway (Heravian et al., 2012),
might be attribute to the potential visual impairment, a common
comorbidity of diabetes.
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TABLE 4 | Differences in regional cerebral blood flow alterations between patients with T2DM and healthy controls.

MNI coordinates SDM-Z value p-value No. of voxels Cluster breakdown (no. of voxels)

T2DM > Control

R supplementary
motor area

6, –12, 68 1.320 0.0002 438 R supplementary motor area (273)
R superior frontal gyrus, dorsolateral (83)
L supplementary motor area (40)
L paracentral lobule (37)
R precentral gyrus (5)

T2DM < Control

L middle occipital
gyrus

–18, –94, –2 –1.543 0.0004 822 L middle occipital gyrus (337)
L calcarine fissure/surrounding cortex (233)
L inferior occipital gyrus (128)
L lingual gyrus (73)
L superior occipital gyrus (46)
L fusiform gyrus (3)
L cuneus cortex (2)

R middle occipital
gyrus

30, –90, 10 –1.380 0.0010 309 R middle occipital gyrus (194)
R superior occipital gyrus (56)
R inferior occipital gyrus (26)
R cuneus cortex (30)
L cuneus cortex (2)
R calcarine fissure/surrounding cortex (1)

L caudate nucleus –12, –2, 18 –1.365 0.0011 53 L caudate nucleus (48)
L thalamus (5)

R superior parietal
gyrus

16, –64, 56 –1.201 0.0023 54 R superior parietal gyrus (44)
R precuneus (9)
R inferior parietal gyrus (1)

L calcarine
fissure/surrounding
cortex

2, –86, 8 –1.227 0.0021 52 L calcarine fissure/surrounding cortex (45)
L cuneus cortex (4)
R calcarine fissure/surrounding cortex (3)

T2DM, type 2 diabetes mellitus; MNI, Montreal Neurological Institute; SDM, seed-based d mapping; R, right; L, left.

Another consistent finding was the reduced perfusion
in parietal lobe in T2DM. Our quantitative meta-analysis
identified decreased CBF in superior parietal gyrus. Previous
neuroimaging studies also demonstrated gray matter volume
loss (Roy et al., 2020) and functional dysconnectivity (Cui
et al., 2016; Liu L. et al., 2017) in superior parietal gyrus
in patients with T2DM. The superior parietal gyrus was
involved in aspects of attention and visuospatial orientation,
including the manipulation of information in working memory
(Koenigs et al., 2009), which was impaired in patients with
T2DM (Chen et al., 2014; Huang et al., 2016). Working
memory is a fundamental cognitive process in the brain
and it is crucially important for most higher-order cognitive
functions (Baddeley, 2003). T2DM has been consistently
associated with an increased risk of dementia and mild
cognitive impairment (Reijmer et al., 2010; Beeri and Bendlin,
2020), and the structural and functional abnormalities in
the brain are thought to underlie these cognitive deficits
(Yao et al., 2021). Previous studies indicated that increased
activation strength in parietal lobe was positively associated
with memory improvement in patients with mild cognitive
impairment (Belleville et al., 2011; Corriveau-Lecavalier et al.,
2019). Therefore, it suggests that the decreased perfusion in
superior parietal area may underlie the neuropathology of
cognitive deficits in T2DM.

Our meta-analysis results also showed decreased CBF in
the left caudate nucleus and increased CBF in the right

supplementary motor area in T2DM, which were not commonly
reported in ROI studies. Besides, it should be noted that the
right supplementary motor area showed significant publication
bias (Egger test p = 0.001). The caudate nucleus, a component
of the dorsal striatum, has an important role in cognitive
function and spatial working memory (Postle and D’Esposito,
2003; Grahn et al., 2008). The functional abnormalities of
the caudate nucleus may also lead to motor dysfunctions
(McColgan et al., 2015; Ji et al., 2018), which have been
observed in patients with T2DM (Gorniak et al., 2014; Ochoa
et al., 2016). Meanwhile, the supplementary motor area play
a role in the direct control of movement, especially in
finger movement (Shibasaki et al., 1993; Tanji and Shima,
1994), and the diabetic peripheral neuropathy may lead to
sensory impairments in the motor system (Allen et al., 2016).
Thus the deficits of corticostriatal circuit between the head
of caudate nucleus and supplementary motor area may be
the neuropathology for motor dysfunction in T2DM. The
increased perfusion in supplementary motor area might suggest
a compensation for the functional deficits of corticostriatal
circuit in T2DM.

Although ASL has been the widely used neuroimaging
approach in brain perfusion, the acquisition parameters and
analytic methods varies among ASL studies, bringing potential
bias. For example, quantitative assessment of perfusion with
ASL is hampered by the transport time from the labeling
position to the tissue, known as arterial transit time (ATT)
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FIGURE 2 | Voxel-based meta-analysis results of regions with cerebral perfusion alterations in T2DM. (A) Red region indicates increased CBF in patients with T2DM
compared with healthy controls. (B–D) Blue regions indicate decreased CBF in patients with T2DM compared with healthy controls. T2DM, type 2 diabetes mellitus;
CBF, cerebral blood flow; R, right; L, left.

(Alsop et al., 2015). PASL and PCASL are both labeling
approaches using single PLD/inversion time (TI) but differ
fundamentally in spatial extent and time of labeling and
labeling delay (As shown in Table 3). Besides, one of the PASL
study used multiple TI approach (Shen et al., 2017), which
estimated both CBF and ATT via fitting data. Our subgroup
meta-analysis found no overlap of regional CBF alteration
between PASL and PCASL, suggesting the labeling approach
might have a great impact on cerebral perfusion. As for the
spatial resolution and PVE, our subgroup meta-analysis showed
that the cerebral perfusion alteration in left caudate nucleus
were not reproducible. One possible reason might be that
the caudate nucleus was close to lateral ventricle and more
likely to contain a mixture of gray matter and cerebrospinal
fluid (Jezzard et al., 2018). Besides, as gray matter atrophy
was observed in T2DM (Yao et al., 2021), there might be
potential overestimation of decreased perfusion in regions
where both perfusion and gray matter volume were reduced
(Chappell et al., 2021). Future studies should attempt to conduct
analysis with and without PVE correction to investigate its
influence. In summary, even though some regional perfusion
alterations could be affected by the heterogeneity of acquisition
parameters and analytic methods, the increased CBF in right
supplementary motor area and decreased regional CBF in right

middle occipital gyrus and superior parietal gyrus were robust in
3 of 4 subgroup analyses.

There are several limitations in this study. First, the sample
size of patients with T2DM included in some studies was
relatively small. Second, near half of ASL studies in T2DM
were not included in quantitative meta-analysis because of
the use of ROI approach without available coordinates and
corresponding effect sizes. Third, there were heterogeneity
between the included studies. The confounding factors such as
age, illness duration, blood glucose control, and comorbidities
might affect CBF. Although we sought to identify the potential
effects of some confounding factors, the results were negative,
which also should be taken caution as only few data were
available in the metaregression analysis. It is also difficult to avoid
false-negative results even though voxel-based meta-analytical
methods have good control for false-positive results (Radua
et al., 2012). Fourth, although this review reveals the association
between neuropathology and visual impairment and cognitive
aging in T2DM, whether the vascular mechanism underlying
these disorders remains inconclusive. Further research would be
required to determine causation.

In conclusion, this systematic review and meta-analysis
revealed consistent cerebral perfusion alterations in T2DM,
characterized by decreased CBF in occipital and parietal
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lobes. These findings suggested the neuropathology of visual
impairment and cognitive aging in T2DM.
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