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Simple Summary: Accurate primary staging for determining the extent of prostate cancer is crucial
for planning treatment in high-risk patients for distant metastases. Recurrence is still common after
curative intent therapy, in spite of developments in the clinical nomograms for appropriate pre-
treatment screening of patients for selective therapeutic approaches. This is partly due to suboptimal
diagnostic performance of standard conventional imaging modalities such as computed tomography
and bone scintigraphy. Molecular imaging by means of PET/CT and PET/MRI imaging using novel
specific radiotracers might provide more precise staging of disease, allowing for better personalized
treatments. This article reviews current developments and future trends for functional hybrid
PET-targeted imaging in primary staging of prostate cancer.

Abstract: Accurate primary staging is the cornerstone in all malignancies. Different morphological
imaging modalities are employed in the evaluation of prostate cancer (PCa). Regardless of all
developments in imaging, invasive histopathologic evaluation is still the standard method for the
detection and staging of the primary PCa. Magnetic resonance imaging (MRI) and computed
tomography (CT) play crucial roles; however, functional imaging provides additional valuable
information, and it is gaining ever-growing acceptance in the management of PCa. Targeted imaging
with different radiotracers has remarkably evolved in the past two decades. [111In]In-capromab
pendetide scintigraphy was a new approach in the management of PCa. Afterwards, positron
emission tomography (PET) tracers such as [11C/18F]choline and [11C]acetate were developed.
Nevertheless, none found a role in the primary staging. By introduction of the highly sensitive small
molecule prostate-specific membrane antigen (PSMA) PET/CT, as well as recent developments in
MRI and hybrid PET/MRI systems, non-invasive staging of PCa is being contemplated. Several
studies investigated the role of these sophisticated modalities in the primary staging of PCa, showing
promising results. Here, we recapitulate the role of targeted functional imaging. We briefly mention
the most popular radiotracers, their diagnostic accuracy in the primary staging of PCa, and impact
on patient management.

Keywords: prostate cancer; primary staging; PET/CT; [11C]choline; [18F]choline; [11C]acetate;
[68Ga]Ga-PSMA; [18F]PSMA; [111In]In-capromab pendetide; [99mTc]Tc-PSMA; [18F]Fluciclovine;
[11C]Methionine; [18F]FDHT; gastrin-releasing peptide receptor; PET/MR; radiomics; sentinel lymph
node biopsy

1. Introduction

Prostate cancer (PCa) is the second most commonly diagnosed cancer and the fifth
leading cause of cancer-related death in men [1]. The aggressiveness of PCa varies based
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on the primary risk stratification. PCa is traditionally stratified into low-, intermediate-,
and high-risk, based on the sum of Gleason score, prostate-specific antigen (PSA) level, and
clinical stage [2]. The five-year survival rate is nearly 100% for patients with localized PCa.
However, it drops to 30% in those with distant metastasis [3]. Metastasis usually spreads
through the lymphatics to the pelvic and para-aortic lymph nodes and hematogenous to
the bones. Metastases to other organs (such as lungs and liver) are uncommon and related
to the unusual pathology with a poor prognosis [4]. PCa is generally diagnosed using
digital rectal examination, serum PSA level assessment, and transrectal ultrasonography
(TRUS)-guided biopsy [2]. However, the diagnosis of clinically suspicious PCa is based on
histopathologic confirmation. Histologically, the most common pathology in PCa is acinar
adenocarcinoma [5].

Different imaging modalities are employed in the initial evaluation of PCa. Despite
providing valuable information, there are some limitations. TRUS provides only a local field
of view and is not sensitive enough for the detection of small primary lesions [2]. Computed
tomography (CT) has limited value in the detection of lymph node (LN) metastasis and
relatively poor performance in localizing early bone marrow metastasis [6]. Magnetic
resonance imaging (MRI) is highly sensitive for primary tumor detection; however, again
sensitivity is suboptimal for LN staging. Also, the limited field of view of MRI in the
standard procedure overlooks metastasis outside the imaging area [6]. Functional imaging
with bone scintigraphy has long been used for the assessment of bone metastasis with low
specificity and poor sensitivity in low PSA levels [6].

Attempts were taken to find a PCa-specific agent, and a number of monoclonal
antibodies were produced. Finally, [111In]In-capromab pendetide was employed by Wynant
et al. in 1991 [7] and was approved soon after. However, the image quality and sensitivity
were unsatisfying. Noteworthy, the prevailing oncology positron emission tomography
(PET) tracer, 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) performed unsatisfactory in the
vast majority of differentiated PCa [8]. Subsequently, new tumor imaging PET tracers,
[11C/18F]choline and [11C]acetate, were developed, and their substantial uptake was
depicted in PCa cells [9,10]. Hoping to overcome the limitations of previous modalities,
several studies were conducted. However, moderate sensitivity and specificity were shown
in the primary staging [11,12]. Later, small molecule prostate-specific antigen (PSMA) PET
tracers were introduced and rapidly gained popularity [13]. PSMA is a metallopeptidase
and a transmembrane glycoprotein overexpressed in PCa cell membranes, while PSA is
a glycoprotein secreted into the lumen of prostatic ducts, which is over-released into the
blood circulation following destruction of glandular architecture in PCa [14]. Meanwhile,
99mTc-labeled tracers were also developed [15–20] to hypothetically provide PCa imaging
cheaper and more extensively available.

Functional imaging (i.e., PET/CT and PET/MRI) using PCa-specific PET-tracers
shows high accuracy in the biochemical recurrence status [21]. However, for the primary
local staging, MRI and surgery are still the gold standards [2]. This might be related to
the different tumor characteristics of the prostate cancer and mild to moderate uptake
of PET-tracers (even specific ones) in the benign intra-glandular findings such as benign
prostate hyperplasia and prostatitis, which may not be differentiable from cancerous tissues.
Recent accessibility to hybrid PET/MRI systems is intriguing, providing simultaneous
anatomical details and functional data, which may further increase diagnostic accuracy.
Furthermore, the application of the ever-growing field of radiomics and machine-learning
in PCa may lead to more accurate non-invasive primary staging, which may be comparable
with histopathological findings.

Despite all developments in imaging, the non-invasive staging of PCa is still a chal-
lenge. Here, we recapitulate the role of functional imaging in the evaluation of primary PCa.
We briefly mention the most popular radiotracers that have been implemented, and we
review the diagnostic accuracy of the different methods in the primary staging, providing
the results of meta-analyses, whenever available.
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2. Targeting Agents

Radioimmunoscintigraphic imaging with [111In]In-capromab pendetide was first
employed by Wynant et al. in 1991 for the imaging of PCa [7]. The agent targets the
intracellular domain of PSMA [22]. PSMA is a type II transmembrane glycoprotein, overex-
pressed on the surface of prostate cancer cells [23]. Scintigraphy with [111In]In-capromab
pendetide had inherent drawbacks for imaging [24]; however, it outperformed CT and MRI
in initial studies for LN staging [25] and was approved by FDA in 1996. The sensitivity and
specificity of [111In]In-capromab pendetide for LN staging were reported 62% and 72%,
respectively [25].

Soon after, a 99mTc-labeled monoclonal antibody was also produced [26]. Subsequently,
another anti-PSMA agent-J591 was developed, binding to the extracellular domain and
producing less immune response [27]. It was labeled with 111In and 89Zr for imaging
purposes [28,29]. Seeking better results, the mini-body IAB2M became available and
labeled with 89Zr for PET imaging [30]. The development of PSMA ligand inhibitors,
binding to a specific section on PSMA molecule, opened a new area for imaging and
therapy of PCa and put monoclonal antibodies in a shadow. Various PSMA inhibitor
ligands were synthesized and labeled with different radioisotopes [27]. These agents also
became available for scintigraphy and single-photon emission computed tomography
(SPECT) tracers [15–20].

Nevertheless, one of the urea-based agents, PSMA labeled with 68Ga and later with
18F, revealed astonishing initial results and dominated the clinical investigations. Hence,
other agents are scarcely addressed in the literature. 68Ga-, 18F-, and 99mTc-labeled PSMA
will be discussed below.

2.1. [18F]FDG

For oncology PET imaging, [18F]FDG is the most commonly used radiotracer. [18F]FDG
is an analog of glucose and is taken up by malignant cells based on their metabolic activ-
ity [31]. However, the low metabolism of the well-differentiated PCa, the overlap between
[18F]FDG uptake in malignant and benign lesions, as well as urinary excretion of [18F]FDG,
limit its application in PCa [32–35].

[18F]FDG PET/CT may have some values in the setting of the advanced progressive
disease, depicting some of the lesions with hypermetabolism [36,37]. Also, [18F]FDG uptake
may be seen in some aggressive primary tumors and LN metastasis [38]; nevertheless, it has
a limited value for the diagnosis of the primary tumor and primary staging of LN or bone
metastases [8,39,40]. The sensitivity of 37–52% has been reported for prostate lesions [38].
On the other hand, [18F]FDG PET/CT harbors prognostic value. Higher intensity of tracer
uptake has been correlated with higher glucose transporter-1 (GLUT1) expression [41],
advanced stage [40], higher pathological grade [42], lower cancer-related survival [42], and
disease progression [43].

Finally, any incidental [18F]FDG uptake in the prostate gland should not be ignored.
A meta-analysis by Bertagna et al. in 2014 showed that the prevalence of incidental
uptake in the prostate gland is 1.8% [44]. Also, they demonstrated that the pooled risk of
malignancy in those patients underwent further evaluation and biopsy is 17% and 62%,
respectively [44].

In summary, [18F]FDG PET/CT is of limited value in the evaluation of primary PCa.
However, it provides prognostic information regarding tumor aggressiveness and patients’
outcome. In addition, incidental uptake in the prostate gland should be further evaluated
to rule out probable PCa.

2.2. [11C/18F]Choline

Choline PET was first introduced in 1998 for the evaluation of PCa by Hara et al. [9].
The rationale to use radiolabeled choline in the evaluation of malignancies was the up-
regulation of the choline kinase in tumors leading to trapping choline in the cell mem-
brane as phosphatidylcholine [45]. However, other mechanisms may be involved in PCa
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cells [45]. Two major radiotracers of choline have been commonly used in clinical practice,
[11C]choline and [18F]choline [46].

[11C]choline showed superiority over [18F]FDG and gained popularity [47], and later,
a multitude of studies assessed its diagnostic accuracy in the primary staging of PCa. In
early studies, Farsad et al. demonstrated a sensitivity of 66% and specificity of 81% for the
detection of the primary tumor [48]. Also, de Jong et al. reported the sensitivity of 80% and
specificity of 96% for LN staging [49].

PCa cells also exhibited an increased uptake of 18F-fluorinated choline [50–52]. How-
ever, an early study depicted that [18F]choline is not helpful in localizing the primary
tumor [53]. Later, several studies demonstrated that [11C/18F]choline is not a tumor-
specific agent, and there is a significant overlap of the intensity of uptake between benign
and malignant lesions [11]. In a meta-analysis by Evangelista et al., the pooled sensitivity
and specificity of [11C/18F]choline PET/CT were 62.6% (95% CI: 54–70.6%) and 76.3% (95%
CI: 65.4–85.1%), respectively, for the detection of the primary lesions [54]. Additionally,
no remarkable association was noted between the [11C/18F]choline uptake of the primary
tumor and histopathologic or laboratory parameters [55–57].

A number of further surveys evaluated its role in N- and M-staging. Beheshti et al.
reported a patient-based sensitivity of 45% and specificity of 96% for the detection of LN
metastasis [56]. The sensitivity was higher in larger LNs (66% for metastases larger than
5 mm) [56]. Subsequently, in a meta-analysis, Evangelista et al. demonstrated a pooled
sensitivity of 49.2% (95% CI: 39.9–58.4%) and pooled specificity of 95% (95% CI: 92–97.1%)
for the primary LN staging [58]. Later, compared to MRI, the node-based sensitivity of
[11C/18F]choline proved to be superior to that of MRI, in both staging and re-staging status
(51% [95% CI: 46–57%] vs. 39% [95% CI: 34–44%], respectively) [59].

Furthermore, in the evaluation of bone metastases in primary staging, [18F]choline
detected marrow-based lesions without morphological abnormalities [60,61]. In a meta-
analysis, Guo et al. showed a pooled sensitivity of 95% (95% CI: 85–100%) and specificity of
91% (95% CI: 83–100%) for the detection of bone metastasis using [11C/18F]choline [62]. In
another meta-analysis including both primary staging and restaging, Zhou et al., depicted
that the sensitivity of [11C/18F]choline PET/CT is comparable with MRI (87% [95% CI:
80–92%] vs. 91% [95% CI: 69–98%], respectively) although inferior to Na[1 8F]F PET/CT
(96% [95% CI: 87–99]) [63].

Finally, hybrid [18F]choline PET/MRI imaging may provide additional information
evaluating the different aspects of the malignant cells although no significant correlation has
been found between functional parameters derived from MRI and [18F]choline PET [64,65].
[18F]choline multi-parametric (mp)MRI has increased the detection rate of primary PCa
lesions in Gleason score ≥7, in some studies [66,67]. Also, [18F]choline PET/MRI may
provide further information correlating with PSA level, Gleason score, etc. [67].

Overall, keeping in mind that the role of [11C/18F]choline PET/CT is more prominent
in the evaluation of biochemical recurrence [68], it had a suboptimal value in the initial
staging of PCa. It showed limited sensitivity and specificity for the depiction of the primary
tumor. Considering LN staging, it was not able to detect half of the malignant LNs, mainly
the micrometastases (i.e., <5 mm), although the specificity was substantially high. The
performance was acceptable for the detection of bone metastases but slightly inferior to
the bone-specific agent, Na[18F]F PET/CT. However, it led to a change of the treatment
approach in about 20% of high-risk PCa patients compared with the conventional imaging
modalities (Figure 1a,b) [56]. Imaging with hybrid PET/MRI is a novel method warranting
further studies to clarify its role.

2.3. [11C]Acetate

Acetate is a marker of metabolism. It is incorporated in the fatty acid synthesis
associated with the cell membrane, reflecting high growth activity in malignant cells [69].
It has been more than two decades that [11C]acetate PET is introduced. Meanwhile, [18F]
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acetate was also developed, but due to initial unfavorable results, no further investigations
proceeded [45].

Figure 1. Imaging with different radiotracers localizing primary prostate cancer and its metastasis. (a) [18F]choline PET/CT:
coronal fused images in a high-risk patient with GS = 8 and PSA = 9.6 ng/mL: primary lesion in the prostate gland (white
arrow) and a metastatic lymph node in the left iliac chain (yellow arrow). (b) [68Ga]Ga-PSMA PET/CT: MIP (right) and
transaxial (left) images in a high-risk patient with GS = 8 and PSA = 4.8 ng/mL: primary lesion in the prostate gland (white
arrow) and multiple metastatic lymph nodes in the pelvis (yellow arrow). An unexpected small lymph node is also detected
in the upper retroperitoneal region (blue arrow). The red arrowhead shows the physiologic activity in the right ureter.
(c) [68Ga]Ga-RM2 PET/CT: MIP (right), transaxial (left) images and pathology section (right lower) in a high-risk patient
with pT3a N1 (1/23) and GS = 9: primary lesion in the prostate gland (white arrow). The tumor is outlined with a green
line and arrow in the pathology section. (d) Transaxial images of [18F]choline PET/CT (left) and [18F]Na PET/CT (right)
in a high-risk patient, showing an early bone marrow metastasis (red arrow) without morphological changes on CT. GS:
Gleason Score; MIP: Maximum Intensity Projection; PSA: Prostate-Specific Antigen.

In 2002, Oyama et al. reported successful imaging of primary PCa and its LN metas-
tases with [11C]acetate PET [10]. In this primary study, they depicted a sensitivity of 83% for
the advanced PCa [10]. From early studies, the non-specific accumulation of [11C]acetate
was documented in the malignant and benign hyperplastic or normal prostate cells [70],
which was confirmed in the following studies [71]. No correlation was demonstrated be-
tween biochemical (PSA) or histopathological (GS, FAS) findings or the intensity of uptake
in the primary lesions [72–74]. Ultimately, in a meta-analysis, Beheshti et al. showed a
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pooled lesion-based sensitivity of 75.1% (95% CI: 69.8–79.8%) and specificity of 75.8% (95%
CI: 72.4–78.9%) for the detection of primary tumor [12]. In the patient-based manner the
pooled sensitivity was 93.0% (95% CI: 90.0–96.0%) [46].

The diagnostic accuracy for LN metastases is addressed less extensively in the liter-
ature [75]. Haseebuddin et al. demonstrated the sensitivity and specificity of 68.0% and
78.1%, respectively [75]. The respective values were reported 62% and 89% in LN-region-
based manner by Schumacher et al. [76]. They also claimed that although the sensitivity
was suboptimal for the detection of LN metastases, patients with positive PET had a higher
rate of treatment failure [76]. Including the limited data, the pooled sensitivity was 73.0%
(95% CI: 54.0–88.0%) in Beheshti et al.’s meta-analysis [12].

Considering distant metastases, skeletal in particular, the number of studies in the pri-
mary staging status is limited. It is mainly because patients with proven distant metastases
in the initial staging were not included in those studies. In an early study, Omaya et al.
showed that bone scintigraphy localizes 7 bone metastases, of which only 6 are detectable
on [11C]acetate PET [10]. Contrarily, in a study by Strandberg et al., [11C]acetate PET/CT
was superior to conventional bone scintigraphy in untreated high-risk PCa patients [77].

Investigating the additional value of hybrid PET/mpMRI, Polanec et al. showed that
[11C]acetate PET/mpMRI improves the detection of primary lesions compared to MRI
alone (sensitivity of 100% vs. 72.2%, respectively) [78].

In summary, similar to [11C/18F]choline, [11C]acetate has non-specific uptake in the
prostate gland. It also misses a fraction of tumoral foci, limiting its value in the detection
of primary PCa. Again, the accuracy for the detection of LN metastasis is suboptimal.
Considering the accuracy in the detection of distant metastases, data is limited; however, it
seems to have comparable or slightly higher sensitivity compared to bone scintigraphy in
the detection of bone metastasis. [11C]acetate PET/CT is more applicable in the evaluation
of biochemical recurrence with higher PSA values [79]. Finally, the addition of metabolic
parameters of [11C]acetate PET to mpMRI in order to increase the accuracy of hybrid
PET/MRI is an unsettled subject, requiring further investigations.

2.4. [68Ga]Ga-PSMA

Seeking after more favorable agents, a compound of small-molecule PSMA was
developed (68Ga-labelled HBED-CC conjugate), which showed more affinity and specificity
in binding to the PSMA-expressing PCa cells [80]. [68Ga]Ga-PSMA PET/CT was first
employed in the clinic in 2012 [13]. Given its distinguished results, 68Ga-labeled PSMA
rapidly gained popularity and was used in several surveys.

For the detection of the primary tumor, the performance of [68Ga]Ga-PSMA PET/CT
showed promising results. Uprimny et al. reported patient-based sensitivity of 91%
compared to the TRUS-guided biopsy [81]. However, it is known that TRUS-guided biopsy
per se is suboptimal for the detection of primary PCa [82]. Several other publications
addressed this issue, and ultimately in a meta-analysis, von Eyben et al. reported the
pooled lesion-based sensitivity and specificity of 70% (95% CI: 53–83%) and 84% (95% CI:
24–99%) for the detection of primary tumor, respectively [83]. Expectedly, some small
lesions are missed considering the limited spatial resolution of PET and the presence of
background activity in the urinary tract. Also, the low sensitivity may be in part due to
lower intensity of uptake in tumors with lower Gleason scores (i.e., <7) [84].

Some studies investigated the impact of the intensity of [68Ga]Ga-PSMA uptake in
differentiation of the tumor. Correlations were shown between higher maximum standard-
ized uptake value (SUVmax) with Gleason score >7 and higher PSA level [81,85,86], as well
as the presence of distant metastasis [87,88].

For T-staging and treatment planning of PCa, there is an established role for multi-
parametric (mp) and biparametric (bp) MRI [2]. In this regard, some studies evaluated the
ability of [68Ga]Ga-PSMA PET/CT in determining the intra-prostatic location and disease
extension. A meta-analysis by Woo et al. showed moderate sensitivity and high specificity
of [68Ga]Ga-PSMA PET/CT for exhibiting local tumor extent [89]. Pooled sensitivity and
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specificity respectively were 68% (95% CI: 53–81%) and 94% (95% CI: 90–96%) for the
seminal vesical invasion and 72% (95% CI: 56–84%) and 87% (95% CI: 72–94%) for the
extra-prostatic extension [89].

Regarding N-staging, the reported range for sensitivity is variable [90,91]. Büdaus
et al. were the first to evaluated the accuracy of [68Ga]Ga-PSMA PET/CT for the detection
of metastatic LNs before radical prostatectomy [92]. While both patient- and node-based
sensitivity were low (33.3% and 27.3%, respectively), the specificity was excellent (100%).
The median size of detected LNs was 13.6 mm in their study [92]. Also, a recent study
reported similar corresponding values of 30.6% for patient-based sensitivity and 95.6%
for patient-based specificity with a median size of 7 mm for the detected LNs [93]. There
could be an inevitable selection bias in the mentioned studies since they have included
patients who are already candidates for radical prostatectomy with a lower risk disease.
Furthermore, in a randomized trial (conventional vs. [68Ga]Ga-PSMA PET/CT), Hofman
et al. showed that the sensitivity of [68Ga]Ga-PSMA PET/CT for N-staging is 85% [94].

For LN staging in intermediate- and high-risk patients, a recent meta-analysis found
a high overall diagnostic value of [68Ga]Ga-PSMA PET/CT [95]. The pooled sensitivity
was 84% (95% CI: 55–95%) and specificity was 95% (95% CI: 87–98%) [95]. It should be
noted that the selection bias is also predictable in the studies included in this meta-analysis.
Except for the selection bias, the variation in reported sensitivity in different studies could
be due to the high dependence of the PET scan on the size of metastases in LNs.

From the view of M staging, studies have compared [68Ga]Ga-PSMA PET/CT with
conventional methods. PCa has a propensity for bone metastases. Hence, most of the
studies aimed to evaluate its role in the detection of bone metastasis. Compared with
bone scintigraphy, which is considered the standard imaging modality in the setting of
primary staging [2], [68Ga]Ga-PSMA PET/CT significantly outperformed bone scintigraphy
(sensitivity was 97% vs. 86% and specificity was 100% vs. 87%, respectively) [96]. The
other advantage of [68Ga]Ga-PSMA PET/CT over bone scintigraphy is the absence of flare
phenomenon; however, it is not relevant in the setting of initial staging [97]. Also, the
sensitivity of [68Ga]Ga-PSMA PET/CT was superior to MRI in terms of patient-based (97%
vs. 91%, respectively) and lesion-based analyses (88% vs. 81%, respectively) [63]. However,
[68Ga]Ga-PSMA PET/CT showed comparable diagnostic power with the high-sensitive
Na[18F]F PET/CT [63]. The sensitivity and specificity for [68Ga]Ga-PSMA and Na[18F]F
PET/CT were 97% (95% CI: 89–99%) vs. 96% (95% CI: 87–99%) and 100% (95% CI: 00–100%)
vs. 97% (95% CI: 90–99%), respectively [63]. [68Ga]Ga-PSMA PET/CT also successfully
detects visceral metastases [98–100].

Additionally, there are studies providing the extent of management alteration using
[68Ga]Ga-PSMA PET/CT when it is performed for the primary staging, revealing promis-
ing results (Figure 1c). In different prospective and retrospective studies, it has changed
management in 12.6–30% of patients [101–103]. In another prospective randomized trial,
Hofman et al. found a 27% higher accuracy for initial staging and a higher rate of manage-
ment change in 13% of patients using [68Ga]Ga-PSMA PET/CT compared to conventional
imaging [94].

In summary, [68Ga]Ga-PSMA PET/CT detects primary PCa and provides accurate
T-staging in approximately two-thirds of patients. Hence, it is not an ideal imaging method
for the evaluation of primary prostatic lesions. In the detection of LN metastasis, although
the performance of [68Ga]Ga-PSMA PET/CT is superior to other modalities, it cannot
rule out the existence of N1 disease in approximately 15% of patients; therefore, extended
pelvic lymph node dissection (ePLND) remains the gold standard for LN staging. For
the detection of distant metastases, [68Ga]Ga-PSMA PET/CT is superior to conventional
methods, mainly due to its accuracy for the detection of bone metastasis.

Although there are limitations for T- and N-staging, [68Ga]Ga-PSMA PET/CT impacts
patient management. The results are substantial enough to be evaluated in future studies
and to determine whether [68Ga]Ga-PSMA PET/CT is an essential modality for primary
staging. Despite recent FDA approval, the application of [68Ga]Ga-PSMA PET/CT is still
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not explicitly mentioned in the guidelines [2,104]. Further studies evaluating the long-term
impact of [68Ga]Ga-PSMA PET/CT or MRI seems necessary to clearly understand its role
in the primary staging of PCa.

2.5. [18F]PSMA

As discussed before, PSMA ligands are playing an increasingly important role in the
primary staging of PCa in intermediate- and high-risk patients [105]. The most widely used
PSMA-based radiopharmaceutical is [68Ga]Ga-PSMA-11 [106]. [68Ga]Ga-PSMA-based
PET was recently approved by FDA for PCa patients at initial staging and in the case
of biochemical recurrence; however, it has some limitations [106]. In this regard, some
new PSMA molecules labeled with other radioisotopes, such as 18F, were developed [107].
Fluoride-18 is a cyclotron-generating radioisotope that has more favorable characteristics
than 68Ga, including production in larger quantities, transportation to satellite centers,
longer physical half-life, delayed imaging, theoretically better spatial resolution [108–110],
and possibly detection of smaller lesions due to lower positron energy [107,111]. Also,
[18F]PSMA-1007 has biliary excretion. Non-urinary clearance may be advantageous for
primary staging and in patients with possible local recurrence [112]. On the other hand,
this may limit the ability of [18F]PSMA-1007 to detect liver lesions; however, the liver is not
a common site for metastasis in PCa.

Except for [18F]PSMA-1007, there are other clinically available 18F-labeled PSMA
agents ([18F]DCFPyL and [18F]DCFBC) [113–116]. Despite some differences, which may in-
fluence our preference for clinical use, all seem equally effective for imaging of PCa [111,112,117].
Very recently, [18F]FDCFPyL was also approved by FDA for staging and re-staging of PCa.
Yet, there is no clear recommendation regarding which tracer should be selected [111].

From the initial studies, 18F-labeled PSMA PET/CT showed good accuracy in the de-
tection of the primary lesions in the prostate gland [112,118,119]. Patient-based sensitivity
ranged from 95 to 100% in different studies [120–122]. Moreover, associations between
SUVmax and aggressiveness, higher GS or higher PSA level were demonstrated [120], but
not in all studies [121].

In a head-to-head comparison of [18F]PSMA-1007 and [68Ga]Ga-PSMA-11 PET/CT, a
perfect agreement was documented between two tracers in the detection of all dominant
primary lesions [117,123]. However, the [18F]PSMA-1007 PET/CT could detect a few
additional lesions [117,123].

For T-staging, [18F]PSMA-1007 PET/CT showed a good correlation with mpMRI and
histopathology. It detected seminal vesicle invasion more than mpMRI (90% vs. 76%),
while mpMRI was more accurate in detecting extracapsular extension (90% vs. 57%) [122],
suggesting that hybrid [18F]PSMA-1007 PET/MRI would be a valuable modality for non-
invasive T-staging.

In the early study of Giesel et al., the sensitivity and specificity (95% and 100%, respec-
tively) were excellent for the metastatic LNs, including very small-sized ones (1 mm) [118].
In another, Sprute et al. compared [18F]PSMA-1007 PET/CT results with histology in
1746 LNs [124]. They reported node-based sensitivity of 71.2% and specificity of 99.5% [124].
Also, they found that the node-based sensitivity increases to 81.7% and patient-based
sensitivity to 85.9% when only LNs larger than 3 mm are included [124]. Considering mul-
tidisciplinary consensus as the standard, Malaspina et al. showed significant superiority
of [18F]PSMA-1007 PET/CT over conventional imaging with patient-based sensitivity of
87% and specificity of 98% [125]. [18F]FDCFPyL also showed the suboptimal sensitivity of
28.1–52.5% with excellent specificity of 94.0–99.4% for N-staging [126,127]. It seems that
[18F]PSMA-1007 is more sensitive than [18F]FDCFPyL for N-staging. It may be due to the
urinary elimination of [18F]FDCFPyL [128], which may obscure some small LNs in the
pelvic cavity.

Regarding LN staging, 18F-labeled PSMA PET/CT shows variable sensitivity, depend-
ing on the node- or patient-based analyses. Also, it demonstrates excellent specificity.
It may be in part due to the inherent higher resolution of 18F radioisotope and also low
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urinary excretion of 18F-labeled agents, theoretically allowing the detection of smaller LNs
with a very low rate of false-positive findings.

Moreover, for the detection of bone metastases, Anttinen et al. compared [18F]F-PSMA-
1007 PET/CT with conventional methods, reporting a clear superiority of [18F]PSMA-1007
PET/CT over bone scintigraphy, CT, SPECT/CT and whole-body MRI (area under curve
(AUCs) were 0.90–0.91 vs. 0.71–0.8, 0.53–0.66, 0.77–0.75, and 0.85–0.67, respectively) [129].
They also revealed that [18F]PSMA-1007 PET/CT changes management in 18% of the
patients [129]. Noteworthy, a substantial proportion of patients demonstrate non-specific
bone lesions on [18F]PSMA-1007 PET/CT, which may be unrelated to PCa; hence, such
lesions, especially when solitary, should be interpreted with caution to avoid overreading
and improper treatment [130,131].

In summary, 18F-labeled PSMA agents are less comprehensively evaluated compared
to 68Ga-labeled agents. 18F-labeled PSMA agents appear to be more promising, as they
exhibit high labeling yield, excellent tumor uptake, and rapid, non-urinary excretion [118].
There is an increasing desire for 18F-labeled PSMA imaging in PCa, especially in centers
with higher numbers of PCa patients [132]. However, there is no clear recommendation
regarding which tracer should be selected [111].

18F-labeled PSMA PET imaging successfully detects primary lesions and metastases.
Hypothetically better physical characteristics of [18F]PSMA-1007 PET/CT along with
the non-urinary excretion could help detect smaller lesions in both prostate gland and
metastatic LNs. The detection of smaller lesions has already been documented in a number
of studies. For the primary lesions in the prostate gland, the detection rate is high. Perhaps
dual imaging with mpMRI or with hybrid PET/MRI yields the best result. Also, for LN and
distant metastases, 18F-labeled PSMA PET/CT outperforms conventional methods. The
specificity is excellent for LN involvement. However, the sensitivity is reportedly variable
for [18F]PSMA-1007 and [18F]FDCFPyL PET/CT. Head-to-head comparison will precisely
determine the sensitivity of different tracers compared to each other. Future studies are
mandatory to elucidate the accuracy of 18F-labeled PSMA PET imaging in the local staging,
focusing on the important question, whether it can replace the standard ePLND. Finally, the
non-specific uptake in bone lesions, with benign nature, must be considered with caution
to avoid misinterpretation.

3. Other Agents

In addition to the discussed radiotracers, a number of other tracers have been used
to explore other aspects of PCa, including amino acid transporters, androgen receptors,
bombesin receptors, etc. These agents are briefly mentioned in this section.

3.1. [99mTc]Tc-PSMA

The demand for PSMA-targeting PET imaging has increased significantly. However,
PET/CT is a costly procedure and not widely available [133]. Therefore, different PSMA
inhibitors were labeled with 99mTc [134–138]. [99mTc]Tc-PSMA scintigraphy has been
investigated for different purposes, such as biochemical recurrence, primary staging, and
radio-guided surgery [139–143].

One of the promising ligands is [99mTc]Tc-MIP-1404, evaluated for primary staging
using SPECT/CT in a few studies. The detection rate of 94–100% has been reported
for the primary lesions [17,143,144], correlating with the Gleason score [17,143] and PSA
level [17]. In a small report, the lesion-based sensitivity was 62.5% (25/40) for tumors with
the Gleason score of 6 to 9 [145]. For LN staging, the sensitivity and specificity were 50%
and 87%, respectively [143].

Limited studies have compared the diagnostic performance of [99mTc]Tc-PSMA SPECT/CT
with [68Ga]Ga-PSMA PET/CT [142,144,146,147], mostly including patients with biochemi-
cal recurrence [142,146,147]. Expectedly, all show superiority of PET/CT [142,144,146,147].
The detection rate was significantly lower in the prostate bed compared to extra-prostatic
regions, in studies evaluating biochemical recurrence [142,147], while the primary le-
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sions were localized with high accuracy [144]. Lesions in biochemical recurrence are
smaller, so theoretically harder to be visualized in SPECT/CT images with inherent limited
spatial resolution.

Overall, [99mTc]Tc-PSMA SPECT/CT is not an ideal modality for primary staging. Due
to the encouraging detection rate of the primary lesions, it might be used for guided biopsy
for patients with high suspicion and negative biopsies, in patients with undetermined
imaging findings or in regions with unavailable mpMRI or PET/CT facilities. In the
biochemical recurrence, it might be helpful in radio-guided surgery or the evaluation of
extra-prostatic regions. The most logical application of [99mTc]Tc-PSMA SPECT/CT seems
to be documentation of PSMA avidity before radioligand therapy.

3.2. [11C]Methionine

Similar to other malignancies, the increased activity of amino acid transporters was
considered as a target to depict PCa lesions. [11C]Methionine shows minimal urinary
excretion with low background activity in the pelvic cavity [148]. [11C]Methionine PET/CT
has been used to detect primary lesions [148,149] and differentiate significant lesions
(Gleason score >5) from non-significant ones (Gleason score ≤5) [150]; however, the results
were unsatisfactory.

3.3. [18F]Fluciclovine (FACBC)

[18F]Fluciclovine, also known as FACBC (trans-1-amino-3-18F-fluorocyclobutanecarboxylic-
acid), is a synthetically labeled amino acid [151,152]. The ability of [18F]Fluciclovine
PET/CT to characterize primary tumors is somehow limited due to the overlap between
the intensity of tracer uptake in the benign and malignant lesions [151,152]. The pooled
specificity was less than 50% for the prostate bed lesions (combined primary and recurrent
lesions) [153]. Additionally, it has shown comparable sensitivity with conventional imaging
in the detection of LN [154–156] and bone [157] metastases. Similar to other PET tracers,
the specificity was high for metastatic LNs [154,155].

[18F]Fluciclovine PET/CT performed better in the evaluation of recurrent disease [158]
and was approved by FDA in 2016 [153]. However, later, it was shown to be inferior to
[68Ga]Ga-PSMA PET/CT [159]. Hence, it seems that [18F]Fluciclovine PET/CT has no
significant role in the primary staging of PCa, and will be replaced by new PSMA targeting
agents for biochemical recurrence in guidelines.

3.4. Androgen Receptor

Additionally, androgen receptor expression has been assessed using 16beta-18F-fluoro-
5-alpha-dihydrotestosterone [18F]FDHT PET/CT [160]. In a study by Dehdashti et al., the
sensitivity and lesion detection rates of [18F]FDHT PET/CT were reported to be 63% and
86%, respectively [161]. The positive scan results correlated with higher PSA levels [161].
Additionally, the sensitivity was reported to be inferior to that of [18F]FDG PET/CT [162].
As discussed in other studies [163,164], it seems that [18F]FDHT PET/CT may have a
more significant role in the management and prognostication of advanced PCa rather than
initial staging.

3.5. Gastrin-Releasing Peptide Receptor

Another imaging probe targets gastrin-releasing peptide receptor (GRPR), from the
bombesin receptor family [165,166]. It is overexpressed in most PCa cells [167]. Bombesin
increases the potential of invasion and migration of PCa [168,169]. Various GRPR agonists
and antagonists have been synthesized and labeled with different radioisotopes, among
which antagonists show superior imaging characteristics [170]. RM2 labeled with 68Ga is
one of the antagonists with promising results, introduced in 2011 [171] and clinically used
in 2013 (Figure 1d) [172]. Kähkönen et al. showed a sensitivity of 88% and specificity of 81%
for the evaluation of primary lesions and sensitivity of 70% for LN metastasis [173]. Also,
Beheshti et al. showed an encouraging lesion-based sensitivity of 81% with [68Ga]Ga-RM2
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PET/CT for the primary lesions in the prostate gland, which was higher compared to
[18F]Choline PET/CT (68%) [174]. Other promising antagonists, [68Ga]Ga-RM26 [165]
and [68Ga]Ga-SB3 PET/CT [175,176], have also been shown to be safe and effective in the
detection of primary and metastatic PCa.

Given promising results of targeting GRPR, a plethora of newer agents are being de-
veloped [175–178] to find an optimum radiotracer. Additionally, due to the heterogeneous
expression of PSMA and GRPR in PCa cells, the concept of heterodimeric targeting of PCa
is being investigated [179,180]. GRPR antagonists have drawn the attention of multiple in-
vestigators. Further studies will shed light on their precise role in PCa, especially opposing
or along with PSMA-targeting agents. Summary of diagnostic performance, advantages,
and disadvantages of different radiotracers in the evaluation of the primary staging of PCa
are provided in Table 1.

Table 1. Diagnostic performance, advantages, and disadvantages of different radiotracers in the evaluation of the primary
staging of prostate cancer.

Radiotracer Lesion
Site

Sensitivity
(%)

Specificity
(%) Advantages Disadvantages Reference

[18F]FDG T 37–52
67~

-
72~

• Providing prognostic
information.

• Incidental uptake is a
warning sign.

• Widely available.

• Limitation in
well-differentiated PCa.

• Uptake overlap in
malignant and
benign lesions.

• Urinary excretion.

[32,34,35,38,41,44,181]

[11C/18F]Choline

T 62 76

• Non-specific for
tumoral lesions.

• Limited sensitivity.
• No association between

the intensity of uptake
with histopathologic or
laboratory parameters.

• Urinary excretion.

[11,54–57]

LN 50–59
51 *

92–95
99 *

• High specificity.
• Node-based sensitivity

higher than
conventional imaging.

• Limited value in
small LNs. [56,58,59]

BM 95 91
• Detecting early

marrow metastasis.
• Comparable sensitivity

with MRI.

• Inferior sensitivity in
comparison with
Na[18F]F PET/CT.

[60–63]

[11C]Acetate
T 93

75 *
-
73 *

• Non-urinary excretion.
• Imaging in 20 min

after injection.

• Non-specific for
tumoral lesions.

• Limited sensitivity.
• No association between

the intensity of uptake
with histopathologic or
laboratory parameters.

• Limited availability.

[12,46,70–74]

LN 73 - • Suboptimal sensitivity
for small LN metastasis.

[12,76]

[68Ga]Ga-PSMA

T 70 * 84 *

• Moderate sensitivity and
high specificity for the
detection of local
tumor extent.

• Correlation between
SUVmax of the primary
tumor and GS, PSA and
probability of presence of
distant metastases.

• Limited sensitivity for
small lesions.

• Lower uptake in tumors
with lower GS.

• Urinary excretion.

[81,83–85,87–89]

LN 61–84 95–97 • High specificity.
• Suboptimal sensitivity

for small LN metastasis.
[83,92,93,95]

BM 97 100

• Higher sensitivity and
specificity compared to
bone scan.

• Superior sensitivity
compared to MRI.

• Comparable diagnostic
value compared to
Na[18F] F PET/CT.

[63,96]
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Table 1. Cont.

Radiotracer Lesion
Site

Sensitivity
(%)

Specificity
(%) Advantages Disadvantages Reference

[18F]PSMA

T 95–100 -

• Lower positron
energy/higher
spatial resolution.

• Non-urinary excretion.
• Good correlation with

mpMRI and
histopathology.

[107–109,111,112,120–122]

LN
87 §

71.2 *,§

28.1–52.5 ¤

98 §

99.5 *,§

94.0–99.4 ¤

• High spatial resolution
(detection of smaller LNs.

• Low rate of false
positive results.

[108,112,124,126–128]

DM 86–95% § 76–90% §
• Superior to bone scan

and MRI.

• Biliary excretion (limiting
detection of liver
metastases).

• Non-specific uptake in
bone lesions.

[129,130]

[18F]Fluciclovine
T 86.3 75.5 • Non-specific for

tumoral lesions.
[151,153]

LN 40 100 • High specificity. • Limited sensitivity. [154,155]

[99mTc]PSMA
T 94–100 -

• High accuracy for
detecting
primary lesions.

• Maybe helpful for guided
biopsy in suspicious
patients with
negative biopsies.

• Urinary excretion. [17,143,144]

LN 50 87 • Good specificity. • Low sensitivity. [143]

Na[18F]F BM 96 97 • High sensitivity.
• Non-specific agent.
• Only bone lesions.

[63]

[111In]In- capromab
pendetide LN 62 72 • Limited sensitivity.

• Poor image quality.
[25]

[18F]FDHT T 63 86

• Non-invasive evaluation
of hormone
receptor status.

• Correlation between a
positive scan and higher
PSA level.

• Low sensitivity.
• Limited availability.

[161,162]

[68Ga]Ga-RM2
T 88 81

• High lesion-based
sensitivity for
primary lesion.

[166]

70 - • Limited sensitivity for
LN metastasis. [173]

~ in both staging and re-staging; * Lesion-based; § [18F]PSMA; ¤ [18F]FDCFPyL; AUC: area under curve; BM: bone metastasis; DM:
distant metastasis; FDG: fluorodeoxyglucose; FDHT: 16beta-18F-fluoro-5-alpha-dihydrotestosterone; GS: Gleason score; LN: lymph node;
mpMRI: multiparametric magnetic resonance imaging; PCa: prostate cancer; PET/CT: positron emission computed tomography/computed
tomography; PSA: prostate-specific antigen; PSMA: prostate-specific membrane antigen; SUVmax: maximum standardized uptake value; T:
primary tumor; WD: well-differentiated.

3.6. Urokinase Plasminogen Activator Ligand

Another promising agent is the urokinase plasminogen activator (uPA) ligand as a
marker for aggressiveness [182,183]. Its uptake has been documented in primary lesions of
PCa [184]. PET/MRI targeting uPA receptors has shown a correlation with Gleason score
and may play a role in the non-invasive evaluation of primary prostate lesions [185].

3.7. VAPAC1-Targeting Agent

Overexpression of VAPAC1 receptors is seen in malignant lesions, including PCa [186],
which can be used as a target for imaging of tumoral lesions. VAPAC1 PET/CT has been
shown encouraging results in this regard in PCa [187], warranting further investigations.

3.8. αvβ3 Integrin-Targeting Agent

The αvβ3 integrin plays a role in the invasion, metastasis formation and angiogene-
sis [188]. It is overexpressed in PCa [188]. However, the preclinical studies did not show
remarkably distinguished uptake using 18F/68Ga-labaled RGD PET/CT [189,190].
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4. PET/MR

The high sensitivity of MRI for the evaluation of primary PCa is well-known [2].
Therefore, the hybrid PET/MRI system became an appealing modality in PCa since its
first introduction in 2010 [191]. Soon after, the mpMRI, also evaluating the functional
characteristics, became forward as a powerful modality in localizing tumors. Currently, its
efficacy is increasingly investigated in PCa.

The performance of PET/CT and PET/MRI was comparable in some studies [192,193];
however, in others, PET/MRI outperformed PET/CT or MRI images alone [67,194–196].
For example, Eiber et al. compared PET/MRI with mpMRI for PCa localization [194].
They showed that [68Ga]Ga-PSMA PET/MRI is superior to mpMRI for both detection and
localization of the primary lesions [194]. Li et al. compared PET/MRI (including mostly
[68Ga]Ga-PSMA) with mpMRI in a meta-analysis and reported that lesion- or region-based
accuracy of PET/MRI is higher than that of mpMRI with AUC of 0.93 (95% CI: 0.89–0.96)
vs. 0.84 (95% CI: 0.78–0.89), respectively [197]. Likewise, in two other meta-analyses
evaluating only [68Ga]Ga-PSMA in one and different tracers in the other, PET/MRI showed
high patient-based sensitivity [198,199].

For the extent of the local tumor PET/MRI seems to be a sensitive method, espe-
cially the MRI component [200]. The reported sensitives range from 66% to 94% for the
extracapsular extension or seminal vesicle invasion [201,202]. Also, Muehlematter et al.
demonstrated a slightly better accuracy for [68Ga]Ga-PSMA PET/MRI compared to mpMRI
for the detection of the extracapsular extension [203]. The accuracy was similar for seminal
vesicle infiltration [203]. The specificity of PET/MRI was slightly lower than mpMRI for
both [203].

Furthermore, for the evaluation of LNs, a few studies reported patient-based val-
ues. The range for sensitivity was from 60 to 68.8% and for specificity was from 95 to
100% [201,202,204,205]. Noteworthy, all missed LNs (5/16) were smaller than 4 mm in the
study by Grubmüller et al. [202], and the mean size of the missed LNs was 2.7 mm in van
Leeuwen et al.’s report [205].

For the evaluation of distant metastasis, whole-body PET/MRI and PET/CT appar-
ently have similar performances. Studies show a high correlation between two scans
for lesion detection [192,206,207]. However, anatomical delineation might be better on
PET/MRI [192].

Overall, standalone PET/MRI appears to be of great value for preoperative staging
of PCa. Due to high patient-based sensitivity and specificity, PET/mpMRI could have a
substantial role in guided biopsy of the prostate gland. Also, PET/MRI seems to be highly
sensitive for T-staging. However, the specificity seems suboptimal [203]. Additionally,
despite excellent specificity, PET/MRI still misses small metastatic LNs. The sensitivity is
moderate for N-staging; hence, it presently cannot preclude the invasive surgical N-staging.
For the evaluation of distant metastases, the limited available studies show comparable
performance for both PET/MRI and PET/CT. However, there are a number of technical
merits and demerits for performing whole-body PET/MRI [208]. Currently, we believe
that hybrid PET/MRI would be of more value for the evaluation of the primary lesions
in the prostate gland. Further studies are required to determine the cost-effectiveness of
whole-body PET/MRI in the setting of primary staging.

5. Radiomics

The current high-quality modalities provide valuable images for qualitative assess-
ment of the tumoral lesions. Quantitative and semiquantitative analysis can reveal further
characteristics of lesions, which are not assessable with human eyes. Beyond these funda-
mental data, there is extensive information, so-called features, embedded in the images.
Radiomics is a method used in medicine to extract the features from medical images and
unravel additional hidden characteristics. These features correlate with relevant genetic,
pathologic, clinical, or prognostic features [209]. Given the enormous number of features,
machine-learning algorithms are also employed for data analysis [210].
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The detection of the primary PCa is still a challenge. Mp-MRI has a high sensitivity
(93%, 95% CI: 88–96%) for the detection of PCa; however, the specificity (41%, 36–46%)
is poor, and there is a 10% false-negative result [211]. There is hypothetically spatial
heterogeneity in the malignant lesions [212], which cannot be visualized or detected with
usual quantitative parameters. Hence, radiomics has been engaged in the field of PCa.

A few studies evaluated the radiomics features of the primary lesion to discriminate
the primary tumor and predict adverse features. Machine-learning models have been
shown to correlate with human readers in detecting primary PCa [213,214]. They also
have improved diagnostic accuracy [215]. Also, the analysis of radiomics features could
discriminate lesions with Gleason score 7 and ≥8, as well as predict LN positivity with
AUC of >0.84 [213]. Moreover, machine-learning models outperformed standard PET
parameters and predicted LN status (AUC 0.86), metastasis (AUC 0.86), Gleason score
(AUC 0.81), and extracapsular extension (AUC 0.76) [216]. They could discriminate active
and responded sclerotic bone metastases on CT (AUC 0.76) [217]. Also, they were signifi-
cantly superior over known clinical, laboratory and histopathological adverse features in
predicting biochemical recurrence (AUC 0.90) and overall patient risk (AUC 0.94) [218].
Additionally, a recent study reported predictive values of the radiomics (derived from
metabolic tumor and peripheral zones) for Gleason score, PSA group, TNM stage, and
progression-free survival [219].

Overall, radiomics and the application of machine-learning in medicine are rather
novel practices. Radiomics is increasingly employed in the field of radiology and nuclear
medicine. Hypothetically, it will have a compelling impact on individualized medicine.
However, there are numerous technical challenges [220]. Considering PCa, radiomics has
shown promising results in delineating primary tumors and predicting stage and outcome.
Further studies are required to assess the different technical aspects, approaches, and the
definite clinical role of radiomics in PCa.

6. Sentinel Lymph Node Biopsy

Sentinel lymph node biopsy (SLNB) theoretically detects the first LNs in the chain
of lymphatic drainage of the primary tumor [221]. The expected benefits of SLNB are the
reduction in the surgical time, cost, and potential complications, as well as an improve-
ment of the staging by identifying unusual drainage roots [221,222]. SLNB was used in
PCa in 1999 [223] and proved to be a valid method for N-staging with high diagnostic
accuracy [224–226].

In a large study of 2020 patients with localized PCa, Holl et al. demonstrated a de-
tection rate of 98.2% for SLNs [226]. The false-negative result is an important issue. In
this regard, in a systematic review, Wit et al. calculated the overall false-negative rate to
be 4.8% (0–18.2%) [225]. Additionally, there is evidence that the hybrid tracer technique
using indocyanine green-99mTc-nanocolloid improves the detection of SLNs [227–230].
On the other hand, studies showed that ePLND does not necessarily provide complete
resection of involved LNs [230,231]. Metastatic LNs were missed in approximately 8–10%
of patients undergoing ePLND without SNB, mainly due to metastases outside the tem-
plate surgery [230,231]. Importantly, large non-randomized studies indicated that the
biochemical-free [230,232] and clinical-free [230] survival rates are higher in patients un-
dergoing SLNB.

The preferred tracer is 99mTc-nanocolloid [226,229]. Performing SPECT/CT provided
useful anatomical information and might result in more SLN detection, especially near
the prostate gland and beyond the area of ePLND [233]. Also, lymphoscintigraphy with a
PET-tracer, 68Ga-nanocolloid, successfully depicted SLNs and outlined aberrant drainage
into the pelvic bones and perivesicular, mesorectal, inguinal, and Virchow nodes [234].

Overall, SLNB seems to provide clinical benefit in the primary staging of PCa; how-
ever, it demands additional equipment, expenditure and expertise. Further randomized
controlled trials are necessary to clarify its additional clinical value compared to the
standard procedures.



Cancers 2021, 13, 5360 15 of 29

7. Discussion

The ultimate purpose of imaging is the accurate detection and staging for proper ther-
apy. Nuclear medicine has an indisputable role in the management of PCa. Numerous trac-
ers have been investigated for the evaluation of primary PCa, among which PSMA-targeting
PET-tracers has shown more accuracy in every aspect of PCa imaging [21,63,159,235–237]. A
summary of the role of different tracers in the evaluation of the primary staging of prostate
cancer is provided in Figure 2.

Figure 2. A summary of the role of nuclear medicine in the initial staging of prostate cancer. * The statements are based on
limited but promising initial data, warranting further investigations.

First, the idea of early non-invasive detection of primary lesions is always compelling.
Despite the impressive evolvement in PCa targeted radiotracers, from the early monoclonal
antibodies to [68Ga]Ga-PSMA PET/CT, the accuracy never reached an ideal level to pre-
clude invasive methods [83]. A part of this is due to the limited spatial resolution of the
imaging equipment and high background activity in the pelvic region. Also, the inherent
heterogeneity of the malignant cells in aggressiveness and receptor expression [179,180]
further complicates the detection of small lesions. On the other hand, the 18F-labled PSMA
PET imaging shows very promising results in the primary tumor detection and T-staging.
It seems advantageous in the pelvic cavity owing to non-urinary excretion. Also, it de-
tects more lesions compared to 68Ga-labeled counterpart. Further studies will determine
whether 18F-labled PSMA tracers would prevail in the PCa imaging. Of note, the rate of
18F-labled PSMA uptake in benign lesions has been reported to be high in the re-staging
status [238], which may require more knowledge and experience for precise interpretation.
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Recent developments in mpMRI and engaging it with the functional data of PET
have shown truly promising results. MpMRI is known for its high spatial resolution and
detection rate [2,211]. Interestingly, some studies have shown higher accuracy for hybrid
PET/MRI compared to mpMRI [67,194–196]. Additionally, the novel field of radiomics
has recently been exploited in PCa [215] and is expected to increase the accuracy of inter-
pretation and prediction of the stage and outcome. Noteworthy, invasive biopsy has a
significant false-negative rate [82], which can be reduced by the guidance of imaging. The
role of PET/CT, PET/MRI and radiomics needs to be clarified for the guided biopsy of the
prostate gland. Also, more studies are necessary to evaluate the optimum diagnostic power
of hybrid PET/MRI using the most accurate tracers and enrolling radiomics for primary
tumor detection.

Second, after the detection of a malignancy in the prostate gland, precise T-staging
is crucial for an optimal management and prognostication. Rather similar to the primary
tumor detection, PET-only has limited spatial resolution compared to MRI for T-staging.
Again, the application of hybrid PET/MRI [201–203] and radiomics [216] may increase
the certainty.

Third, the LN staging is another debatable concern in PCa. The ePLND is recom-
mended in intermediate- and high-risk PCa patients with a risk of LN invasion > 5% cutoff
of the Briganti nomogram (or >7% in the updated nomogram), although this threshold
misses 1.5% of patients with LN metastasis [2,231,239]. In addition, a significant number
of patients may unnecessarily undergo invasive staging, which is associated with the risk
of complications [225,240]. In a further aspect, due to the wide variation in lymphatic
outflow, nodal metastases may appear beyond the standard lymphadenectomy templates
(8–10% of cases) [230,231], which potentially leads to under-diagnosis and under-treatment.
The therapeutic benefit of ePLND is also still debatable [241]. A recent systematic review
concluded that ePLND does not improve oncologic outcomes [242]. These limitations
emphasize the need for sensitive imaging techniques with limited false-negative results to
improve the detection of LN metastasis and eliminate the need for unnecessary invasive
procedures [243,244].

Currently, conventional imaging cannot compete with PSMA-targeting PET-tracers
in the evaluation of LN metastasis; however, PSMA PET/CT still overlooks N1 disease in
approximately 15% of the patients [94,95,124]. The node-based sensitivity is even lower.
The size of the metastasis is a major influential factor. It is still unclear to how extent
these small missed LNs would impact outcome since usually all patients undergo ePLND,
which also practically fails to remove all involved LNs. Merging the high-quality data of
mpMRI with PET and exploiting radiomics is expected to further increase the predictive
potential of PET/MRI for LN metastasis. It would be of value to compare the predictive
ability of radiomics with established nomograms for LN involvement, which may more
individualize the surgical approach.

For precise LN staging, SLNB has also been successfully used in PCa, but it has
not gained enough popularity. Although it demands additional equipment, expenditure
and expertise, SLNB provides a higher detection rate [230,231]. Further randomized
controlled trials are necessary to clarify its additional clinical value compared to the
standard procedures.

Fourth, standalone PET/MRI appears to be of great value for preoperative staging
of PCa. For the evaluation of distant metastases, the limited available studies show
comparable performance for both PET/MRI and PET/CT [192,206,207]. Considering high
cost and limited availability, the cost-effectiveness of whole-body PET/MRI in the setting
of primary staging is yet to be established in future studies.

Fifth, the ultimate purpose of imaging is accurate management. The value of PSMA
PET/CT is more established in the detection of recurrent disease [245,246] rather than pri-
mary staging. Noteworthy, PSMA-targeting imaging can change management in 12.6–30%
of patients [101–103,129]. However, it is not yet a standard procedure in the setting of
primary staging.
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Despite recent FDA approval, the application of PSMA PET/CT in primary staging of
PCa is still not explicitly mentioned in the guidelines [2,104]. Further studies evaluating
the long-term impact of PSMA-targeting PET imaging is necessary to determine its role in
the primary staging of PCa.

Sixth, other tracers are continuously introduced to evaluate the different aspects of
the PCa and may find a role in PCa management. [11C]Methionine, [18F]Fluciclovine
(FACBC), and [18F]FDHT have shown limited application in the primary staging. Also,
[99mTc]Tc-PSMA SPECT/CT demonstrated a circumscribed application in primary staging
and may be helpful in other indications in areas with unavailable PET. However, early
studies using various GRPR-targeted tracers have demonstrated promising results. Also,
PET/CT targeting uPA and VAPAC1 is encouraging, requiring further studies.

8. Conclusions

Molecular imaging using nuclear medicine modalities plays a crucial role in the
management of PCa. Various tracers have been employed, among which PSMA-targeting
PET-tracers outperformed the others. Despite the high accuracy, the role in primary lesion
detection and T-staging is still limited. Nevertheless, the 18F-labeled tracers show higher
accuracy and may overcome this limitation. Also, the hybrid PET/MRI systems show
superior diagnostic accuracy for the evaluation of prostate bed, even when compared to
mpMRI. Additionally, the concept of PET/MRI-guided biopsy has become forward as an
interesting field for future investigations. For N-staging, the sensitivity is acceptable but still
limited to metastasis larger than 4 mm, in spite of the increased spatial resolution of state-
of-the art PET-scanners. Thus, ePLND remains the standard procedure. SLNB increases the
detection rate of ePLND and may possess clinical benefits. The positive long-term impact
of SLNB requires further investigations to be strongly approved. Whole-body PET/MRI
apparently performs similar to PET/CT in the detection of distant metastasis. Hence,
the cost-effectiveness in this setting must be further clarified. Moreover, imaging with
PET/CT impacts the management in a considerable fraction of patients when performed
for primary staging. Future controlled randomized trials are needed to establish a strong
recommendation regarding the role of PSMA-targeting PET/CT or MRI in this setting.
Finally, radiomics is an encouraging field in the era of high-quality imaging, especially
with PET/MRI. More studies are mandatory to determine its accuracy in the evaluation of
primary tumor, LN metastasis, and prognosis of PCa.
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