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Abstract: Aim: The purpose of this study was to evaluate hydration status, fluid intake, sweat
rate, and sweat sodium concentration in recreational tropical native runners. Methods: A total of
102 males and 64 females participated in this study. Participants ran at their self-selected pace for
30–100 min. Age, environmental conditions, running profiles, sweat rates, and sweat sodium data
were recorded. Differences in age, running duration, distance and pace, and physiological changes
between sexes were analysed. A p-value cut-off of 0.05 depicted statistical significance. Results:
Males had lower relative fluid intake (6 ± 6 vs. 8 ± 7 mL·kg−1·h−1, p < 0.05) and greater relative
fluid balance deficit (−13 ± 8 mL·kg−1·h−1 vs. −8 ± 7 mL·kg−1·h−1, p < 0.05) than females. Males
had higher whole-body sweat rates (1.3 ± 0.5 L·h−1 vs. 0.9 ± 0.3 L·h−1, p < 0.05) than females.
Mean rates of sweat sodium loss (54 ± 27 vs. 39 ± 22 mmol·h−1) were higher in males than females
(p < 0.05). Conclusions: The sweat profile and composition in tropical native runners are similar to
reported values in the literature. The current fluid replacement guidelines pertaining to volume and
electrolyte replacement are applicable to tropical native runners.

Keywords: recreational running; tropical climate; sweat electrolyte; fluid replacement; hydration plan

1. Introduction

Sweat evaporation is important for the dissipation of metabolic heat production, which
may increase ten- to twenty-fold during exercise [1]. In hot environments, evaporative
sweat cooling is the main avenue of heat loss, preventing rapid rises of core body tempera-
ture [2–5]. Hypohydration, experienced as a result of sweat loss, increases physiological
strain and perception of effort, which can decrease endurance exercise performance [6,7].
In addition, sweat loss during exercise can also result in electrolyte imbalance such as
hyponatremia. Thus, it is important to replace electrolyte losses as part of the rehydration
process after exercise [3,8,9].
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Running is a common form of exercise as it can be easily performed and does not
require any specialised equipment. There are an estimated five to eight million individuals
participating in running events globally. A 50% increase in participation in running has
been tracked over the last decade. This growth has, in part, been driven by increased
participation in Asia [10]. In tropical warm, high humidity environments, the evaporation
of sweat may be compromised, leading to lower rates of body heat dissipation [11]. Thus,
it is reasonable to suggest that appropriate hydration may be even more important for
endurance running when in tropical Asian countries.

An athlete’s sweat rate and sweat electrolyte concentration vary depending on indi-
vidual characteristics, type and intensity of exercise, clothing, equipment worn as well
as environmental conditions [12–20]. Therefore, the assessment of individual sweat rate
and sweat electrolytes losses for specific exercise and environmental conditions is rec-
ommended to create individualised hydration strategies. This approach may reduce the
risk of heat illness and optimise performance [21]. Despite the individuality in the re-
sponse to dehydration, current guidelines advise limiting fluid deficits to no more than
2% body mass loss during exercise to avoid compromised cognitive function and aero-
bic exercise performances [21]. Further decrements in performance are associated with
increasing levels of hypohydration (3–10%), particularly in hot weather typical in tropical
climates [12,22]. Individualised drinking plans may also reduce the risk of over-drinking
and exercise-associated hyponatremia [23–28].

Tropical natives are likely to be more heat-acclimatised than athletes who live in
temperate or cool environments. Heat-acclimatised individuals have thermoregulatory
adaptations such as lowered core body temperature, lowered heart rate, earlier onset
of sweating and higher sweat rate [29–31]. Although variable, mean sweat sodium con-
centrations ([Na+]) are reported to be approximately 50 mmol·L−1 [32]. To the authors’
knowledge, there are limited data on sweat rate and sweat composition of tropical native
athletes, which may impact on hydration strategies during and after exercise in this popu-
lation. Knowledge of sweat responses and sweat composition of tropical native athletes
will allow us to understand if consensus recommendations on hydration are also relevant
to heat-acclimatised athletes.

Therefore, the purpose of the present study was to evaluate the hydration status, fluid
intake, sweat rate, and sweat [Na+] in recreational tropical native runners.

2. Materials and Methods
2.1. Study Design and Participants

This study adopted an observational cohort study design. A total of 102 males and
64 females were recruited to participate in this study. All measurements were made on a
single day of practice sessions in various running groups. Ethics approval was obtained
from the Centre of Ethical Reinforcement for Human Research, Mahidol University (MU-
CIRB 2018/208.2311 and protocol no. 2018/198.0910). All participants provided written
informed consent before participation.

2.2. Experimental Protocol

Resting heart rate, blood pressure and aural temperature were measured before and
after running. Heart rate and blood pressure were measured using an upper arm blood
pressure monitor (BM 28, Beurer GmbH, Ulm, Germany). Aural temperature was mea-
sured using an ear thermometer (FT 78, Beurer GmbH, Ulm, Germany). Participants with
high resting blood pressure and/or high resting aural temperature (systolic blood pres-
sure >180 mmHg and/or diastolic blood pressure >110 mmHg and/or aural temperature
>38 ◦C) were excluded from the study.

Six running sessions were completed on separate days. Each session involved a
warm-up of 10–15 min, followed by 30–70 min of running, and ended with 10–15 min
of cool-down. Participants ran at their individual pace, with most participants running
at a light to moderate intensity. Two running sessions were conducted in the morning,
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between 6 a.m. and 8 a.m., while four running sessions were conducted in the evening,
between 5 p.m. and 8 p.m. The first five running sessions were conducted at Lumphini
Park, Bangkok, Thailand while the sixth running session was conducted in a park within
Mahidol University, Nakhon Pathom, Thailand. All six sessions were held in a public park
with a 2.5 km running track. A water station was provided. Runners consumed plain water
(Aquafina, PepsiCo, Harrison, NY, USA) ad libitum from individual water bottles. Water
bottles were weighed before and after each running session to record the volume of fluid
intake during running.

Before each running session, all participants voided their bladders. Mid-stream urine
samples were collected to measure urine specific gravity (USG). Pre-exercise body mass
was measured using a bench scale (N.V. Mettler-Toledo S.A., Zaventem, Belgium) while
minimally clothed (T-shirts, shorts or tights, and without shoes), and recorded to the
nearest 0.10 kg. For participants who needed to urinate during the run, body mass was
measured before and after the excretion to estimate urine output. To collect sweat, the right
or left forearm was cleaned with an alcohol pad (3M, Minneapolis, MN, USA), rinsed with
distilled water, and dried with electrolyte-free gauze. An absorbent patch (9 cm × 10 cm)
(3M™ Tegaderm™ + Pad Film Dressing with Non-Adherent Pad, 3M, Minneapolis, MN,
USA) was then applied to the mid-forearm [33].

After each running session, the participants towel-dried themselves and post-exercise
body mass was measured. The same bench scale was used and participants wore the same
attire as during the pre-exercise body mass assessment. The absorbent patch was then
removed from the forearm, placed in the barrel of a plastic syringe using clean forceps and
squeezed with a plunger to collect sweat. Sweat samples were analysed for sweat [Na+]
and sweat potassium concentration ([K+]).

2.3. Measurement of Environmental Conditions

Ambient temperature and relative humidity were measured and recorded at 10-min
intervals using a data logger (QUESTemp◦34, 3M, Minneapolis, MN, USA) during each
running session, and the mean value was calculated.

2.4. Urine Specific Gravity (USG)

USG from mid-stream urine samples were measured using a hand-held refractometer
(PAL-10S, ATAGO®, Saitama, Japan). USG was assessed in duplicates and the average
value was used for recording. USG was used an indicator of hydration status, with USG
>1.020 indicating hypohydration and USG >1.030 indicating severe hypohydration [34].

2.5. Whole-Body Sweat Loss (WBSL) and Whole-Body Sweat Rate (WBSR)

WBSL and WBSR were calculated using Equations (1) and (2) respectively:

WBSL (L) = (Pre-exercise body mass (kg) − Post-exercise body mass (kg)) + Fluid intake (L) − Urine output (L), (1)

WBSR (L·h−1) = WBSL (L)/Exercise duration (h). (2)

2.6. Whole-Body Sweat Sodium Concentration

Sweat [Na+] and sweat [K+] were analysed via ion-selective electrode (ISE) technology
using Na+ (LAQUAtwin Na-11, HORIBA Advanced Techno Co., Ltd., Kyoto, Japan) and K+

analysers (LAQUAtwin K-11, HORIBA Advanced Techno Co., Ltd., Kyoto, Japan). Whole-
body sweat [Na+] (mmol·L−1) and whole-body sweat Na+ loss (mmol) were calculated
using Equations (3) and (4) respectively [33]:

Predicted whole-body sweat [Na+] (mmol·L−1) = 0.57 (forearm sweat Na+) + 11.05, (3)

Whole-body sweat Na+ loss (mmol) = WBSL (L) ∗ Predicted whole-body sweat [Na+] (mmol·L−1). (4)
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Sweat [Na+] were classified into three groups: low ([Na+] <30 mmol·L−1), mod-
erate ([Na+] = 30–60 mmol·L−1), and high ([Na+] >60 mmol·L−1) [35,36]. Addition-
ally, 12 samples were randomly selected and analysed using the gold standard high-
performance liquid chromatography (HPLC) method (Dionex ICS-5000, Thermo Fisher
Scientific, Inc., Waltham, MA, USA).

2.7. Statistical Analysis

Statistical analysis was conducted using IBM SPSS Statistics version 19.0 (IBM, Ar-
monk, NY, USA). Descriptive data were generally expressed as mean ± standard deviation
(SD). All biochemical data were log-transformed to reduce non-uniformity of error. The
data were back transformed before being expressed as parametric mean ± SD. Normality
was determined using the Shapiro–Wilk test. Differences in age, running characteris-
tics, body mass loss, fluid intake, and net fluid balance between males and female run-
ners were analysed using independent t-test. Pearson correlation coefficient was used
to analyse the correlation between parameters, including the correlation of whole-body
sweat [Na+] between ISE and HPLC methods. Correlation coefficients were interpreted
based on the following thresholds: r ≤ 0.35 = weak, 0.36 ≤ r ≤ 0.67 = moderate, and
0.68 ≤ r ≤ 1.0 = strong [37]. For all analyses, a p-value of < 0.05 was considered significant.

3. Results
3.1. Number of Subjects and Environmental Conditions for Each Running Session

There were 166 participants in total (102 males and 64 females). The number of
participants for each running session is shown in Table 1, together with the mean am-
bient temperature and mean relative humidity. The mean (range) ambient tempera-
ture and relative humidity across the six running sessions were 29.6 (28.0–31.5) ◦C and
70 (55–87)% respectively.

Table 1. Time of day, time, environmental conditions and number of participants during each running session.

Session Time of Day Time Mean Ambient
Temperature (◦C)

Mean Relative
Humidity (%)

Participants

Male Female

1 Morning 7.00 a.m. to 8.00 a.m. 28.5 75 9 6
2 Morning 6.00 a.m. to 8.00 a.m. 30 86 10 4
3 Evening 7.00 p.m. to 8.00 p.m. 29.5 63 16 8
4 Evening 7.00 p.m. to 8.00 p.m. 28 87 31 13
5 Evening 7.00 p.m. to 8.00 p.m. 29.8 56 12 12
6 Evening 5.00 p.m. to 6.00 p.m. 31.5 55 24 21

3.2. Participants’ Age, Running Profile, and Body Mass Change across Running

Participants were aged between 21–68 years with running experience ranging from
6 months to more than 10 years. All runners were native to Thailand and had been within
the country for 6 months, exercising in hot and humid environments, prior to the trial. The
running durations of all participants during the running sessions were between 30–100 min.
Male runners ran a further mean distance and at a faster mean pace than female runners
(p < 0.05) (Table 2). However, the mean running duration did not differ between sexes.
Both mean WBSL and mean WBSR among the male runners were greater than among the
female runners (p < 0.05) (Table 2). While six male and four female runners had >2% body
mass loss after the running session, percentage body mass loss did not differ between sexes
(p > 0.05) (Table 2).
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Table 2. Mean age, running profile, body mass change, sweat rate, and fluid intake of male and
female runners across all running sessions. Data are presented as mean ± SD (range).

Male (n = 102) Female (n = 64)

Age (years) 36 ± 9
(21–68)

34 ± 9
(22–62)

Running duration (min) 43.7 ± 14.8
(33–97)

43.6 ± 13.6
(43–100)

Running distance (km) 6.4 ± 1.1
(2.5–12.5)

5.3 ± 1.1 *
(2.5–10)

Running pace (min·km−1)
6.8 ± 3.7
(3.5–10.0)

8.2 ± 3.9 *
(4.3–11.0)

Pre-running body mass (kg) 70.8 ± 10.6
(46.9–99.7)

56.7 ± 9.7 *
(42.3–93.2)

Post-running body mass (kg) 70.2 ± 10.6
(46.6–99.0)

56.4 ± 9.6 *
(42.3–92.8)

Percentage body mass loss (%) 1.3 ± 0.5
(0.2–3.6)

1.2 ± 0.5
(0.1–3.7)

Whole-body sweat loss
(WBSL) (L)

0.9 ± 0.3
(0.2–2.6)

0.6 ± 0.3 *
(0.1–1.9)

Whole-body sweat rate
(WBSR) (L·h−1)

1.3 ± 0.5
(0.2–3.8)

0.9 ± 0.3 *
(0.1–2.2)

Fluid intake (L) 0.3 ± 0.3
(0–1.1)

0.3 ± 0.2
(0–1.1)

* p < 0.05, compared to male participants.

3.3. Urine Specific Gravity

USG data were absent from 18 male and four female runners due to insufficient urine
samples. Mean USG of runners who ran in the morning and evening were 1.015 ± 0.008 and
1.013 ± 0.007, respectively. There was no difference between the mean USG of runners from
the morning and evening sessions (p > 0.05). The number of hypohydrated participants
(USG > 1.020) did not differ between the morning or evening running session (p > 0.05).
However, a greater percentage of participants were hypohydrated (USG > 1.020) before the
run when the running session was conducted in the morning (28%) than in the evening
(15%) (Table 3). A greater number of runners were severely hypohydrated (USG > 1.030)
before the run when the session was conducted in the morning (4%) than in the evening
(1%). In addition, when the running session was conducted in the morning, there is a
moderate positive correlation between pre-exercise USG and fluid intake (p < 0.05, r = 0.42),
and a moderate negative correlation between pre-exercise USG of male runners and WBSL
(p < 0.05, r = −0.54).

Table 3. Level of dehydration between sexes (male vs. female) and time of day of running session
(morning vs. evening) based on pre-exercise urine specific gravity (USG).

Time of Day of
Session

Sex
Urine Specific Gravity (USG)

≤1.020 >1.020 >1.030

Morning
Male 11 (69%) 4 (31%) 1 (6%)

Female 7 (78%) 2 (22%) 0 (0%)
Total 18 (72%) 6 (28%) 1 (4%)

Evening
Male 59 (85%) 10 (15%) 1 (1%)

Female 43 (84%) 8 (16%) 0 (0%)
Total 102 (85%) 18 (15%) 1 (1%)

3.4. Relative Sweat Loss and Fluid Intake during Running

Mean WBSR during recreational running was higher in males than females (p < 0.05)
(Table 2). Sweat loss relative to body mass was calculated and differences between sexes
were compared. Males had higher sweat loss relative to body mass than female runners
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(19 ± 8 vs. 16 ± 6 mL·kg−1·h−1, p < 0.05) (Figure 1). With regards to fluid intake during
running, 15 of the 102 male runners (14.7%) did not drink any water during the run.
However, only two of the 64 female runners (3.1%) did not drink any water during the
run. Mean ad libitum fluid intake during running in males and females did not differ
between sexes (p > 0.05) (Table 2). However, male runners had a lower fluid intake relative
to body mass than female runners (6 ± 6 vs. 8 ± 7 mL·kg−1·h−1, p < 0.05) (Figure 1).
Therefore, males had a greater negative fluid balance relative to body mass than female
runners (−13 ± 8 mL·kg−1·h−1 or −67.4% vs. −8 ± 7 mL·kg−1·h−1 or −48.9%, p < 0.05)
(Figure 1). Furthermore, running pace and sweat rate were found to have a moderate
negative correlation (r = −0.47, p < 0.01).
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3.5. Sweat Sodium and Potassium Concentration

Sweat data were absent from five male and 15 female participants due to insufficient
volume of sweat sample. Figure 2A presents the distribution of sweat [Na+] among the
remaining 97 males and 49 female runners. Sweat [Na+] did not correlate with sweat rate,
USG, fluid intake, or running distance or pace (p > 0.05). A strong positive correlation
was observed between sweat [Na+] measured using ISE method and HPLC (p < 0.001,
r = 0.994) (Figure 3). Mean rate of sweat Na+ loss (54 ± 27 vs. 39 ± 22 mmol·h−1) was
higher in males than females (both p < 0.05) (Figure 2B) but no difference was observed in
whole-body sweat [Na+] losses between sexes (p > 0.05). The majority of runners’ sweat
[Na+] were classified as moderate (male: 76%; female: 51%). High sweat [Na+] was least
prevalent as it was only observed in 8% and 16% of male and female runners respectively.
Mean sweat [K+] did not differ between the male (3.9 ± 1.1 mmol·L−1) and female runners
(3.5 ± 0.7 mmol·L−1) (p > 0.05).
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4. Discussion

The aim of this study was to evaluate the hydration status, fluid intake, sweat rate, and
sweat [Na+] in recreational tropical native runners. Consistent with previous studies, WBSR
ranged between 0.3–2.5 L·h−1, with male runners having higher WBSR and WBSL relative
to body mass than female runners. Fluid intake was lower in male runners compared to
females, who consumed more fluid relative to body mass than males. Predicted whole-body
sweat [Na+] did not vary between sexes and did not correlate with any other parameters.
However, males had a higher sweat Na+ loss and rate of sweat Na+ loss as compared to
female tropical native runners.

The mean WBSR (male: 1.3 ± 0.5 L·h−1 and female: 0.9 ± 0.3 L·h−1) for tropical native
runners was similar to those reported previously in American runners involving 275 male
and 52 female adult endurance athletes (male: 1.4 ± 0.4 L·h−1 and female: 1.1 ± 0.6 L·h−1)
(16). Relative WBSL was also comparable to experienced marathon runners in a 16-km race
(18.7 ± 7.9 vs. 21.6 ± 5.1 mL·kg−1·h−1), albeit the race being performed in an environment
with cooler ambient temperature but similar relative humidity (29.6 ± 1.2 ◦C, 70 ± 15%
vs. 20.5 ± 0.7 ◦C, 76.6 ± 1.7%) [38]. These similar observations, despite differences
in environmental conditions, could be caused by the effects of heat acclimatisation in
experienced athletes [39]. Experienced athletes have thermoregulatory adaptations which
include increased sudomotor function associated with acclimatisation [39].

The mean WBSR observed during our study is lower compared to another study
involving male runners in a half-marathon, despite similar environmental conditions
(1.3 ± 0.5 vs. 1.5 ± 0.3 L·h−1) [40]. A reason for this observation is likely to be differences
in exercise intensity. The running pace in the present study was slower than that performed
in the half-marathon (6.8 vs. 5.6 min·km−1). Both laboratory and field-based studies have
reported the relationship between exercise intensity and sweat rate in various exercise
types such as running, cycling, and football training [41,42]. However, it is important to
note that despite the slower running speed, the relative intensity of exercise may have
been similar between the two groups. Speculatively, runners completing a half-marathon
distance would have a greater maximal aerobic capacity and faster submaximal running
velocities compared to tropical native recreational runners. However, the relative intensity
of the runs was not measured and hence, was a limitation of the present study.

Our study found that male runners had a higher WBSR than female runners, and that
sweat loss relative to body mass was lower in female than male runners. Males generally
have a higher sweat rate than females due to larger body size, musculature and higher
metabolic rate [43]. The sex of the runner also plays a role in the peripheral control of sweat
rate via the number of activated sweat glands (ASGs) and sweat gland output (SGO) [44].
While females have a higher number of ASGs than males during the early follicular phase,
their sweat rate in dry and/or humid environments is still lower than males [45]. This
may be related to SGO, as previous studies have reported lower SGO in females compared
to males during passive heat stress [46]. Moreover, previous evidence on the difference
in thermoregulatory adaptation mechanisms revealed that after training, males can only
enhance SGO while females can enhance both SGO and ASGs. While trained athletes
usually have a higher sweat rate than untrained athletes due to the thermoregulatory
adaptations, sweat responses at the same exercise intensity showed that trained males still
have higher sweat rates than trained females [44]. Thus, sex can play a role in determining
fluid loss through sweat.

To support performance and reduce the risk of heat illness, the American College of
Sports Medicine Position Stand advises to avoid body mass loss of >2% from pre-exercise
body mass during exercise [12]. In this study, six male and four female runners experienced
>2% body mass loss after the run. Consistent with previous research during a marathon
race, the mean ad libitum fluid intake did not differ between male and female runners [47].
However, when expressed relative to body mass, fluid intake was higher in female runners
compared to their male counterparts. As a result, we also observed that female runners
experienced less negative net fluid balance relative to body mass. This could be due to the
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lower pre- and post-exercise body mass of female runners as compared to males. However,
there remained a large range (−46–15 mL·kg−1·h−1) in net fluid balance after exercise in
both males and females. This observation would suggest that runners should understand
their individual fluid intake requirements to prevent excessive hypohydration, link levels
of hypohydration with running performance, and reduce the risk of accumulating body
mass through fluid intake during exercise [25]. It is important to note that, due to the
nature of the field study, it was not possible to measure body mass in the ideal conditions
(i.e., nude body mass) or weigh individual running attires after the run. Based on previous
studies, a fully soaked running attire weighs approximately 0.26 kg [48,49]. Although
accounting for a trapped sweat volume of 0.26 L or lower would not affect our overall
conclusions, this is an acknowledged limitation of the present study.

Predicted whole-body sweat [Na+] did not differ between sexes. However, male
runners had higher mean rate of Na+ loss than female runners. The likely reason for
these observations is the higher mean WBSR and WBSL relative to body mass in males
than females [50]. This indicates that runners who sweat more are at a greater risk of
losing more Na+ than runners who sweat less. The predicted whole-body sweat [Na+] of
tropical native runners ranged between 11–80 mmol·L−1. These values are similar to a
previous study in runners completing a marathon (7–95 mmol·L−1 [36]), albeit at a lower
mean ambient temperature (24.4 ± 3.6 ◦C) and mean relative humidity (28 ± 5%). Our
findings are also comparable to the sweat [Na+] data collected from 506 athletes across
various sports (12.6–104.8 mmol·L−1) [16]. Asian populations have higher dietary Na+

intake across all ages as compared to those from other parts of the world [51,52]. While the
World Health Organisation recommends that sodium intake should not exceed 2 g/day,
most Southeast Asian countries consume more than the recommended amount [53]. For
example, the average sodium intake in Thailand is 3–5 g per day and the average sodium
intake in Singapore is 3–4 g per day [53]. As high Na+ intake has been shown to increase
sweat [Na+] [54], the higher predicted whole-body sweat [Na+] in the present study may
have been expected. The analysis of sweat [K+] in the present provided a quality control
for the analysis of sweat samples [15]. Therefore, we have confidence in the sweat [Na+]
values. A possible explanation for the similarity in sweat [Na+] might be the effects of heat
acclimatisation, which has been shown to reduce sweat sodium [55,56]. However, dietary
intake and its associated Na+ intake were not measured, and this is a limitation of the
present study. Thus, it is not possible to ascertain if acclimatisation counteracted the impact
of high Na+ intake on sweat [Na+]. Given the inter-individual variability of predicted
whole-body sweat [Na+] and that no correlation to age, exercise intensity, exercise duration
or sweat rate was found, the results support recommendation of individualised fluid and
electrolyte replacement strategies.

Runners were more likely to be hypohydrated before the morning run compared to the
evening. It is recommended that participants should slowly drink approximately 5–10 mL
per kg of their body mass at least 2 h before exercising to allow for fluid absorption and
achieve euhydration [22]. The finding in the present study could be attributed to insufficient
time to drink appropriate volumes of fluid and the ingestion of food in the morning. The
moderate positive correlation between pre-exercise USG and fluid intake, and moderate
negative correlation between pre-exercise USG and WBSL suggest that hypohydration
may impair thermoregulatory function, which increases the risk of heat illness in hot
climates [57]. This is of interest as endurance running events such as marathons typically
begin early in the morning. Since achieving euhydration before exercise can reduce the risk
of heat illnesses [9,12], runners are encouraged to adjust their pre-race wake-up time to
ensure they can meet pre-exercise hydration guidelines when running in tropical climates.

Practical Implications and Future Directions

This study showed that the range of sweat rates and sweat [Na+] of tropical native
runners were similar to that reported previously in hydration literatures. Therefore, indi-
vidual fluid recommendations also apply to tropical native runners. Future studies should
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aim to analyse the runners’ dietary Na+ intake to understand the impact on the sweat Na+

losses. Finally, the data in the present study were collected during recreational running.
Understanding the impact of hydration strategies before and during exercise on running
performance in competitive tropical native runners is required. Correspondingly, these
studies can ascertain if the threshold of hypohydration tolerance, i.e., 2% body mass loss
on exercise performance, also applies to tropical native athletes.

5. Conclusions

These descriptive data gathered on recreational tropical native runners revealed the
individual variability in hydration status, fluid intake, sweat rate, and sweat Na+ loss
during exercise. Female runners experienced less negative net fluid balance compared to
males due to greater fluid intake per body mass and lower sweat loss. Whole-body sweat
[Na+] also varied between individuals independent of sex.
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