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Abstract

Background: Determination of lipophilicity as a tool for predicting pharmacokinetic molecular
behavior is limited by the predictive power of available experimental models of the biomembrane.
There is current interest, therefore, in models that accurately simulate the biomembrane structure
and function. A novel bio-device; a lipid thin film, was engineered as an alternative approach to the
previous use of hydrocarbon thin films in biomembrane modeling.

Results: Retention behavior of four structurally diverse model compounds; 4-amino-3,5-
dinitrobenzoic acid (ADBA), naproxen (NPX), nabumetone (NBT) and halofantrine (HF),
representing 4 broad classes of varying molecular polarities and aqueous solubility behavior, was
investigated on the lipid film, liquid paraffin, and octadecylsilane layers. Computational,
thermodynamic and image analysis confirms the peculiar amphiphilic configuration of the lipid film.
Effect of solute-type, layer-type and variables interactions on retention behavior was delineated by
2-way analysis of variance (ANOVA) and quantitative structure property relationships (QSPR).
Validation of the lipid film was implemented by statistical correlation of a unique chromatographic
metric with Log P (octanol/water) and several calculated molecular descriptors of bulk and
solubility properties.

Conclusion: The lipid film signifies a biomimetic artificial biological interface capable of both
hydrophobic and specific electrostatic interactions. It captures the hydrophilic-lipophilic balance
(HLB) in the determination of lipophilicity of molecules unlike the pure hydrocarbon film of the
prior art. The potentials and performance of the bio-device gives the promise of its utility as a
predictive analytic tool for early-stage drug discovery science.

Background nants of cell function. These features are essential to
It is now well recognized that the molecular organization =~ molecular medicine, critical to understanding of toxin
of biological membranes and their interactions with the =~ mechanisms and mechanisms of drug action. However,
extracellular and intracellular spaces are critical determi-  the intrinsic complexity of the cell membrane system, a
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very specific molecular architecture of phospholipids,
sterols, glycolipids, and proteins often precludes direct
access to these features. This fact drives the development
of simpler model systems that are more amenable to
detailed characterization [1]

Lipophilicity is one of the most important physicochemi-
cal properties that affect the safety and efficacy of drug
molecules and its measurement is commonly used to
model the pharmacokinetic properties of drugs in drug
discovery research [2]. The most commonly used parame-
ter of lipophilicity, logarithm of octanol-water partition
coefficient (Log P) is well documented in literature [3].

This conventional approach has been criticized as simplis-
tic and tedious. Variety of chromatographic techniques
has therefore been devised as alternative models. Reversed
phase thin layer chromatography (RPTLC) and reversed-
phase high performance liquid chromatography (RP-
HPLC) are popular examples. Owing to the versatility of
chromatographic methods and their amenability to high-
throughput screening of prospective drugs, they have
largely supplanted the traditional 'shake flask' method
based on octanolwater partitioning. The main weakness
of the various chromatographic models however, is that
the stationary phase is invariably pure hydrocarbon in
nature (e.g. liquid paraffin, octylsilane (C8), or octadecyl-
silane (C18) bonded phase), contrary to the amphiphilic
chemistry of biological membrane [4-10].

The accuracy of prediction, based on in wvitro data, of
absorption, distribution, metabolism, excretion and tox-
icity (ADMET) characteristics is limited by this fact. The
inaccuracies of predicted pharmacokinetic behavior often
lead to failure of drug candidates in the early phases of
clinical trials. Phospholipids are the most abundant lipid
in the biological membrane; additional types of lipid
often found are cholesterols, and glycolipid. Further
biomembrane structural complexity is contributed by
integral and peripheral proteins, bound to the membrane
in varying degrees [11]. Simulation of the biomembrane
by incorporating phsophatidycholine tags on silica sup-
port was therefore hypothesized to be a more realistic sta-
tionary phase for membrane permeability modeling in
vitro. Immobilized artificial membrane (IAM) chromatog-
raphy columns which implemented this design in liquid
chromatography (LC) have been shown to correlate drug
permeability data [12-16].

Kaliszan et.al [2], reviewed the applications of new sta-
tionary phases in lipophilicity determination. The newer
phases include; monolithic silica columns, monoliths
based on polystyrenes, polymethacrylates and polyacryla-
mides. Other examples are alkylamides, and those with
different polar and nonpolar functional groups. Some
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other variants of chromatographic methods employ
micellar phase. These methods include micellar electroki-
netic chromatography (MEKC), microemulsion electroki-
netic chromatography (MEEKC), and micellar liquid
chromatography (MLC). Micelles and the newer silica-
based stationary phases are amphiphilic in nature, and are
therefore structurally closer to biomembrane than to octa-
nol or the regular RP-HPLC stationary phase materials. A
review of experimental and computational models of pre-
dicting absorption from physicochemical parameters,
with emphasis on their relative merits has also being pub-
lished [17].

Despite the attempts to mimic the biomembrane function
by simulating amphiphilic chemistry of the most abun-
dant lipid; phospholipids, the fact remains that the intrin-
sic complexity of the cell membrane system makes the
modeling of the biomembrane practically challenging. A
recent study reported a comprehensive molecular-level
structural and functional characterization of the biomem-
brane architecture. The optimized design investigated is a
sparsely tethered bilayer lipid membrane system that is
chemically tethered to the solid support by a synthetic
lipid [1]. The membrane systems are reportedly highly
flexible and robust biomimetic system that is potentially
useful for studies and applications of biological mem-
branes.

To the best of our knowledge, there has been no report on
the use of IAM-type or any amphiphilic membrane system
in planar chromatography. The latter has the attractive
feature of simplicity and versatility. We hypothesize that a
naturally occurring lipid which is mainly triacylglycerol in
nature would provide hydrocarbon moieties and acyl
esters as polar heads and thus are closer to the diacyl esters
and hydrocarbon moieties in phospholipids. In addition,
the presence of lecithin in the lipid will afford incorpora-
tion of phosphate esters into any solid-supported layer
prepared as stationary phase in RPTLC mode. A layer
obtained from such a lipid should thus be a simulation of
the biomembrane architectural complexity than the
hydrocarbons previously used in planar chromatography.
Literature search reveals that the fixed oil obtained from
the seed of Leucaena leucocephala (Leguminosae, Lam. de
Wit) is reportedly the richest vegetable source of phos-
phatides (lecithin) [18]. In addition, the oil was reported
to contain sterols [19], tocopherols [20], and glycolipids
[21]. The oil therefore has the desirable complexity of
composition required for testing our hypothesis.

The main lipid constituents of biological membranes are
phospholipids (phosphoacyglcyerols) such as lecithin
(phosphatidycholine), fats and steroids. The 2-position of
lecithin is usually esterified by an unsaturated and the 1-
position by a saturated fatty acid of the C16 (palmitic
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acid) or C18 (stearic acid) series. Double unsaturation in
the 2-position is common (esterification by linolieic
acid). Phosphatidyl ethanolamine and phosphatidylser-
ine (both found in the cephalin of brain) are variations of
the lecithin structure. Cholesterol is the most abundant
steroid [22,23]. Lipid compositions of leucaena oil show
some similarities to the composition of lipid membrane.
Detailed characterization of leucaena oil reveals the pres-
ence of approximately 26-29% saturated acids and 71-
73% of unsaturated acids. The oil is rich in linoleic acid
(42.5-65%), arachidic (0.8-1.6%) and lignoceric acid
(0.7-1.7%). The main sterol is /fsitosterol(55%)
[19,24,25]

This paper reports the refinement and optimization of the
crude leucaena oil to obtain technical grade oil for routine
use in engineering a planar thin film for biomembrane
modeling. The crude and refined oil were also character-
ized by standard physicochemical properties, in order to
delineate the impact of purification process on oil compo-
sition. Optimal lipid film thickness was designed by using
liquid paraffin (LP) film on silica support as benchmark.
The surface chemistry of the lipid film based on refined
leucaena oil (LO) was evaluated by computational analy-
sis, thermodynamic analysis and digital image analysis of
the lipid layer under ultraviolet light (254 and 365 nm).
Validation of the lipid thin film was implemented by sta-
tistical correlation of a derived chromatographic metric,
which uniquely ranked the lipophilicity of the model
compounds, with Log P (octanol/water) and several cal-
culated molecular descriptors.

Methods

Equipment

Analytical balance (Mettler, H80, U.K.), Abbe refractome-
ter (Abbe, 300778, England), vacuum pump (Edward,
England), vacuum oven (Gallemkamp, England), Ultravi-
olet lamp (254 and 365 nm, Gallenkamp, U.K.),

Chemicals

Potassium hydroxide, mercury II iodide, hydrochloric
acid, phenolphthalein, sodium thiosulphate, sodium car-
bonate, wij's solution (iodine monochloride solution),
chloroform, anhydrous pyridine, activated charcoal, silica
gel (sorbent, thin layer chromatography grade, GF,s,), n-
hexane, diethylether, acetone, carbon tetrachloride (all
are British Drug Houses (BDH), U.K., analytical grade),
liquid paraffin (LP, Moko, Lagos, Nigeria), thin layer
chromatography aluminum sheets, 5 x 10 cm (0.2 mm,
silica gel 60, F,5,, Merck, Darmstadt, Germany), nabume-
tone (Sigma, USA), naproxen (isolated and recrystallized
from tablets), halofantrine (Glaxo Smith Kline, Lagos), 4-
amino-3,5-dinitrobenzoic acid (ADBA, synthesized in our
laboratory [26].
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Plant Material

The dried seed pods were collected from the plant Leu-
caena leucocephala (Lam.) de Wit. growing around
Obafemi Awolowo Hall area, University of Ibadan and
authenticated at Botany Department, University of
Ibadan, Ibadan, Nigeria. The seeds were sun dried and
pulverized with a milling machine.

Oil extraction

The powdered seeds were weighed (3.2 kg) and packed in
a cotton cloth bag and defatted by cold maceration in n-
hexane. The marc was extracted continuously until the
marc was exhausted. The crude oil was recovered by distil-
lation and the combined oil residue was dried in vacuo at
40°C in a vacuum oven for 24 hours. About 80% of the
total volume obtained was decanted, filtered through
glass wool and stored for future use, while the yellowish
sediments were discarded.

Enhancement of crude oil

i Preparation of silica gel cartridges

Silica gel solid phase extraction (SPE) cartridges were pre-
pared in the laboratory by packing silica gel (thin layer
chromatography grade, 3 g), with the aid of vacuum line,
into a 10 ml plastic injection syringe barrel, with a cotton
wool plug.

ii Preparation of activated charcoal cartridges

Activated charcoal SPE's were prepared in the laboratory
by packing activated charcoal (2 g), with the aid of vac-
uum line, into a 10 ml plastic injection syringe barrel with
cotton wool plug.

iii Optimization of the purification protocol

Serial dilutions of the crude oil in n-hexane; 50, 25, 20,
10, and 5% (v/v) were prepared as stock solutions. Each
of the stock solutions (25 mL) was filtered, in turn,
through 1 silica gel and 1 activated charcoal cartridges
arranged in tandem. The hexane in the filtrate was dis-
tilled off to recover the oil. The recovered oil was centri-
fuged at 2500 rpm for 15 minutes and decanted. The final
product was dried at 40°C in vacuum oven for 24 hours.

iv Endpoint of oil refinement

Thin layer chromatography plate (5 x 10 aluminum
sheets, 0.2 mm, silica gel 60 F,;,, E. Merck, Darmstadt,
Germany) was coated by ascending development in a
solution (5% v/v) of the oil (crude sample and every batch
of purified sample) in n-hexane. The plates were inspected
after development for the presence of a yellow band of
pigment at the solvent front. The highest concentration of
the crude oil stock solution that produce a refined oil sam-
ple which gave a lipid-coated plate with no visible band at
the solvent front was selected as the optimal stock solu-
tion for the routine purification of the oil.
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Determination of physicochemical properties

Some physicochemical properties of the oil were deter-
mined for the crude oil and the refined oil obtained by fil-
tering 25 mL of the crude oil stock solution (10% v/v)
through the assembly of silica gel and charcoal SPE car-
tridges as described above. The physicochemical proper-
ties determined as previously described [27] are
saponification value, iodine value, peroxide value, acid
value, ester value, hydroxyl value, relative density, and
refractive index.

Optimization of lipid film thickness

i. Preparation of LP benchmark and LO alternative layers

Liquid paraffin in n-hexane (5% w/v) was used as coating
solution of silica gel support, to produce the layer which
was taken as benchmark. Thin film of liquid paraffin was
placed on the silica surface by ascending development of
the TLC plates in the coating solution and allowing the
plates to air dry afterwards. Alternative silica-supported
LO lipid films were prepared by varying the concentration
of LO coating solution (1.25, 2.50, 3.75, and 5.0% v/v).

ii Engineering of LO optimal film thickness

The optimal film thickness was designed by testing the
alternative films against array of LP benchmark require-
ments and constraint. Using nabumetone as model com-
pound and varying the concentration of organic modifier
(methanol) in the mobile phase, a plot of linear regres-
sion of Rm against methanol fraction was made for LP and
all alternative LO layers. Rm was obtained from the

expression Rm = Log[ %f - 1:| where Ryis the chroma-

tographic retardation factor [5]. Retention behavior of
nabumetone on LP was compared with its behavior on
the alternative LO layers by statistical comparison of the
slope (S, specific hydrophobic surface area) and y-inter-
cept, (Rm,, basic lipophilicity parameter) of the regres-
sion plot of Rm versus methanol fraction. The retention
behavior is described by the regression equation: Rm = S¢
+ Rm,, (where ¢ is the methanol fraction). Plate develop-
ment cycle time for a specific methanol fraction (0.5) was
set as design constraint. This was compared by recording
the time required for the mobile phase (50% methanol)
to traverse 7 cm path length of the various silica-sup-
ported layers.

Evaluation of surface chemistry- digital image analysis

The silica-supported lipid layer obtained by coating the
TLC plate in a solution of the refined leucaena oil (LO) in
hexane (3.75% v/v) was visualized under ultraviolet lamp
at 254 and 365 nm. Digital images of the lipid layer under
the UV light were recorded by (fluorescent-H mode, flash
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off, ISO 400) of a digital camera (IXY Digital 500, Canon
Inc., Japan) and edited with a photo editing software Pho-
toimpression 5 (Arcsoft, Inc., USA). Image analysis was
carried out to provide insights into molecular differentia-
tion of the lipid surface and possible relationship with the
structure and function of biological membrane.

Validation of engineered lipid thin film for membrane
permeability modeling

The engineered lipid film was validated by comparing its
performance with the prior art; liquid paraffin film [4,5]
and octadecysilane (ODS) bonded phase [12-15], which
was selected as reference. Using 4 model compounds; 4-
amino-3,5-dinitrobenzoic acid (ADBA), naproxen (NPX),
nabumetone (NBT) and halofantrine (HF), the impact of
simulating the biomembrane phospholipids chemistry in
the in vwvitro technique employed for determining
lipophilicity descriptors for drug molecules was sought.

The computational model employed is a transformation
of the planar chromatographic retardation factor Ry
according to the following equation:

RmzLog[%ef—l} (1)

Linear regression of the Rm values against the fraction of
methanol organic modifier in the mobile phase was per-
formed according to the equation:

Rm =S¢, + Rm,, (2)

S, is the specific hydrophobic surface area, while Rm,, is
the basic lipophilicity parameter calculated from the chro-
matographic data. The ultimate derived lipophilicity
parameter of interest is the isocratic chromatographic
hydrophobicity index (¢,), which signifies the methanol
fraction that will produce half-maximum solute migra-
tion on the chromatogram for each compound. It is
derived from the regression equation as ¢, = -Rm,/S
(where ¢, is the value for ¢ when Rm = 0). Derived
lipophilicity parameter (¢,) values were correlated with
Log P and several ChemSketch calculated molecular
descriptors to provide quantitative structure property rela-
tionships (QSPR) as previously described [5].

Statistical analysis

The relative merit of various LO film thickness in compar-
ison with LP benchmark was determined by 1-way analy-
sis of variance (ANOVA) and Dunnet's multiple
comparison tests. Significant difference was taken as p <
0.05. These tests were performed on both the slope (S)
and the y-intercept (Rm,,). The retention behavior of the 4
model compounds on 3 layer types was investigated by
linear regression of Rm against methanol fraction. The
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effect of the two variables; solute-type and hydrophobic
layer-type as well as possible interaction of the two on
chromatographic determination of lipophilicity was eval-
uated by 2-way analysis of variance (ANOVA), using the
two determined hydrophobic parameters (Rm,, and S) as
quality and performance attributes. QSPR was sought by
correlation of ¢, against calculated molecular descriptors
as well as Log P for model compounds. The goodness of
fit was measured by the coefficient of determination (R2)
and standard deviation of y residuals (S,,) (Graphpad
Prism, SanDiego, CA)

Results

The crude oil is dark brown with greenish yellow tint (5%
yield). The optimal purification protocol is the filtration
of 25 mL of crude oil in n-hexane (10% v/v) through 1
each of the silica gel and charcoal SPE cartridges in succes-
sion. The cartridges are effective for sample clean up,
retaining much of the yellow pigments and the dissolved
secondary metabolites. The refined oil is pale yellow in
color, freed of colloidal particles by centrifugation. Drying
in vacuum oven effectively removes last traces of n-hex-
ane, while absence of yellow band on the solvent front of
the chromatoplate signifies substantial removal of pig-
ments and very fine particulate components of the oil
(77% yield). Physicochemical properties determined for
the crude and refined oil are shown in Table 1. The iodine
value of both crude and refined oil is low and similar.
Refined oil has lower hydroxyl value but higher acid and
ester values.

The chemical structure of nabumetone is shown in Figure
1. Chromatographic hydrophobic parameters deduced
from the linear regression of Rm for nabumetone versus
methanol fraction on LP and alternative LO layers are
shown in Table 2.

A schematic representation of the process of refining leu-
caena oil and creation of lipid thin film is shown in Figure
2. The graphic representation of the multiple comparison
of slope and y-intercept of the regression lines and the sta-
tistical inferences are shown in Figure 3. The digital

Table I: Physicochemical properties of crude and refined seed oil
of L. leucocephala

Parameters Crude oil Refined oil
Saponification value 203.15 233.52
lodine value 12.53 11.99
Peroxide value 0 0

Acid value 5.61 11.55

Ester value 197.54 221.97
Hydroxyl value 98.46 4241
Relative density 0.9241 0.9254
Refractive index 1.4700 1.4700
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images of the lipid film under UV-254 and 365 are shown
in Figure 4. Schematic representation of molecular differ-
entiation of the lipid layer, as revealed by image analysis
and postulated relationship with the biomembrane struc-
ture is shown in Figure 5. Figure 6 shows the chemical
structures of specific fatty acids and steroids found in leu-
caena oil and most biological membranes, highlighting
the similarities in lipid compositions.

The linear regression of Rm against methanol fraction
showing the retention behavior of the 4 model com-
pounds on the 3 layers, namely; LP film, LO film and ODS
layer is shown in Figure 7, while the hydrophobic param-
eters deduced from these plots are shown in Table 3. The
overall impact of solute type (relative polarity) and layer
type (hydrocarbon or biomimetic) and interaction
between the two variables, on the hydrophobic parame-
ters are displayed in Figure 8. Partition dynamics on LO
film and the pure hydrocarbon layers (LP and ODS) fol-
low different mechanisms, as revealed by the estimation
of lipophilicity of naproxen on the 3 layers (Figure 9). The
results of the calculated molecular descriptors and the cor-
relation found with Log P (octanol/water) and ¢o deter-
mined on the various layer types are shown in Table 4.

Discussion

The purified oil has an iodine value of 11.99, which is
comparable to 12.53 of the crude oil. This is more than 10
times lower than 132, the reported iodine value of soya
bean oil. In addition, the peroxide value of freshly pre-
pared sample is 0, as opposed to 0.5 for Soya bean oil
[28]. This suggests the oil is relatively stable. The relative
stability of the oil is an attractive feature for the intended
technical purpose of engineering a lipid film with a large
surface area. Presence of residual amounts of antioxidant
substances like polyphenols known to be found in the
seed could contribute to lipid stability. The zero peroxide
value obtained for the oil underscores the stability and
corroborates the interpretation of iodine values.

Higher acid and ester values obtained for the refined oil
suggests purification enriched the oil with carboxylic acids
and esters possibly by the removal of certain basic counter
ions (e.g. alkaloids) and other secondary metabolites in
general. Removal of flavonoids and other polyphenols
could lead to the decrease in hydroxyl value found for the
purified oil. This assertion is corroborated by the fact that
we have previously reported the large presence of alka-
loids, and polyphenols in the ethanol extract of the seed
[29]. Other physicochemical properties are quite similar
between the crude and purified oil.

The choice of 5% solution of the refined oil in hexane for
preparing the lipid layer used for monitoring purification
end point was suggested by prior art. Liquid paraffin layer
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Name Structure Arbitrary Molecular
Classification | Weight
4-amino-3,5- St Very polar 227.13
dinitrobenzcic
acid (ADBA) O-\ﬁ‘ T&;o
Naproxen Hyc—0 % o Medium polarity | 230.26
= |\
Nabumetone HJC‘O Low polarity 228.29
Halcofantrine il cny, | VErY non-polar | 502.44
Ff O HO —[_/
L
cl O Cl KLCHa

Figure |
Chemiical structures of model compounds.

is widely employed for membrane permeability modeling
by planar chromatography, and the layer is usually pre-
pared by plate development in 5% solution of liquid par-
affin in hexane [4,5]. Although the lipid layer thickness
and extent of hydrophobicity obtained is not necessarily
equivalent to that produced by liquid paraffin, using this
concentration helps to optimize the composition of the
refined oil such that it is devoid of particulate matters that
can be filtered on the silica gel plate surface.

Design of an optimal silica-supported LO film
Computational analysis

The choice of nabumetone as the model compound for
optimizing the surface hydrophobicity of the LO lipid
film and rate of partitioning into the aqueous phase was
based on the presence of an aromatic hydrophobic core of

Table 2: Hydrophobicity parameters Rm,,, S and ¢, obtained for

nabumetone on lipid films of various thicknesses, highlighting
benchmark requirements and constraint

Layer type* S Rm, ¢, 1) n R? Syx

5% LP -348 243 0.70 035-0.70 5 0.986 0.056
5% LO -467 348 0.75 0.60-080 5 0.949 0.085
3.75% LO @ -395 258 0.66 0.55-0.70 5 0.895 0.082
2.5% LO -3.14 194 0.62 0.50-0.70 5 0.974 0.040
1.25% LO b -2.33 1.05 045 025-060 5 0.981 0.047

*LP = liquid paraffin, LO = leucaena oil,

aStatistically similar to benchmark (LP, p > 0.05, 1-way ANOVA)
bPlate development cycle time (for 7 cm path length and ¢ of 0.5) is 39
min, lower than the range 45-50 min for other film thicknesses
investigated.

naphthalene residue. This was to ensure hydrophobic
interaction as the dominant factor. A further considera-
tion was the absence of any hydrophilic substituent that is
capable of hydrogen bond donation. The ether linkage
and the carbonyl function in the side chains are both
capable of hydrogen bond acceptance alone. The impact
of specific interactions is therefore minimized while
hydrophobic interaction was maximized in the partition
dynamics employed for optimizing the LO film thickness.

Coating the plates in a solution of LO in hexane (3.75%
v/v) was concluded on as the recommended procedure for
the design of optimal film thickness for subsequent rou-
tine use. This inference was made because Dunnet's test
shows that both the slope (S, measure of rate of partition
into the aqueous phase) and y-intercept (extent of hydro-
phobicity of the lipid film) obtained on this particular
layer, were statistically similar (p > 0.05) to the LP bench-
mark values. The thin film obtained by coating the plate
in 2.5% LO in hexane, gave a slope that is statistically sim-
ilar to the LP layer but the y-intercept was statistically dif-
ferent (p < 0.05, Figure 3). This statistical difference is of
practical significance, because the intercept signifies sur-
face hydrophobicity of the layer. The latter is a critical
parameter for the proposed artificial bio-interface func-
tion. Film thickness obtained by coating the plate in 1.25
and 5% LO in hexane are significantly different in both
the slope and y-intercept (p < 0.01) relative to benchmark
regression parameter values. The optimal film thickness
was thus designed with some statistical rigor and reliance
on a previously validated benchmark.
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Crude oil
in n-hexane
(25 mL, 10% viv)

[silica gel
TLC grade 3G

o
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A 2.Drying in vacuo
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Crude LO
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1.Distillation of
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. Lipid thin film

\ TLC Plate

\ || (silica su pport)

\2

/.

Vacuum line Raﬁnad Leucaena oil
p —> |n n-hexane
aena oil
Leucaena oil (3.75% vv)

s

g
v.
7/
| 44

Refined LO

(A) Schematic representation of the purification of leucaena oil and creation of the lipid thin film, (B) samples

of crude and refined leucaena oil.

Image analysis

The surface image of the lipid film under UV-254 nm
shows two distinct zones (Figure 4a). The dark lower zone
is due to fluorescence quenching on account of the pres-
ence of UV active constituents in the triglyceride lipid
matrix. This segment is composed of more polar constitu-
ents of the lipid and hence more highly retained by the
polar silica gel support. The chromophoric lower zone is
therefore a self-assembly of relatively polar molecules in
their descending order of polarity, from the base of the
plate to the boundary of the two zones.

The surface image of the lipid film under UV-365 nm has
a different appearance and does not show as much con-

trast of the 2 zones, because the pre-coated silica gel plate
has a fluorescent additive that fluoresces when exposed to
254 nm wavelength in particular (i.e. silica gel 60 F,s,).
The narrow fluorescent band observed on the layer (Fig-
ure 4b) therefore signifies the spectroscopic behavior of a
particular class of compound in the lower region of the
lipid layer. Further expositions of molecular differentia-
tion of the lower zone and chemical fingerprinting by
spectroscopic means is warranted, in order to obtain
mechanistic comprehension of the partition process at the
engineered bio-interface.

In this proposed in vitro model, the analytes will be spot-

ted on the polar segment of the layer which will be in con-
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*LO layer similar in extent of hydrophobicity to
A LP benchmark (p>0.05, 1.way ANOVA)

4-

34 *

Lipophilicity parameter
{me}
5

] %
n 1 Ll T 1 I
5 o] Q o] o
- - - =f
2 = =2 =
s b n w
™ o i

Hydrui;hobic layer thickness

Figure 3
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"LO layer similar to LP benchmark in rate
o partition into agqueous phase (p>0.05,
B Tawvay  ANOVA).
51 EE
* A
L -
£ =
=] 4 = —H
£3
eR_ N
%) 'g 27
=3
2
]
n.
» J I 1 1 I
o =] o] o (=]
- | - ] -
2 S 2 52
o i o &
o™~ =
= B o o3
Hydrophobic layer thickness

Optimization of leucaena oil (LO) film thickness relative to liquid paraffin benchmark film, using (A) surface
hydrophobicity and (B) rate of partition into aqueous phase as benchmark requirements.

tact with the aqueous phase. During chromatographic
development, solutes will traverse the polar segment
before moving to the more hydrophobic segment com-
posed of triglycerides, which are made up of 3 acyl ester
functionality per mole of glycerol. This chemistry is closer
to the 2 acyl ester functionality per mole of glycerol found
in the hydrophobic moiety of biomembrane phospholip-
ids and a significant departure from the pure hydrocarbon
layers (e.g. liquid paraffin and ODS) previously employed
in reversed-phase planar chromatography methods. The
LO planar lipid film is therefore, potentially, a more real-
istic model of biomembrane structure and function. It
represents a biomimetic artificial biological interface
(ABI), and may be useful for membrane permeability
modeling.

Validation of artificial biological interface model

Specific hydrophobic surface area (S)

S is the specific hydrophobic surface area. It is otherwise
descriptive of the rate of partition of the solute into the
aqueous phase from the stationary lipoid phase. Pattern-
recognition analysis shows that layer type accounts for the
largest percentage of total variation in the values of S
(>50%, p < 0.0001). This underscores the fact that layer-
type significantly influence the mechanism of partition.
Across the board, LO layer gave the highest S value. This
implies LO layer retains the solutes by specific interaction,
in addition to hydrophobic interaction. The involvement
of specific interaction facilitates partition into aqueous
medium by similar specific interaction, i.e. dipole-dipole
(hydrogen bonding) between water molecules and the

solutes on one hand, and solute-layer interaction on the
other. The variation also shows significant interaction
between the layer and solute types, such that interaction
accounts for 18% of total variation (p < 0.0001). The
impact of layer type on S varies with the capability of the
solute for hydrogen bond formation. NBT that has capac-
ity for hydrogen bond acceptance but not donation gives
a cluster of S value on the 3 layers. On the other hand,
ADBA with extensive capacity for hydrogen bond dona-
tion and acceptance shows the widest scatter (Figure 8a).
Solute type therefore contributes significantly to the over-
all variation, accounting for 20.64% of the total variation
(p <0.0001).

Basic lipophilicity paratmeter (Rmw)

The solute type is a significant factor accounting for 89%
of the total variation in Rm,, values (p < 0.0001). This
shows the basic lipophilicity of the 4 model compounds
are different, confirming the arbitrary classification of the
solutes into four broad classes - very polar, medium polar-
ity, low polarity, very non-polar. The layer type however is
not a significant factor in the variation of the Rm,, values,
this factor accounts for only 0.12% (p = 0.4382). This fact
suggests that surface hydrophobicity of the 3 layers is
equivalent, hence layer type does not affect the estimate of
basic lipophilicity. This finding corroborates the prior
optimization of LO layer thickness, which was designed
with LP film as benchmark. Furthermore, the results con-
firm the similarity of surface hydrophobicity of the 2 lay-
ers prepared in the laboratory with that of the
commercially available bonded phase ODS layer. Finally,
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Figure 4

Surface images of the silica--supported lucaena oil
(LO) lipid film under ultraviolet light at (A) 254 nm
and (B) 365 nm showing two distinct zones.

statistically significant interaction also exists (7.53%, p <
0.0001) between the two variables; layer type and solute
type. Retention behavior of HF exemplifies the interaction
effect, because Rm,, clusters around a value for the 3 other
solutes, but shows a wider scatter for HF (Figure 8b)

Isocratic chromatographic hydrophobicity index (¢)

The derived lipophilicity parameter ¢, was computed to
estimate the lipophilicity of the solutes, and the g values
are graphically displayed in Figure 9. ¢,, which is a ratio of
the two basic parameters, has been previously shown to
be a more accurate estimate of lipophilicity than the basic
lipopbilicity parameter, Rm,, [5]. The pattern shows that
LP and ODS gave a similar hydrophobicity ranking of the
4 model compounds. The sequence obtained is:

ADBA < NPX < NBT < HF

On the other hand, LO layer suggests a slightly different
sequence:

ADBA = NPX < NBT < HF

The LO layer is here shown to rank the lipophilicity of
naproxen to be closer to that of ADBA (in value and sign)
and farther from nabumetone, unlike the ranking of LP
and ODS.

Strong solute-layer hydrophobic interaction is revealed by
a decrease in specific hydrophobic surface area (S). LO

http://www.jbioleng.org/content/3/1/14

layer therefore exhibited the weakest hydrophobic inter-
action, since it shows the highest S value across the board.
Given the demonstrated evidence that surface hydropho-
bicity of the 3 layers is similar, the significant difference
shown in the value of S on the various layers for each sol-
ute type reflect the varying degree of hydrophobic interac-
tion involvement in the partition mechanism. This
pattern confirms the hypothesis that LO film, on account
of polar heads - acyl and phosphate groups - should per-
mit specific interactions. The extent of hydrophobic inter-
action exhibited by the layer follows the sequence:

ODS >LP >LO

S is therefore a solute-dependent measure of the interplay
between solute-layer hydrophobic and specific solute-
layer, solute-solvent interaction at the interface. Any mol-
ecule with ¢, value > 1.0 should be adjudged very non-
polar and would exhibit poor water solubility e.g. HE. On
the contrary, any molecule with ¢, value < 0 should be
adjudged very polar and would exhibit free water solubil-
ity e.g. ADBA.

This interpretation of results is however limited to the use
of methanol as organic modifier. Methanol has been
shown to be the preferred organic modifier for chromato-
graphic Rm studies, principally due to its closeness to
water in chemistry. In the event a solute is so hydropbobic
that even 100% methanol could not produce reasonable
solute migration, other organic modifiers with larger
hydrophobic moiety would be more appropriate e.g. ace-
tone and dimethylformamide [5], in order to obtain suffi-
cient experimental data.

Another important finding is that pure hydrocarbon lay-
ers like LP and ODS seem to overestimate the lipophilicity
of molecules with hydrophilic fragments, once they have
a large hydrophobic moiety. Naproxen is the relevant
example of this scenario. The large naphthalene moiety
dominates the estimation, while the effect of COOH in
the side chain is minimized on ODS. Whereas, the pres-
ence of the highly hydrophilic COOH has a higher impact
on LO partition dynamics. The latter can therefore be said
to be more sensitive to the differences in polarity of the
solutes and captures solute-layer specific interactions in
the overall estimate of lipophilicity. The glaring difference
in the estimate of lipophilicity of naproxen on LO relative
to the two purely hydrocarbon layers (LP and ODS) is the
unambiguous evidence (Figure 9). The practical signifi-
cance of this feature in biomembrane models as exempli-
fied by LO film is corroborated by the classical example
shown by the lipophilic terfenadine and it's zwitterionic
carboxylic acid derivative, fexofenadine. Terfenadine was
withdrawn from clinical use because of cardiotoxicity,
which is related to its high lipophilicity and biopartition-
ing profile. On the other hand, fexofenadine, which differ
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Schematic representation showing molecular differentiation of (A) leucaena oil (LO) lipid film as a mimic of
(B) amphiphilic structural configuration of phospholipid monolayer of the biological membrane, and hence a

biomimietic artificial biological interface (ABI) model.

structurally by having a carboxyl group in place of a
methyl group in terfenadine did not show the cardiotox-
icity (QT prolongation) and also shows fewer over all side
effects [30].

Validation of model and QSPR

Theoretical molecular descriptors were calculated for the
model compounds by ACD/ChemSketch version 8.0
(Advanced Chemistry Development, Inc. Ontario, Can-
ada). Log P values were obtained from literature for ADBA
[31]), NPX [32], NBT [33] and HF [34]. Quantitative
structure property relationships (QSPR) were sought by
correlation analysis. The goodness of fit of correlation
between the calculated descriptors and the derived
lipophilicity parameter ¢, is shown by the coefficient of
determination, R?, in Table 4.

The pattern reveals that ¢, data generated on LO film gave
better correlation with solubility properties, which are cal-
culated basic macroscopic properties (e.g. molar refractiv-
ity and polarizability) than derived macroscopic
properties (e.g. refractive index). The reverse of this pat-
tern was obtained for ODS generated data, while LP did
not give a clear distinction of pattern.

Log P values obtained from octanol/water partition shows
low sensitivity to the hydrophilic-lipophilic balance
(HLB) of molecules. This weakness is apparent in the clus-
ter of Log P values reported for NPX, NBT and HF (Table
4). The values, albeit reported by different authors, even
suggest NBT is more lipophilic than HF, which is a self-
evident anomaly according to structural theory.

In the correlation of ¢, with Log P values, the coefficient of
determination follows the sequence: ODS > LP > LO, with
R2 values; 0.852, 0.468 and 0.321 respectively. This pat-
tern suggests that the partition dynamics at the ODS-water
and LP-water interface are closer to the partition dynamics
in the rather simplistic octanol/water shake-flask method,
than the LO water interface. Poor correlation of the LO
data with Log P values corroborates the earlier deduction
from our results that LO film is far more complex and the
partition dynamics which is a simulation of in wvivo
biomembrane partition dynamics is a significant depar-
ture from the octanol/water system.

Thermodynamic analysis of biomembrane function modelling

For the interface partition process to be thermodynami-
cally favorable, the Gibbs' energy of the partition process
should be negative (AG < 0). The Gibbs energy is
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described by the relationship that follows; where SP is sta-
tionary phase and MP is mobile phase [5,35]:

AGo(SP—)MP) = AGo(gas—)l\/ll’) - AGO(gas%SP)

For the overall expression to be negative, which signifies
spontaneity of process, the expression 4G,y ,sp) should
be positive. This in turn means AH (enthalpy) should be
positive (endothermic) and AS (entropy change) should
be negative, since

AGo(gas%SP) = AI—I(gas—>SP) - TAS(gas—)SP)

For AS to be <0, it means there must be more bond forma-
tion than bond breaking (bond formation decreases
entropy) in the solute-layer interactions. Whereas for the
AH to be >0 there must be more hydrogen bonds broken
than are made. The requirements are therefore opposing.

Considering the 3 layer materials; ODS, LP, and LO, the
latter is a biomimetic material and is shown to have acyl
esters and phosphate esters, which are hydrogen bond
acceptor sites in addition to the hydrogen bond donor site

found in phosphatides and free fatty acids. The polar
lower zone of LO film also comprises of chromophoric
compounds with polar fragments that are capable of sec-
ondary bonding. LO film is therefore capable of hydrogen
bond donation and acceptance, much as the aqueous
mobile phase is capable of hydrogen bond formation and
acceptance. Active sites on the LO film are therefore capa-
ble of retaining water molecules and thus discourage
hydrophobic interaction.

This scenario readily leads to breaking of the clathrage
cage of water molecules around the solute molecules spot-
ted on the stationary phase, and AH is >0. The resulting
increase in hydrophobic surface area, confirmed by exper-
imental results, is accompanied by a large decrease in
entropy owing to stronger dipole-dipole interaction of the
solute with the solvent and the solvent molecules become
more organized around the polar solutes, i.e. AS>0. These
opposing requirements for thermodynamically favorable
partition is readily achieved on LO film, because the large
surface area is maintained. Presence of polar groups in the
LO film surface discourages solute molecules from com-
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Anomalous retention behavior shown by the value
and sign of ¢, for naproxen as determined by lipid
layer (LO) relative to the estimate on pure hydrocar-
bon layers (LP and ODS) underscores the difference
in partition mechanism at the two categories of
interface.

ing together in a single cavity as it is found in hdyrophobic
interaction.

On the contrary, the purely hydrocarbon layers retain the
solute mainly by hydrophobic interactions, which is
accompanied by the formation of highly ordered clathrate
cage of water molecules around the solutes. Partitioning
into the aqueous phase will therefore necessarily require
the breaking of bonds making up the clathrate cage to per-

http://www.jbioleng.org/content/3/1/14

mit penetration of water molecules. For reasonable solute
migration therefore, more hydrogen bond is broken than
formed, i.e. AH>0. However, because the hydrophobic
interaction is predominant on these layers, the solutes are
readily pulled back into a single cavity, reducing the sur-
face area, as epxerimental data confirms, thus releasing
the ordered water molecules involved in solvation with a
consequent increase in entropy (i.e. AS>0). The partition
process is therefore less thermodynamically favorable.

In sum, the existence of specific electrostatic interactions
alongside hydrophobic interactions on LO film interface
results in a more thermodynamically favorable partition
process than purely hydrocarbon layers. This scenario is a
closer mimic of the function of the biomembrane, which
involves interaction between hydrophobic and polar
components of the lipid bilayer. It also underscores the
validity of our postulated hypothesis that modeling
biomembrane structure and function with a biomimetic
material, is superior to the use of pure synthetic material
(ODS) or mineral oil (LP). The mathematical treatment of
partition dynamics of model compounds on three differ-
ent interfaces as described here shows good agreement of
deductions from the mathematical model with experi-
mental data. This substantiates the fundamental power of
mechanistic models in interpreting chemico-biological
interactions. Recently, Dhurjati et.al., [36] pointed out the
potential impact of systems biology, which is a synergistic
interplay of mathematics and biology, on medicine. Sys-

Table 3: Basic and derived lipophilicity parameters for model compounds on 3 layer types.

Layer type S Rm,, & ) n R2 Syx
ADBA

LO -8.84 -0.646 -0.073 0.003125-0.025 4 0.974 0.0141
LP -5.99 -4.85 -0.081 0.0025-0.0254 4 0.806 0.0495
OoDSs -1.41 -0.102 -0.073 0.025-0.40 5 0915 0.0620
Naproxen

LO -6.32 -0.459 -0.073 0.003125-0.025 4 0.753 0.0350
LP -5.42 0610 0.11 0.0025-0.10 6 0.819 0.0959
oDSs -2.18 1.30 0.60 0.20-0.80 6 0.961 0.0944
Nabumetone

LO -3.95 2.58 0.66 0.55-0.70 5 0.895 0.0815
LP -3.48 2.43 0.70 0.35-0.70 5 0.986 0.0556
oDs -3.13 2.77 0.89 0.70-0.95 6 0.978 0.0438
Halofantrine

LO -8.13 8.40 1.03 0.925-0.99 5 0.738 0.120
LP -6.54 6.76 1.03 0.90-1.0 5 0.864 0.102
oDs -4.55 4.94 1.09 0.90-0.975 6 0.665 0.107
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Table 4: Calculated molecular descriptors and goodness-of-correlation of derived hydrophobicity descriptor (4,) with calculated

molecular descriptors.

S/ Theoretical molecular descriptors/Model Coefficient of determination (R2) in correlation of ¢, with calculated
No compounds descriptors
ADB NPX NB HF LP oDs LO
A T
I Refractive index 1.719 1.608 1.575 1.562 0.720 0.980 0.577
2. Surface tension 101.6 474 398 446 0.505 0.869 0.360
(dyne/cm)
3. Density (g/cm?) 1.775 1.197 1.084 1.25 0.398 0.766 0.267
4. Polarizability (10-24 20.02 2637 2759 5142 0747 0.608 0.723
cm3)
5. Parachor (cm?3) 406.2  504.6 529 1033.1 0.721 0.557 0.709
6. Molar refractivity 50.51 66.52 69.61 129.7 0.747 0.608 0.723
(em?)
7. Molar volume (cm?) 127.9 1922 2105 399.7 0.791 0.672 0.757
Experimental data
I Log P* ocranoliwater) -1.50 3.18 327 325 0.468 0.852 0.32
2.2 ¢, LP -0.081  0.11 070 1.03 - - -
b. ¢,LO -0.073 - 0.66 1.03 - - -
0.073
c ¢,0DS -0.073 0.6 089 1.09 - - -

* Log P values were taken from literature

tems level perspective was shown to be capable of novel
and revolutionary impact on drug discovery. Our findings
in this study corroborate this assertion.

Conclusion

We have developed a simple and elegant artificial biolog-
ical interface (ABI), specifically for modeling the biomem-
brane in lipophilicity determination of drugs and
xenobiotics. The biodevice is potentially useful as a pre-
dictive analytic tool in early-stage drug discovery. Using
liquid paraffin (LP) film as benchmark for RPTLC
lipophilicity determination, an optimal silica-supported
LO film was designed. The engineered lipid film incorpo-
rates hydrophobic moieties, free fatty acids, acyl and
phosphate esters. This lipid film was validated by compar-
ison of its performance with prior art like LP film and
ODS bonded phase using a narrow range of structurally
diverse model compounds representing 4 broad classes-
with varying polarities.

Computational analysis utilized parameters that signify
quality and performance attributes of the lipid film in a
partition process for which the bio-device is intended.
Surface image analysis provided supportive data to sup-
plement computational analysis in characterizing the
lipid film architecture. Thus, a combination of experimen-
tal and in silico methods was employed to design, opti-
mize and validate the performance of the bio-device.
Further validation studies are warranted to evaluate its

performance over a wider range of drugs and xenobiotics.
The relative merit of the lipid film and more traditional
methods would also be assessed by comparing their cor-
relation with membrane permeability data based on par-
allel artificial membrane permeability assay [37], which is
the now popular alternative to caco-2 cell-line based
assays.

Engineering of this novel device is biology-inspired, the
ABI, like true biological interfaces, can therefore respond
to stress, especially oxidative stress. The long term stability
profiling of the lipid system on storage is therefore ger-
mane to reliability of results. These extensions of our find-
ings are currently ongoing in the authors' laboratory.

Abbreviations

ADBA: 4-amino-3,5-dinitrobenzoic acid; NPX: naproxen;
NBT: nabumetone; HF: halofantrine; LO: leucaena oil; LP:
liquid paraffin; ODS: octadecylsilane; TLC: thin layer
chromatography; RP-TLC: reversed phase thin layer chro-
matography; RP-HPLC: reversed phase high performance
liquid chromatography; ANOVA: analysis of variance;
QSPR: quantitative structure property relationships; HLB:
hydrophilic - lipophilic balance; ADMET: absorption, dis-
tribution, metabolism, excretion and toxicity; I[AM:
immobilized artificial membrane; MEKC: micellar elec-
trokinetic chromatography; MLC: micellar liquid chroma-
tography; MEEKC: microemulsion electrokinetic
chromatography; SPE: solid phase extraction; ABI: artifi-
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cial biological interface, ¢, methanol fraction (used as
mobile phase); S: specific hydropbobic surface area; Rm,;:
basic chromatographic lipophilicity parameter; ¢,: iso-
cratic chromatographic hydrophobicity index; S, ,: stand-
ard deviation of y-residuals; R2 coefficient of
determination; n: number of data points in the linear
regression.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

SOI made substantial contributions to original concep-
tion, experimental design, data analysis, data interpreta-
tion and manuscript writing. MAA and UIO were both
involved in data acquisition.

Authors' information

SOI was educated at Ibadan, Nigeria, and London (School
of Pharmacy, Brunswick Square) and holds Bachelor of
Pharmacy (B. Pharm.) degree and Ph.D. (Pharmaceutical
Chemistry). He had post-doc training in Japan (Process
Understanding and Modeling) and currently heads the
Department of Pharmaceutical Chemistry, Faculty of
Pharmacy, University of Ibadan, Nigeria. MAA holds B.
Pharm. degree, while UIO holds B. Sc. (Chemistry)
degree, they are both Research Students.

Acknowledgements

The authors thank Jemilat O. Idowu, for her technical assistance in the
preparation of refined leucaena oil samples. Prof. Abiodun O. Ogundaini of
Obafemi Awolowo University, lle-Ife, Nigeria is appreciated for critical dis-
cussions about the work and for kind donation of some chromatographic
materials. This project was supported by the University of Ibadan, Nigeria,
Senate Research Grant (SRG/COM/2006/3A) awarded to SOI.

References

1. McGillivray D), Valincius G, Vanderah D), Febo-Ayala W, Woodward
JT, Heinrich F, Kasanowicz JJ, Losche M: "Molecular-scale struc-
tural and functional characterization of sparsely tethered
bilayer lipid membranes". Bionterphases 2007, 2(1):21-33.

2. Kaliszan R, Nasal A, Markuszewski MJ: "New approaches to chro-
matographic determination of lipophilicity of xenobiotics".
Anal Bioanal Chem 2003, 377:803-81 I.

3. Leo A, Hansch C, Elkins E: "Partition coefficient and their uses".
Chemical Reviews 1971, 71:525-555.

4.  Moffat AC: "Thin layer Chromatography". In Clarke's Isolation
and Determination of Drugs 2nd edition. Edited by: Moffatt AC. Lon-
don: The Pharmaceutical Press; 1986:160-161.

5.  ldowu SO, Adegoke AO, Idowu A, Olaniyi AA: "Computational
models for structure-hydrophobicity relationships of 4-car-
boxyl-2, 6-dinitrophenyl azo hydroxynaphthalenes". | AOAC
Int 2007, 90(1):291-298.

6.  ldowu SO, Fasanmade AA, Olaniyi AA: "Evaluation of dimethyl-
formamide (DMF) as an organic modifier in hydrophobicity
index (Rm) determination". Trop | Pharm Res 2002, 1:83-89.

7.  Kleyle RM, Nurok D, Kossoy AD, Burris SC: "Novel computa-
tional methods for he determination of partition coefficients
by planar chromatography". | Chromatogr A 1996, 749:211-217.

8.  Sarbu C, Kuhajda K, Kevresan S: "Evaluation of the lipophilicity
of bile acid and their derivatives by thin layer chromatogra-
phy and principal component analysis". | Chromatogr A 2001,
917:361-366.

20.

21.

22.

23.
24.

25.
26.

27.

28.

29.

30.

31

http://www.jbioleng.org/content/3/1/14

Abraham MH, Poole CF, Poole SK: "Solute effects on reversed-
phase thin layer chromatography: A linear free energy rela-
tionship analysis”. | Chromatogr A 1996, 749:201-209.

Mazak K, Vamos ), Nemes A, Racz A, Noszal B: "Lipophilicity of
vinopocetine and related compounds characterized by
reversed-phase thin-layer chromatography". | Chromatogr A
2003, 996:195-203.

Stryer L: "Biological membranes”. In Biochemistry 3rd edition.
New York: W. H. Freeman and Company; 1988:283-293.

Vrakas D, Hdjipavlou-Litina D, Tsantil-Kahoulidou A: "Retention of
substituted coumarins using immobilized artificial mem-
brane (IAM) chromatography: A comparative study with n-
octanol partitioning and reversed-phase HPLC and TLC". |
Pharm Biomed Anal 2005, 39:908-913.

Lazaro E, Rafols C, Roses M: "Characterization of immobilized
artificial membrane (IAM) and Xterra columns by means of
chromatographic models". | Chromatogr A 2005, 1081:163-173.
Yen TE, Agatonovic-Kustrin S, Evans AM, Nation RL, Ryand J: "Pre-
diction of drug absorption based on immobilized artificial
membrane (IAM) chromatography separation and calcu-
lated molecular descriptors”. | Pharm Biomed Anal 2005,
38:472-478.

Ward RS, Davies ), Hodges G, Roberts DW: "Applications of
immobilized artificial membrane chromatography to qua-
ternary alkylammonium sulfobetaines and comparison of
chromatographic methods for estimating the octanol-water
partition coefficient"”. | Chromatogr A 2003, 1007:67-75.

Geetha T, Singh S: "Applications of immobilized stationary
phase liquid chromatography: a potiential in vitro tech-
nique". PSTT 2000, 3(12):406-416.

Krimer SD: "Absorption prediction from physicochemical
parmeters". PSTT 1999, 2(9):373-380.

Jagan Mohan Rao S, Azeemoddin G: "Recovery of lecithin and
refining of Subabul (Leucaena leucocephala) seed oil". | Oil
Technol Assoc India 1988, 20(12):16-17.

Kafuku K, Hata C: "Seed oils of Formosan plants. IX. Constitu-
ents of various seed oils of Leguminosae". | Chem Soc Jpn 1934,
55:369-375.

Miralles J: "Study on unsaponifiabe fraction of Albizzia lebbeck
Benth and Leucaena glauca Benth oils". Rev Fr Corps Gras 1982,
29:79-80.

Kulkarni AS, Khoptal RR, Lokhande AR, Bhakare HA: "Glycolipid
composition of subabul, ritha and kusum seed oils of Vidar-
bha region". | Food Sci Technol 1992, 29:179-18I.

Albert A: "Comparative biochemistry: the second principle of
selectivity". In Selective Toxicity 7th edition. New York: Chapman
and Hall; 1985:156-159.

Mayes PA: "Lipids of physiologic significance”. In Harper's Bio-
chemistry 25th edition. New York: McGraw Hill; 2000:160- 1 68.
Chandrasekhara Rao T, Lakshminarayaana G, Prasad NBL, Jagan
Mohan Rao S, Azeemodin G, Atchynta Ramayaya D, Thirumala Rao
SD: "Characteristics and compositions of Carissa spinarum,
Leucaena leucocephala and Physalis minima seeds and oils". |
Am Oil Chem Soc 1984, 61:1472-1473.

Kale AU: "Nutritive value of Leucaena leucocephala (subabul).
In PhD Thesis University of Bombay; 1987.

Idowu SO, Kolawole AO, Adegoke AO, Kolade YT, Fasanmade AA,
Olaniyi AA: "Kinetics of thermal decomposition of 4-carboxyl-
2, 6-dinitrobenzenediazonium ion (CDNBD)". | AOAC Int
2005, 88(4):1108-1113.

British Pharmacopoeia. In Appendix X Volume Il. Her Majesty's
Stationery Office; 1998:A171-173.

Weiss EA: "Oilseed processing and products”. In Oilseed Crops
Tropical Agriculture series, New York: Longman; 1983:562.
Ademola |0, Akanbi Al, [dowu SO: "Comparative nematocidal
activity of chromatographic fractions of Leucaena leuco-
cephala seed against gastrointestinal nematodes of sheep".
Pharmaceutical Biology 2005, 43(7):599-604.

Chen C: "Some pharmacokinetic aspects of the lipophilic ter-
fenadine and zwitterionic fexofenadine in humans". Drugs in
R&D 2007, 8(5):301-314.

Idowu SO, Olaniyi AA: "Some physicochemical properties of 4-
amino-3,5- dinitrobenzoic acid (ADBA)". Afr | Med Sci 2003,
32:17-21.

Page 15 of 16

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12844207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12844207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17373463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17373463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17373463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11403489
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11403489
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11403489
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12830921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12830921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12830921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16006082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16006082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16006082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16038206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16038206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16038206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15890485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15890485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15890485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12924552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12924552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12924552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16152928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16152928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17767395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17767395

Journal of Biological Engineering 2009, 3:14 http://www.jbioleng.org/content/3/1/14

32. "Estimation of distribution coefficients from the partition
coefficient and pKa" Pharmaceutical Technology 2002:30-40 [http:/
www.pharmatech.com].

33. Drugbank 2005 [http://redpoll.pharmacy.ualberta.ca/drugbank/].
Accessed 6 July, 2006

34. Babalola CP, Adegoke AO, Osimosu MO, Ogunjimi MA: "Determi-
nation of physicochemical properties of halofantrine". Afr |
Med Sci 2003, 32:352-359.

35. Deanda F, Smith KM, Liu J, Pearlman RS: "GSSI, a general model
for solutesolvent interactions. |. Description of the model”.
Mol Pharmaceutics 2004, 1(1):23-29.

36. Dhurjati P, Mahadevan R: "Systems biology: the synergistic
interplay between biology and mathematics”. Can | Chem Eng
2008, 86:127-141.

37. Hwang KK, Martin NE, Jiang L: "Permeation prediction of
M100240 using the parallel artificial membrane permeability
assay". | Pharm Pharmaceut Sci 2003, 6(3):315-320.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral

http://www.biomedcentral.com/info/publishing_adv.asp

Page 16 of 16

(page number not for citation purposes)


http://www.pharmatech.com
http://www.pharmatech.com
http://redpoll.pharmacy.ualberta.ca/drugbank/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Equipment
	Chemicals
	Plant Material
	Oil extraction
	Enhancement of crude oil
	i Preparation of silica gel cartridges
	ii Preparation of activated charcoal cartridges
	iii Optimization of the purification protocol
	iv Endpoint of oil refinement

	Determination of physicochemical properties
	Optimization of lipid film thickness
	i. Preparation of LP benchmark and LO alternative layers
	ii Engineering of LO optimal film thickness

	Evaluation of surface chemistry- digital image analysis
	Validation of engineered lipid thin film for membrane permeability modeling
	Statistical analysis

	Results
	Discussion
	Design of an optimal silica-supported LO film
	Computational analysis
	Image analysis

	Validation of artificial biological interface model
	Specific hydrophobic surface area (S)
	Basic lipophilicity paratmeter (Rmw)
	Isocratic chromatographic hydrophobicity index (f

	Validation of model and QSPR
	Thermodynamic analysis of biomembrane function modelling


	Conclusion
	Abbreviations
	Competing interests
	Authors' contributions
	Authors' information
	Acknowledgements
	References

