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Abstract
The athlete gut microbiome differs from that of non-athletes in its composition and 
metabolic function. Short-term fitness improvement in sedentary adults does not rep-
licate the microbiome characteristics of athletes. The objective of this study was to 
investigate whether sustained fitness improvement leads to pronounced alterations 
in the gut microbiome. This was achieved using a repeated-measures, case-study 
approach that examined the gut microbiome of two initially unfit volunteers under-
taking progressive exercise training over a 6-month period. Samples were collected 
every two weeks, and microbiome, metabolome, diet, body composition, and car-
diorespiratory fitness data were recorded. Training culminated in both participants 
completing their respective goals (a marathon or Olympic-distance triathlon) with 
improved body composition and fitness parameters. Increases in gut microbiota 
α-diversity occurred with sustained training and fluctuations occurred in response 
to training events (eg, injury, illness, and training peaks). Participants’ BMI reduced 
during the study and was significantly associated with increased urinary measure-
ments of N-methyl nicotinate and hippurate, and decreased phenylacetylglutamine. 
These results suggest that sustained fitness improvements support alterations to gut 
microbiota and physiologically-relevant metabolites. This study provides longitudi-
nal analysis of the gut microbiome response to real-world events during progressive 
fitness training, including intercurrent illness and injury.
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1 |  INTRODUCTION

The available evidence suggests physical activity exerts a mod-
est influence on the gut microbiome of individuals unaccus-
tomed to exercise. This pertains to both the composition and 
metabolic production of the microbiota1-5 (as reviewed6-10). 
Previous studies have highlighted the effects of exercise on 
the gut microbiota in mice11 and lean and obese humans,4 over 
short-term exercise interventions (6-8 weeks). In contrast, pro-
fessional athletes harbor a gut microbiome that is taxonomically 
and functionally distinct and more diverse than less physically 
fit individuals.12-18 It is possible, as is believed in the athlete, 
that sustained improvements in cardiorespiratory fitness and 
body composition through exercise may lead to beneficial al-
terations in the characteristics of the gut microbiome that are 
associated with health and fitness (eg, increased compositional 
alpha diversity). However, the impact of longer-term exercise 
on the gut microbiota remains unknown.1 Furthermore, alter-
ations in diet that often occur in unison with exercise (be they 
intentional or unintentional), represent a possible confounding 
influence in the interpretation of studies examining the relation-
ship between exercise and the gut microbiota.

To address this and to understand the relationship between 
sustained fitness improvement and the gut microbiome, we 
used a longitudinal, repeated measures case-study method to 
detail changes in the gut microbiome over 6  months in two 
participants embarking on different training programs with 
specific training goals. While such study designs have been 
successfully implemented to interrogate longitudinal effects on 
the microbiome over time19 this study is distinctive by virtue 
of its focus on the influence of both exercise and dietary intake 
on the gut microbiome over a sustained timeframe. Indeed, it 
was recently demonstrated that intense and prolonged ultra-en-
durance exercise leads to increased alpha diversity in the gut 
microbiota.16 This permitted a detailed interrogation of the sub-
jects’ microbiome on a frequent basis over the training epoch, 
also facilitating the collection of detailed dietary information, 
allowing us to interpret exercise-related microbial changes with 
greater confidence. To add to our previous work in physically 
inactive individuals, participants with relatively low fitness 
levels at baseline were recruited.1 To examine possible differ-
ences induced by training type, one volunteer combined regular 
resistance and aerobic training over 6 months, while the other 
focussed on aerobic conditioning alone.

2 |  METHODS

2.1 | Experimental model and ethical 
approval

An overview of the study design is shown in Figure 1. The 
study was approved by the Cork Clinical Research Ethics 

Committee (CREC) and was conducted in accordance with 
the Declaration of Helsinki. Both volunteers provided written 
informed consent before beginning study participation.

2.2 | Study recruitment and safe 
participation

Two male participants were recruited from University 
College Cork. Both fulfilled inclusion and exclusion criteria 
(Table S1). Baseline levels of physical activity were assessed 
using the International Physical Activity Questionnaire 
(IPAQ) short form.20 Safe participation in the study was 
ensured by medical screening of both participants using an 
adapted version of the safe participation questionnaire of the 
American College of Sports Medicine.21

2.3 | Exercise intervention

Training programs were provided by a qualified physical 
trainer from the Department of Sport, University College 
Cork. The goal was to increase physical fitness to levels nec-
essary for participation in an endurance-based sports compe-
tition. Specifically, the two participants separately trained for 
a full-distance marathon and an Olympic-distance triathlon. 
These fitness goals were set by the two participants according 
to their respective personal preference. Training for the mar-
athon consisted of regular aerobic exercise complimented 
with twice weekly resistance training while preparation for 
the triathlon was exclusively aerobic conditioning through 
endurance activity. Participants met on a monthly basis with 
the study physical trainer to ensure graduated progression, 
and tracked their respective physical activity with wear-
able activity monitors (ActiGraph wGT3X-BT, ActiGraph). 
Participants wore activity monitors on the non-dominant 
wrist, with the devices removed only for cleaning, during 
bathing, and downloading/recharging.

2.4 | Clinical visits

For the first week, participants were asked to maintain usual 
physical activity habits to record baseline activity levels. At 
each two week visit thereafter, anthropometric measurements 
were recorded (eg, body mass index (BMI)), in addition to 
fasting blood, fresh fecal and urine samples, and activity 
monitor data requisition. At monthly intervals, participants 
measured their heart rate variability using the HRV4training 
smartphone application.22

Body composition profile and cardiorespiratory fitness 
(VO2max) were measured at 0, 3, and 6 months. An experi-
enced exercise physiologist conducted the Astrand Treadmill 
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test to determine VO2max.
23,24 The British Association of 

Sport and Exercise Sciences (BASES) criteria were used to 
define attainment of VO2max.

25

Body composition was measured using a Lunar iDXA 
machine (GE Healthcare) equipped with enCORE software 
(V.13.4, 2010) for a three-compartment body composition 
model (fat mass, bone mass, lean tissue). Quality control 
(QC) analysis was performed on the iDXA machine before 
use on each measurement day. Refer to the Appendix for ad-
ditional details.

2.5 | Inflammatory cytokine measurement

Blood samples (4  mL) from participants were collected in 
serum separator clot activator blood collection tubes (Greiner 
Bio-One; reference no. 454071). The blood samples were 
allowed to rest upright on the laboratory bench for 30 min-
utes before centrifugation at 5000 g for 10 minutes at room 
temperature. Approximately 2  mL of supernatant sera was 
harvested by pipette, frozen, and stored at −80°C in poly-
propylene cryogenic vials. Following a complete thaw, rest-
ing levels of proinflammatory cytokines were measured 
using a mesoscale discovery (MSD) platform (Meso Scale 

Discovery). An ultrasensitive human proinflammatory I, 
V-Plex immunoassay panel was used to measure serum lev-
els of interleukin-6 (IL-6), IL-8, IL-10, and tumor necrosis 
factor alpha (TNF-α). Samples were diluted 1:2 according 
to the manufacturer's protocol. The lower limit of detection 
was < 1 pg/mL for all assays, and standardized calibration 
curves were confirmed before testing. All serum samples 
were measured in duplicate, and the mean cytokine concen-
tration of the duplicates (in picograms per milliliter) was used 
for analysis.

2.6 | Dietary data collection and predicted 
adherence to healthy diet

As requested, participants were confirmed to comply with 
refraining from taking vitamin, dietary, pre/probiotic, and 
herbal supplements, and to maintain usual ad libitum dietary 
intake before and during the study. Participants were also 
asked to record daily dietary habits via the MyFitnessPal 
smartphone application.26 Such dietary recordings were de-
constructed into macronutrient values and scaled accord-
ing to average caloric intake (calories × g/d). Dietary data 
were also collected by means of a monthly 146-item food 

F I G U R E  1  Study overview. The two 
participants supplied blood, fecal, and urine 
samples at every 2 wk long time point. 
DEXA scan and measurement of VO2max 
occurred at the beginning (T0) mid-point 
(T7) and final time point (T14). Diet, heart 
rate variability, and physical activity were 
continuously monitored. VO2max, estimated 
maximal oxygen consumption [Colour 
figure can be viewed at wileyonlinelibrary.
com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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frequency questionnaire (FFQ). Participants were asked to 
record their usual pattern of dietary intake over the previous 
4 weeks. The FFQ used was an adapted version of the ques-
tionnaire used in the United Kingdom arm of the European 
Prospective Investigation into Cancer (EPIC) study,27 which 
was based on the original Willet FFQ.28

Objective assessment of the participants’ adherences to 
WHO dietary guidelines was generated by applying a vali-
dated novel mathematical tool to 1H-NMR urinary profiles. 
This procedure predicts dietary patterns with Dietary patterns 
are predicted with the tool which implements a Monte Carlo 
cross-validated partial least squares discriminant analysis 
(PLS-DA) model derived from urinary metabolic profiles 
generated from an in-patient randomized controlled clinical 
trial. This trial required complete adherence to diets repre-
senting various degrees of completeness of WHO healthy 
eating recommendations in healthy participants.29 1H-NMR 
urinary metabolic profiles from participants were projected 
into the MCCV-PLS-DA model, calculating a predicted score 
for each point of measurement that reflected their adherence 
to healthy eating.

2.7 | DNA extraction and metagenomic 
sequencing of fecal samples

Biological samples (urine and fecal) were provided by par-
ticipants as partial evacuations into sterile sealed containers. 
Upon collection, samples were transported at room tempera-
ture to the Teagasc Moorepark research facility. On arrival, 
urine samples were immediately stored at −80°C, while fecal 
samples were first used for DNA extraction. Sample process-
ing and storage occurred within 6 hours of donation in the 
majority of cases and never after 12  hours. DNA was ex-
tracted from the donated fresh fecal samples using a QIAmp 
DNA stool minikit (Qiagen).30 Samples were prepared for 
DNA extraction by manual homogenization of the core and 
external surface of the fecal sample. The provided manufac-
turer's protocol was enhanced using a zirconia bead (Stratech 
Scientific) cell disruption bead-beating step (performed three 
times for 30 seconds each time). DNA extracts and the re-
maining fecal samples were subsequently stored at −80°C 
until sequencing.

Metagenomic libraries were prepared and subsequently 
sequenced as previously described.2 Briefly, libraries were 
generated with an Illumina Nextera XT DNA library prepa-
ration kit (Illumina Inc). Normalization of library concentra-
tions to the recommended 0.2 ng/μL was achieved with the 
Thermo Fisher Qubit 2.0 Flurometric Quantitation system 
(Q32854, Thermo Fisher). Following tagmentation, librar-
ies were purified with the AMPure magnetic bead system 
at a ratio of 1:1.8 (DNA:AMPure) (9A63880, Beckman 
Coulter). An equimolar library pool of all samples was used 

for sequencing on an Illumina NextSeq 500 (chemistry V.2.0) 
sequencing platform (Teagasc sequencing facility). High-
throughput sequencing was performed using the high-output 
500/550 reagent kit.

2.8 | Metagenomic sequencing 
bioinformatic analysis

QC of metagenomic FASTQ sequences proceeded with 
the removal of host (human) reads using NCBI Best Match 
Tagger (BMTagger v.1.1.0). Reads were converted to Binary 
Alignment Map (BAM) format and sorted using FastqToSam 
(v.2.7.1). Low-quality reads (Phred quality score  <  20), 
adapter sequences and short reads (Length cutoff: 105  bp) 
were trimmed using the trimBWAstyle.usingBam.pl script. 
PCR duplicates were removed using MarkDuplicates from 
Picard tools (v.2.7.1). Finally, forward and reverse reads 
were merged and converted to FASTA format using IDBA 
fq2fa (v.1.1.1).

Reads which passed quality control filtering were used as 
input for taxonomic profiling using MetaPhlAn2 (v.2.7.7).31 
The top 50 most abundant species were selected for visual-
ization. Functional profiling of high-quality processed reads 
was facilitated by the use of the Human Microbiome Project 
(HMP) Unified Metabolic Analysis Network (HUMAnN2 
V.0.99) pipeline.32 MetaPhlAn2 and ChocoPhlAn pange-
nome database were used to facilitate fast, accurate, and 
organism-specific functional profiling. Models of microbial 
metabolic pathways were produced by HUMAnN2 which 
uses UniRef database to provide gene family definitions 
and MetaCyc provides pathway definitions by gene family. 
Metadata was associated with community totals using the 
humann2_associate package to identify altered pathways be-
tween samples.

2.9 | Metabolomic sample preparation

Samples were stored at −80°C prior to analysis. Urine 
samples were subjected to vortex mixing and then cen-
trifuged at 1600  g for 10  minutes to remove precipitated 
proteins and particulates. For metabolic profiling analysis 
by reversed-phase (RP) and hydrophilic interaction chro-
matography (HILIC) ultraperformance liquid chroma-
tography-mass spectrometry (UPLC-MS), samples were 
prepared as follows: 200  µL of supernatant was diluted 
(1:1) with high-purity (ultraperformance liquid chromatog-
raphy [HPLC]-grade) water, subjected to vortex mixing, 
centrifuged at 2700 g for 20 minutes, and divided into ali-
quots for analysis. QC samples were prepared by pooling 
50-µL volumes of each sample. For 1H nuclear magnetic 
resonance (1H-NMR) spectroscopy, each sample contained 
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540  µL of urine mixed with 60  µL of phosphate buffer 
(pH 7.4; 80% D2O) containing a 1 mmol/L concentration 
of the internal standard, 3-(trimethylsilyl)-[2,2,3,3,-2H4]-
propionic acid (TSP)–2 mmol/L sodium azide (Na3N), as 
described previously.33 During the analyses, samples were 
maintained at 4°C in the autosampler.

Fecal samples underwent two freeze-thaw cycles. 
Following the freeze-thaw cycles, 100 mg of homogenized 
sample was placed in a microtube containing 250  µL of 
25% acetonitrile (ACN) (1:2 ACN/H2O), 2  mmol/L so-
dium azide, and ~0.05  g 1-mm-diameter zirconia beads. 
Each microtube was processed for 10 seconds in a Biospec 
bead beater. Samples were then centrifuged at 16 000 g for 
20 minutes. The fecal-water supernatant was subsequently 
centrifuged through centrifuge tube filters (cellulose ace-
tate membrane; pore size, 0.22 µm) to remove any remain-
ing particulate matter. The centrifuge tube filters were 
washed three times with 25% acetonitrile prior to use. The 
resulting fecal water was prepared for UPLC-MS profiling 
using HILIC by diluting 3:1 with acetonitrile and for bile 
acid profiling by diluting 1:1 with isopropanol. Samples 
were subjected to vortex mixing and incubated at −20°C 
for 1  hour. Following the incubation step, samples were 
centrifuged at 4°C at 16 000 g for 1 hour and divided into 
aliquots for analysis. QC samples were prepared by pool-
ing 20-µL volumes of each fecal-water sample followed 
by preparation as described above. For 1H-NMR spectros-
copy, 50 µL of the filtered fecal water was added to a glass 
tube (Pyrex), which was placed under a nitrogen gas flow 
for 30 minutes or until all the liquid had evaporated. The 
dried sample was reconstituted with 540  µL of D2O and 
60 µL of phosphate-buffered solution as described above. 
The solution was mixed and sonicated for 5 minutes before 
undergoing further centrifugation at 14 000 g for 10 min-
utes, and then 600 µL of the supernatant was transferred to 
an NMR tube for 1H-NMR spectral acquisition.

2.10 | Metabolomic analysis

RP, HILIC, and bile acid UPLC-MS metabolic profil-
ing experiments were performed using a Waters Acquity 
Ultra Performance LC system (Waters) coupled to a Xevo 
G2 quadrupole-time-of-flight (Q-TOF) mass spectrometer 
(Waters) with an electrospray source. Samples were analyzed 
in randomized order, with QC analyses performed every 10 
samples. First, urine samples were analyzed using UPLC-MS 
and an RP chromatographic method with both positive and 
negative MS ionization modes. Second, to separate and de-
tect the more polar molecules, a HILIC chromatographic 
stage was used with the positive MS ionization mode. Fecal-
water samples underwent analysis using HILIC and bile acid 
profiling chromatographic methods in positive and negative 

ionization modes, respectively. HILIC, RP, and bile acid 
profiling liquid chromatographic separation procedures were 
performed as previously described.34,35 Mass spectrometry 
was performed with the following settings. Capillary and 
cone voltages were set at 1.5 kV and 30 V, respectively. The 
desolvation gas level was set at 1000 L/h at a temperature of 
600°C. The cone gas level was set to 50 L/h. The source tem-
perature was set to 120°C. To ensure the accuracy of the mass 
data, a lock-spray interface was used, with leucine enkepha-
lin (556.27741 Da ([M+H]+), 554.2615 Da ([M−H]−)) so-
lution used as the lock mass at a concentration of 2000 ng/mL 
and a flow rate of 15 µL/min.

1H-NMR spectroscopy was performed on the aque-
ous-phase extracts at 300 K on a Bruker 600-MHz spectrom-
eter (Bruker Biospin) using a standard one-dimensional (1D) 
pulse sequence corresponding to RD − gz1 − 90° − t1 −90° 
− tm − gz2 − 90°− ACQ,33 where the value of 90° represents 
the applied 90° radio frequency pulse; the relaxation delay 
(RD) was set at 4 seconds, the interpulse delay (t1) was set at 
4 µs, the mixing time (tm) was set at 10 ms, the magnetic field 
gradients (gz1 and gz2) were applied for 1 ms, and the acqui-
sition period (AQA) was 2.7 seconds. Water suppression was 
achieved through irradiation of the water signal during RD 
and tm. Urine sample spectra were acquired using 4 dummy 
scans followed by 32 scans whereas fecal spectra were ac-
quired using 256 scans and 4 dummy scans and collected into 
64 K data points. A spectral width of 12 000 Hz was used for 
all the samples. Prior to Fourier transformation, the free in-
duction decay values were multiplied by an exponential func-
tion corresponding to a line broadening of 0.3 Hz.

2.11 | Metabolomic data treatment

The raw mass spectrometric data acquired were preprocessed 
using xcms in R. Centwave peak picking methods were used 
to detect chromatographic peaks.36 The xcms-centWave pa-
rameters were data set specific. Feature grouping across sam-
ples was performed using the “nearest” method within xcms. 
Peak filling and MinFrac (0.5), and coefficient of variation 
(CV) (0.3) filters were applied to the features. Data were 
normalized using median fold change normalization to the 
median dataset.37

1H-NMR spectra were normalized using median fold 
change normalization to the median spectrum.37 Combinations 
of data-driven strategies were used to identify metabolites 
of interest from 1H-NMR data sets. Semiquantification data 
corresponding to the identified metabolites were calculated 
through peak intensity measurements of the normalized 1H-
NMR spectra using an in-house script. GC-MS data were 
processed using MassHunter Quantitative Analysis (Agilent 
Technologies, RRID:SCR_015040) software. Refer to 
Appendix for additional detail.

info:x-wiley/rrid/RRID:SCR_015040
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2.12 | Quantification and statistical analysis

Statistical assessment of dissimilarity matrices (Bray-Curtis) 
derived from microbial data was facilitated with the adonis2 
function in the vegan R package (V.2.4-3, RRID:SCR_01
1950).38  Measurements of α-diversity and calculations of 
relative abundances were also performed with the vegan R 
package using Shannon index. Relative-abundance data were 
generated separately for identified species within each phy-
logenetic domain (eg, Bacteria). False discovery rate (FDR) 
correction for multiple tests was applied with a significance 
threshold of pFDR < .05.

For metabolomic analysis, the resulting 1H-NMR and 
LC-MS data sets were imported into MatLab to conduct 
multivariate statistical analysis. Data were centered and 
scaled to account for the repeated-measures design and 
then modeled using partial least squares discriminant 
analysis (PLS-DA) with Monte Carlo cross-validation 
(MCCV).29 The fit and predictability of the models ob-
tained were determined and expressed as R2 and Q2 val-
ues, respectively.

3 |  RESULTS

3.1 | Study overview

Two male adults aged 30 and 33  years with starting BMI 
of 28.6 and 31.7  kg/m2, respectively, were recruited for 
participation (Table  1). During the study, the participants 
were engaged in instructor-led improvements in physical 
fitness aimed toward completion of endurance events, that 
is, full-distance marathon and Olympic-distance triathlon, 
respectively. Both participants demonstrated incremental 
improvements in measurements of body composition and 
cardiorespiratory fitness throughout the duration of the study 
(Figure  2D and Table  1). BMI, waist circumference, and 
resting heart rate decreased for both participants while under 
observation. Additionally, estimated maximal oxygen con-
sumption (VO2max) increased. Total body fat (%) was also 
reduced.

Participant 1 (Marathoner) experienced the greatest im-
provement in cardiorespiratory fitness and body composition 
(Table 1 and Figure 2D). During the study, the participant's 

Patient characteristics

Values

Participant 1 (Marathoner) Participant 2 (Triathlete)

T0 T14 Δ T0 T14 Δ

Age (y) 30 – – 33 – –

Height (cm) 181 – – 182 – –

Weight (kg) 93.8 89.2 −4.6 104.9 103.4 −1.5

BMI (kg/m2) 28.6 27.2 −1.4 31.7 31.2 −0.5

Waist:Hip ratio 0.92 0.92 0.0 0.95 0.91 −0.04

Body fat (%) 25.6 21.7 −3.9 34.7 34.5 −0.2

Fat mass (kg) 23.9 19.4 −4.6 36.3 35.7 −0.6

Fat mass (trunk) (kg) 14.8 11.7 −3.1 20.9 20.4 −0.5

Lean tissue mass (kg) 65.6 65.9 0.2 64.97 64.2 −0.7

Estimated VO2max  
(mL/kg/min)

41.1 46.6 5.5 33.6 38 4.4

Max HR (bpm) 183 179 −4 196 179 −17

Resting HR (bpm) 69 50 −19 58 72 −2

Systolic BP (mm Hg) 122 116 −6 128 127 −1

Diastolic BP (mm Hg) 77 75 −2 87 72 −15

Weekly PA

(IPAQ, METS) 891.5 – – 646.5 – –

Weekly PA

(IPAQ, kCals) 1393.7 – – 1130.3 – –

Note: Measurements presented for initial (T0) and final (T14) readings, along with the change between the two 
(Δ).
Abbreviations: BMI, body mass index; bpm, beats per minute; HR, heart rate; IPAQ, International Physical 
Activity Questionnaire; METS, metabolic equivalents; PA, physical activity; VO2max, estimated maximal 
oxygen consumption.

T A B L E  1  Baseline measurements of 
participant demographic and anthropometric 
characteristics

info:x-wiley/rrid/RRID:SCR_011950
info:x-wiley/rrid/RRID:SCR_011950


180 |   BARTON eT Al.



   | 181BARTON eT Al.

body weight was reduced by 4.6 kg (4.9% of baseline), pri-
marily corresponding to a reduction in total fat mass (−3.9%). 
Estimated VO2max increased by 5.5 mL/kg/min, while max-
imum and resting heart rate decreased by 4 and 19 beats per 
minute, respectively. Participant 2 (Triathlete) concluded the 
study with more modest improvements. A total body weight 
loss of 1.5 kg (1.4% of baseline) included a loss of 0.6 kg 
total fat and 0.7  kg lean tissue mass (Table  1). Estimated 
VO2max increased by 4.4  mL/kg/min, while maximum and 
resting heart rate decreased by 17 and 2 beats per minute, 
respectively (Table 1 and Figure 2D).

Dietary recordings for both participants demonstrated that 
the ratios of macronutrients were consistent throughout the 
study, with the exception of the final recording of the triath-
lete, at which time considerably more fiber intake was re-
ported (Figure 2C). To more elaborately inspect the impact 
of diet, an objective dietary assessment was performed on 
metabolite composition of the participant's 1H-NMR urinary 
profiles (Figure  2A,B). This novel mathematical model29 
generated predictions of the percentage of adherence to the 
WHO dietary guidelines for both participants. In combina-
tion with macronutrient measurements the predictions pro-
vide an objective and more precise assessment of nutritional 
habits.

Predicted healthy diet adherence demonstrated that the 
marathoner was engaged in healthy eating habits for the ma-
jority of the study (Figure 2A), while the triathlete showed 
overall improvement during the study, with all predictions 
at a higher percentage than baseline (Figure 2B). The study 
commenced with adherence rates of approximately 80% and 
30% for the marathoner and triathlete, respectively. The mar-
athoner had a predicted percentage above 65% between time 
points 3 and 11, before dropping below 20% at time point 12 
and 13, followed by a climb to 111% in the final time point 
of the study (Figure 2A). There were even more fluctuations 
in adherence values for the triathlete. A predicted percentage 
above 65% was observed between time points 5 and 9, before 
a spike to 104% at time point 11 and a fall to 48% at the final 
time point.

3.2 | Gut microbiome response to training

Species level taxonomic profiles of the participants’ gut mi-
crobiota showed fluctuations that corresponded to reported 
health and training events (Figure  3). The intra-individual 
(α-diversity) showed a general overall increase over the 
course of the study. While under observation, both partici-
pants experienced minor illnesses accompanied by transient 
reductions in diversity of bacterial species (Figure 3A). The 
marathoner experienced minor illness (pharyngitis, diarrhea 
and wisdom tooth pain) during the 2 week period after the 
marathon, which was accompanied by lowered diversity of 
bacterial species and metabolic pathways. This reduction 
corresponded with an increase in IL-6 concentrations in the 
blood (Figure  S1C). Further, this decrease in α-diversity 
persisted for the short remainder of the study. Similarly, a 
considerable drop in the triathlete's gut microbial diversity 
coincided with a training reduction that resulted from a head 
cold, before being elevated as training resumed. Notably, 
bacterial and pathway α-diversity peaked for the maratho-
ner near the date of marathon completion. The peak in the 
triathlete's α-diversity coincided with a peak in his training 
intensity (Time point 10) during which he required a short 
course of non-steroidal anti-inflammatories for a musculo-
skeletal injury.

Assessment of taxonomic inter-individual (β-diversity) via 
Principal Coordinates Analysis (PCoA) of bacteria species 
relative abundance illustrated considerable differences be-
tween the two participants throughout the study (Figure 3B). 
Differences were also observed for species-specific variants 
of metabolic pathway models, (eg, L-lysine degradation in 
Akkermansia muciniphila, Figure  3D). In contrast, a con-
vergence of general pathways (eg, L-lysine degradation, 
Figure 3C) was observed.

Bacteroides was the most abundant genus within the 
marathoner's gut microbiome, with four of the top five most 
abundant species being B stercoris, B ovatus, B caccae, and 
B vulgatus (Figure 4A). For the triathlete, Prevotella copri 
was the most abundant gut bacterial species throughout 

F I G U R E  2  Diet and fitness characteristics. A and B, Objective assessment of adherence to WHO dietary guidelines based on the urine 
composition using 1H-NMR urinary profiles from participant 1 (marathoner) (A) and participant 2 (triathlete) (B). The X-axis represents time points 
of the study while the Y-axis indicates the predicted percentage of adherence to WHO dietary guidelines. The level of confidence in the prediction 
is described by the index to the right. Participant 1 exhibits a more sustained improvement in adherence to WHO dietary recommendations (A). 
Participant 2 demonstrates more fluctuation in their adherence to WHO dietary recommendations, combined with lower levels of prediction 
confidence (B). C, Nutritional constituents of participants over the study period. Along the X-axis are time intervals beginning with the first 
period (T1, baseline to two weeks), while the Y-axis describes average macronutrient proportions multiplied by calorie averages. Daily averages 
of dietary macronutrients recorded over time intervals as grams per day, presented as proportions of time interval total intake, and scaled to 
average caloric intake per interval. Bar sums indicate average daily caloric intake, with participants’ averages for calories and dietary components 
indicated (M). D, Participant body composition and fitness measurements. Fitness parameters improved during the observation period. BMI, hip 
and waist circumference, and resting heart rate (bpm) were shown to have an overall reduction. Physical activity was elevated for both participants 
throughout the study. BMI, body mass index; bpm, beats per minute; HR, heart rate; METS, metabolic equivalents [Colour figure can be viewed at 
wileyonlinelibrary.com]
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the study (Figure 4B). Examination of the gradual logFC 
(log fold change) alteration of the most abundant spe-
cies present in the marathoner highlighted a dramatic re-
duction in Bifidobacterium, Eubacterium, and Roseburia 
species occurring after the participant became ill. At this 
same point Alistipes species, particularly A senegalensis, 
were elevated (Figure  4A). For the triathlete, significant 
reductions in the relative abundance of Ruminococcus, 
Dorea, and Eubacterium species were apparent imme-
diately after the period of highest diversity (Figure  4B). 
The greatest increase observed at any time point related 
to Bifidobacterium longum (logFC = 7.6), which occurred 
following his greatest training increment. Further, logFC 
of species after 6 months training versus the initial assess-
ment found that, for the marathoner, the relative abundance 
of Veillonella parvula increased by 3.4-fold fold, and 
Agathobacter rectalis decreased 2.6-fold (Figure S1A). For 
the triathlete, a 5.8-fold increase in Methanobrevibacter 
smithii and a nearly 7.4-fold decrease in Bifidobacterium 
animalis occurred, while A muciniphila underwent a 2.6-
fold increase in relative abundance (Figure S1B).

3.3 | Individual-specific metabolic changes 
in response to exercise over time

1H-NMR analysis of urine and fecal samples revealed 
changes in the metabolic profiles of the participants during 
6 months of increased physical activity. Unsupervised PCA 
analysis was performed on each participant independently 
(Figure  5A-D). For both participants, the urinary profile 
scores (Figure 5A,B) demonstrated more pronounced adap-
tations to the exercise stimulus than was the case for fecal 
profiles (Figure 5C,D), as outlined by a smoother trajectory 
with disparate beginning and end points (0 and 26 weeks).

The score plot pertaining to the urinary profile of the mar-
athoner (Figure 5A) showed a clearer pattern than was the 
case for the triathlete (Figure  5B). The data points mostly 
moved from the upper quadrants to the lower over time, 
with greater correlation among points, as indicated by lower 

F I G U R E  3  Diversity of pathways and Bacteria species. A, 
Shannon α-diversity H-index of Bacteria species and metabolic 
pathway models for both participants over the duration of the 
study. Deviations of each participants’ mean α-diversity highlight 
the potential influence of training and health-related events on the 
composition of the gut microbiome. B, β-diversity of bacterial species. 
PCoA of relative abundance profiles for Bacteria species demonstrates 
complete clustering of measurements according to individual. C 
and D, PCoA of models for general and taxonomically related 
metabolic pathways. Box plots along the axes of all panels display 
the concentrations of data points [Colour figure can be viewed at 
wileyonlinelibrary.com]
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dispersal about the trajectory. The opposite was observed for 
the fecal profile score plots. While the marathoner's fecal pro-
file (Figure 5C) did not undergo distinct changes over time, 
the triathlete's fecal profile (Figure 5D) underwent a distinc-
tive shift of data points from the upper quadrants to the lower 
over time.

3.4 | Disparate metabolic alterations 
in response to exercise are associated with 
weight loss

PCA time trajectory plots of the 1H-NMR urine samples 
from both participants (Figure 5A,B) were labeled for BMI 
(Figure  S2A,B), describing an association to body weight 
changes. PCA time trajectories were further color-coded ac-
cording to various read-outs of fitness and diet in order to 
compare progress of the participants over the six months of 
increased physical activity (Figures S3, S4). The participants 
demonstrated similar patterns for cardiorespiratory fitness, 
(VO2max, Figures  S3C, S4C) and reported consumption of 
fruits and vegetables (Figures S3F, S4F), while differences 
were observed for step count (Figures S3A, S4A), moderate 

exercise duration (Figures S3B, S4B), protein consumption 
(Figures S3D, S4D), and fiber intake (Figures S3E, S4E).

3.5 | Exercise responsive metabolites linked 
with BMI

To explore the relationship between exercise and body habi-
tus, we identified the metabolites significantly associated 
with BMI within the profiles of both participants. Given the 
greater reflection of metabolic changes within the urinary 
datasets, linear regression was performed on the combined 
urinary profiles of the two participants, with BMI as the inde-
pendent variable. Three metabolites were significantly asso-
ciated to BMI (pFDR < .05). N-methyl nicotinate (NMNA) 
and hippurate were shown to be positively correlated with 
BMI, while phenylacetylglutamine (PAG) was shown to be 
inversely related with BMI (Table 2). The UPLC-MS com-
bined urinary datasets of both participants were also subject 
to linear regression to BMI in order to discover any associ-
ated amino acids. L-Serine, L-Asparagine, L-Isoleucine and 
D-2-aminobutyric acid were identified as being negatively 
correlated with BMI (Table 2).

F I G U R E  4  Temporal change of bacteria species. Variation in abundance of the 50 most prevalent bacteria species between sequential paired 
measurements and the overall change for the (A) marathoner and (B) triathlete gut microbiome. Intervals correspond to number of 2 wk periods 
during the 6 mo of training. The final column for both panel indicates the change between the first and final measurement. Values are displayed as 
the log2 fold change of relative abundance for reported species. The clustering is performed with average linkage and Bray-Curtis distance [Colour 
figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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4 |  DISCUSSION

Our prior investigations characterizing the gut microbiome 
within the framework of physical exercise have included 
profiling extremes of fitness, as assessed through examina-
tion of the athlete gut microbiome,12,39 and also investigating 
the impact of structured exercise in the physically inactive.1,2 
Although profiling of the athlete gut microbiome revealed 
numerous differences in taxonomic composition, functional 
potential, and metabolic activity relative to a control popula-
tion of healthy but less fit adults, the microbiome alterations 

resulting from a short-term exercise intervention were more 
nuanced. We have theorized that the structure of the athlete 
microbiome is, in part, the result of adaptations to long-term 
engagement in rigorous physical activity and associated life-
style (eg, optimized diet).40 This is consistent with the obser-
vation that the gut microbiome of adults has been shown to 
be resistant to dramatic alteration and, thus, may not rapidly 
adapt to the systemic influences of exercise.41

Here however, we investigated whether the gut microbi-
ome is altered by exercise over an extended period of time. 
Case studies are well suited to such questions but have been 

F I G U R E  5  PCA analysis of 1H-NMR urinary and fecal datasets. PCA time trajectory scores plot of 1H-NMR urine and fecal samples of the 
(A and C, respectively) marathoner and (B and D, respectively) triathlete. Each sample is represented by a dot, which is colored according to time 
(weeks) where dark blue is 0 wk and dark orange is 26 wk. A time trajectory was constructed using data points at 0, 6, 12, 20, and 26 wk. Urinary 
profiles (A and B) exhibit a more concise path over time compared with cognate fecal profiles (C and D), with the marathoner's urinary profile 
demonstrating differences in the metabolic profile that are more conserved between data points (A). Ability of the model to account for variation 
within the dataset is described by the R2(X) values [Colour figure can be viewed at wileyonlinelibrary.com]
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   | 185BARTON eT Al.

under-utilized in microbiome science. By tracking two par-
ticipants over a 6-month period of fitness improvement, 
modification of the gut microbiome in response to well-docu-
mented training events, dietary trends, and health events was 
achieved.

The diversity of gut bacterial species increased with 
physical training, while also responding to periods of injury 
and illness. Measurements of α-diversity for the marathoner 
peaked at the sample collection point nearest to the date of 
the marathon and took approximately 20 weeks of sequen-
tial training to manifest a sustained increase. Likewise, the 
level of diversity for the triathlete peaked with a period of 
increased training activity, which subsequently resulted in 
injury and short-term non-steroidal anti-inflammatory use. 
It has previously been shown that a wide range of pharma-
ceutical compounds can interact with components of the in-
testinal microbiome,42,43 but we believe that this short-term 
medication use was unlikely to account for the concurrent 
increase in alpha diversity. Changes observed in the abun-
dance of bacterial species from the participants illustrated 
that the microbial communities of the two individuals were 
distinct from one another. Despite this, between the two par-
ticipants, taxa such as Lachnospira, Dorea, paraprevotella, 
Faecalibacterium, and Ruminococcus, experienced changes 
in relative abundance that have been identified in other sim-
ilar studies.4,14 However, there are disparities between these 
studies that are likely due to diet, study population, and ex-
ercise type. The dominance of Bacteroides in the profile of 
the marathoner did not mirror characterizations of gut mi-
crobiota in athletes, in which high abundance of Bacteroides 
is uncommon.13,39 However, an examination of soldiers un-
dergoing intense physical military training demonstrated a 
 decrease of Bacteroides that was inversely related to intestinal 

permeability.44 Additionally, a recent study found that a high 
Prevotella-Bacteroides ratio reflected decreased body fat,45 
which is consistent with the findings presented here. It is also 
interesting to note the lower degree of fold changes across 
species in the marathoner compared with the triathlete. This 
relative stability suggests that Bacteroides dominant gut mi-
crobiomes may be more resilient to exercise-related perturba-
tions. Further, the relative abundance of Veillonella parvula 
underwent a 3.4-fold increase. V parvula is part of the normal 
microbiota of the mouth and has been implicated in oral in-
fections.46 Here, the marathoner contracted pharyngitis and 
had wisdom tooth pain in the 2  weeks after the marathon. 
However, it is also notable that a recent examination of the 
gut microbiota of marathon runners discovered an increase 
in Veillonella species abundance post marathon.15 The au-
thors of that study conducted transplantation of V atypica 
to mice, resulting in an enhancement of running endurance, 
which was theorized to result from improved lactate metab-
olism by the species. Specifically, V atypica converts lactate 
to propionate, a short-chain fatty acid (SCFA) with numerous 
biological functions, including acting as a significant energy 
source. It may be the case that other Veillonella species facil-
itate similar metabolic function, and increased abundance of 
such species is a natural adaptive response to environmental 
changes in the gut resulting from increased physical activity.

A high abundance of Prevotella copri was noted 
within the triathlete's gut microbiota. Prevotella has pre-
viously been shown to be abundant in professional cyclists 
performing endurance training,13 although Prevotella-
dominated microbiota have also been associated with rheu-
matoid arthritis disease progression.47 Robust examination 
of >1000 P copri genomes has described multiple distinct 
clades for the taxon with substantial functional variation.48 

T A B L E  2  Significant metabolites identified through linear regression to BMI for both volunteer's 1H-NMR and UPLC-MS urinary datasets

Metabolite

1H-NMR urinary metabolites

BMI association Chemical shift, PPM (multiplicity)* P-value

N-methyl nicotinate ↑ 4.44 (s), 8.09 (t), 8.84 (t), 9.13 (s) .000527

Hippurate ↑ 3.98 (d), 7.54 (t), 7.65 (t), 7.84 (d) .0322

Phenylacetylglutamine ↓ 1.92 (m), 2.11 (m), 2.27 (m), 3.67 (m), 4.19 (m), 
7.36 (t), 7.43 (t)

.0154

Metabolite

UPLC-MS urinary metabolites

BMI association Molecular weight P-value

L-Serine ↓ 355.2 .00655

L-Asparagine ↓ 382.2 .0131

L-Isoleucine ↓ 381.19 .00726

D-2-aminobutyric acid ↓ 353.23 .0489

Note: N-methyl nicotinate (NMNA) and hippurate were shown to be positively correlated with BMI while phenylacetylglutamine (PAG) demonstrated inverse 
correlation with BMI. All significant UPLC-MS metabolites were negatively correlated with BMI. For 1H-NMR profiles, chemical shifts of each metabolite, and their 
corresponding multiplicity were used in the identification process. A significant P-value threshold of .05 was chosen after calculating the false discovery rate (FDR).
*Multiplicity: s, singlet; d, doublet; t, triplet; m, multiplet.
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Conceivably, this improved characterization of P copri will 
enable more accurate determination of its role in physical 
fitness and other aspects of health. Methanobrevibacter 
smithii was the species that most considerably increased 
in relative abundance in response to training in the triath-
lete (5.8-fold). M smithii has previously been identified 
in a study of cyclists at different competitive levels. The 
authors described that M smithii was found primarily in 
the most competitive participants and that high methane 
metabolism associated with the microbe had broad impli-
cations with other metabolic processes, including those re-
lated to SCFAs. Additionally, M smithii has been shown to 
be increased in Anorexia Nervosa patients49,50 and in rats 
with eating restrictions.51 The triathlete averaged ~2000 
calories per day throughout this training period, whereas 
the marathoner averaged ~2500 calories per day. The com-
bination of low-calorie diet and increased aerobic physical 
activity may be associated with the increase in M smithii 
abundance.

Assessment of β-diversity for both bacterial species and 
taxonomically linked metabolic pathway profiles demon-
strated that the participants maintained distinct microbial 
structures throughout the observation period. Conversely, the 
participants’ general metabolic pathway profiles converged 
for a period of the study. This suggests that broad alterations 
of the microbiome in response to exercise do not result in a 
specific structure of the microbial community, but rather that 
targeted adaptations occur with microbial metabolic activity. 
Despite this, metabolomic analysis also identified trajectories 
of metabolite profiles for the two participants that were dis-
similar, possibly reflecting the differences exercise training 
pursued by the two volunteers. Curiously, significant associ-
ations between urinary metabolites and BMI were detected. 
One such metabolite, PAG, has previously been associated 
with lean body composition.52 This association is also high-
lighted here, as levels of urinary PAG decrease with BMI.

It is important to note that while still poorly understood, 
the mechanisms underpinning cross talk between exercise 
and gut microbiota are beginning to be described.9 The de-
pletion of gut microbiota in mice resulted in decreased run-
ning endurance, which was recovered following replacement 
of the microbiota.53 Similar work demonstrated significant 
reductions in SCFAs, gut microbiota, and endurance capacity 
with antibiotic treatment.54 Infusion of the SCFA acetate re-
sulted in the restoration of endurance capacity.

SCFA enrichment has been demonstrated in professional 
athletes that have participated in chronic high-intensity train-
ing,12 however this has not been widely observed in other 
populations engaged in exercise, including the participants 
presented here. Despite a lack of dramatic changes in SCFA 
profile, the participants exhibited increased abundance of 
microbial species that have been shown to influence SCFA 
production. It is conceivable that enrichment of these and 

other related microbes precedes pronounced metabolomic 
alteration and that such changes were in the process of de-
veloping. Alternatively, it may be that these microbes require 
substrates that were not sufficiently provided by the partici-
pants’ respective diets. In both cases, it is conceivable that the 
full extent of the microbial signatures of chronic training is 
the result of a longer period of physical training and inherent 
associated dietary adaptations.

5 |  CONCLUSION

These results provide further evidence that the human gut mi-
crobiome is affected by exercise. We observed an increase in 
alpha diversity after 3-4 months of sustained and incremental 
training. This did not appear to differentiate between train-
ing regimens and is encouraging that regular training, if sus-
tained, can lead to favorable microbiome characteristics. We 
observed a stable macronutrient intake in both case studies, 
suggesting that dietary change is not directly accountable for 
the observed changes in this study. However, the effects fluc-
tuated in response to environmental stressors, such as reduced 
training following injury and in particular, illness. Alterations 
in taxa and metabolite profiles occurred in response to train-
ing, and in many instances mirror changes seen in other ex-
ploratory studies. Despite this, the current investigation has 
limitations to consider, which will better inform similarly 
focused future investigations. While prospective dietary re-
cording by participants via the chosen method is arguably 
more sensitive than retrospective recall, it still remains prone 
to error, if for instance food items are omitted or substance 
quantity miscalculated. This approach is aided by the use of 
an objective qualification of diet via urinary metabolomics 
profile; however, this technique has its own shortcomings. 
In particular, the objective assessment is relatively new and 
as a result unfamiliarity with it can obscure its output and in-
terpretation. Further, the dependency on metabolomics data 
has significant cost and training disadvantages to traditional 
dietary reporting approaches. Regardless, given the entangle-
ment of diet and exercise, consideration of dietary influence 
should remain mandatory in the reporting of studies in this 
field and investigators should continue to strive for more ac-
curate information.

The low sample size of the current study is also acknowl-
edged. This, combined with the variation in training of the 
participants, reduces the generalizability of findings to the 
general population and also limits advanced statistical anal-
ysis of the gut microbiome and metabolome. The choice of 
a case-study design was purposeful however, facilitating 
a real-world, longitudinal analysis of personal goal-driven 
training, permitting interpretation and observation of the 
outcomes of interest in the context of individual traits and 
environmental incidents. Further studies would be required 
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on a higher resolution time-scale in order to determine the 
duration of microbiome shifts in response to aerobic and re-
sistance exercise.
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APPENDIX 

Anthropometric measurement visits
For the first week, participants were asked to maintain usual 
physical activity habits to record baseline activity levels. At 
each two week visit thereafter, anthropometric measurements 
were recorded (eg, body mass index (BMI)), in addition to 
fasting blood, fresh fecal and urine samples, and activity 
monitor data requisition. Participants were asked to refrain 
from use of alcohol, medication, and moderate to vigorous 
physical activity for at least 24 hours prior to each measure-
ment visit. To minimize potential effects of diurnal variation, 
measurement visits took place between 7:00 am and 10:00 am 
At monthly intervals, participants measured their heart rate 
variability using the HRV4training smartphone application.22 
Clinical variables such as blood pressure and heart rate were 
recorded before phlebotomy by a trained nurse. Plasma and 
serum samples were transported immediately to the clinical 
laboratories. Fresh urine and fecal samples were transported 
immediately at room temperature to the laboratory for DNA 
extraction and sample storage. No antibiotics were used by 
either participant during the study period.

VO2max and body composition measurement
Body composition profile and cardiorespiratory fitness 
(VO2max) were measured at 0, 3, and 6 months. An experienced 

exercise physiologist conducted the Astrand Treadmill test 
to determine VO2max.

23,24 The British Association of Sport 
and Exercise Sciences (BASES) criteria were used to de-
fine attainment of VO2max.

25 VO2max was achieved when (a) 
A plateau in the oxygen uptake/exercise intensity relation-
ship occurred (defined as an increased in oxygen uptake of 
<2  mL/kg/min); (b) A final respiratory exchange ratio of 
1.15 or above was reached; (c) A final heart rate within 10 b/
min of the age-related maximum was reached and (d) post-
exercise (5 minutes) blood lactate of 8 mmol/L or more was 
evident.

Body composition was measured using a Lunar iDXA 
machine (GE Healthcare) equipped with enCORE software 
(V.13.4, 2010) for a three-compartment body composition 
model (fat mass, bone mass, lean tissue). Quality control 
(QC) analysis was performed on the iDXA machine before 
use on each measurement day.

Inflammatory cytokine measurement
Blood samples (4  mL) from participants were collected in 
serum separator clot activator blood collection tubes (Greiner 
Bio-One; reference no. 454071). The blood samples were 
allowed to rest upright on the laboratory bench for 30 min-
utes before centrifugation at 5000 g for 10 minutes at room 
temperature. Approximately 2  mL of supernatant sera was 
harvested by pipette, frozen, and stored at −80°C in poly-
propylene cryogenic vials. Following a complete thaw, rest-
ing levels of proinflammatory cytokines were measured 
using a mesoscale discovery (MSD) platform (Meso Scale 
Discovery). The MSD system is an electrochemilumines-
cence-based solid-phase multiplex assay. An ultrasensitive 
human proinflammatory I, V-Plex immunoassay panel was 
used to measure serum levels of interleukin-6 (IL-6), IL-8, 
IL-10 and tumor necrosis factor alpha (TNF-α). Samples 
were diluted 1:2 according to the manufacturer's protocol. 
The lower limit of detection was <1 pg/mL for all assays, and 
standardized calibration curves were confirmed before test-
ing. All serum samples were measured in duplicate, and the 
mean cytokine concentration of the duplicates (in picograms 
per milliliter) was used for analysis.

Dietary data collection and predicted 
adherence to healthy diet
Throughout the study period participants were requested to 
refrain from taking vitamin, dietary, pre/probiotic, and herbal 
supplements, and to maintain usual ad libitum dietary intake. 
The participants were confirmed to not be taking such prod-
ucts at the time of recruitment. No antibiotics were used by 
either participant during the study period. Participants were 
also asked to record daily dietary habits via the MyFitnessPal 
smartphone application.26 Such dietary recordings were de-
constructed into macronutrient values and scaled accord-
ing to average caloric intake (calories × g/d). Dietary data 
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were also collected by means of a monthly 146-item food 
frequency questionnaire (FFQ). Participants were asked to 
record their usual pattern of dietary intake over the previous 
4 weeks. The FFQ used was an adapted version of the ques-
tionnaire used in the United Kingdom arm of the European 
Prospective Investigation into Cancer (EPIC) study,27 which 
was based on the original Willet FFQ.28

Objective assessment of the participants’ adherences to 
WHO dietary guidelines was generated by applying a vali-
dated novel mathematical tool to 1H-NMR urinary profiles. 
Dietary patterns are predicted with the tool which imple-
ments a Monte Carlo cross-validated partial least squares 
discriminant analysis (PLS-DA) model derived from urinary 
metabolic profiles generated from an in-patient randomized 
controlled clinical trial. This trial required complete adher-
ence to diets representing various degrees of completeness 
of WHO healthy eating recommendations in healthy partici-
pants.29 1H-NMR urinary metabolic profiles from participants 
were projected into the MCCV-PLS-DA model, calculating a 
predicted score for each point of measurement that reflected 
their adherence to healthy eating.

DNA extraction and metagenomic 
sequencing of fecal samples
Biological samples (urine and fecal) were provided by par-
ticipants as partial evacuations into sterile sealed containers. 
Upon collection, samples were transported at room tempera-
ture to the Teagasc Moorepark research facility. On arrival, 
urine samples were immediately stored at −80°C, while fecal 
samples were first used for DNA extraction. Sample process-
ing and storage occurred within 6 hours of donation in the 
majority of cases and never after 12  hours. DNA was ex-
tracted from the donated fresh fecal samples using a QIAmp 
DNA stool minikit (Qiagen).30 Samples were prepared for 
DNA extraction by manual homogenization of the core and 
external surface of the fecal sample. The provided manufac-
turer's protocol was enhanced using a zirconia bead (Stratech 
Scientific) cell disruption bead-beating step (performed three 
times for 30 seconds each time). DNA extracts and the re-
maining fecal samples were subsequently stored at −80°C 
until sequencing.

Metagenomic libraries were prepared and subsequently se-
quenced as previously described.2 Briefly, libraries were gen-
erated with an Illumina Nextera XT DNA library preparation 
kit (Illumina Inc). Normalization of library concentrations to 
the recommended 0.2 ng/μL was achieved with the Thermo 
Fisher Qubit 2.0 Flurometric Quantitation system (Q32854, 
Thermo Fisher). Following tagmentation, libraries were pu-
rified with the AMPure magnetic bead system at a ratio of 
1:1.8 (DNA:AMPure) (9A63880, Beckman Coulter). An 
equimolar library pool of all samples was used for sequenc-
ing on an Illumina NextSeq 500 (chemistry V.2.0) sequenc-
ing platform (Teagasc sequencing facility). High-throughput 

sequencing was performed using the high-output 500/550 
reagent kit.

Metagenomic sequencing 
bioinformatic analysis
QC of metagenomic FASTQ sequences proceeded with 
the removal of host (human) reads using NCBI Best Match 
Tagger (BMTagger v.1.1.0). Reads were converted to Binary 
Alignment Map (BAM) format and sorted using FastqToSam 
(v.2.7.1). Low-quality reads (Phred quality score  <  20), 
adapter sequences and short reads (Length cutoff: 105  bp) 
were trimmed using the trimBWAstyle.usingBam.pl script. 
PCR duplicates were removed using MarkDuplicates from 
Picard tools (v.2.7.1). Finally, forward and reverse reads 
were merged and converted to FASTA format using IDBA 
fq2fa (v.1.1.1).

Reads which passed quality control filtering were used as 
input for taxonomic profiling using MetaPhlAn2 (v.2.7.7).31 
The top 50 most abundant species were selected for visualiza-
tion. Functional profiling of high-quality processed reads was 
facilitated by use of the Human Microbiome Project (HMP) 
Unified Metabolic Analysis Network (HUMAnN2 V.0.99) 
pipeline.32 MetaPhlAn2 and ChocoPhlAn pangenome da-
tabase were used to facilitate fast, accurate, and organism-
specific functional profiling. Models of microbial metabolic 
pathways were produced by HUMAnN2 which uses UniRef 
database to provide gene family definitions and MetaCyc 
provides pathway definitions by gene family. Metadata was 
associated with community totals using the humann2_associ-
ate package to identify altered pathways between samples.

Metabolomic sample preparation
Samples were stored at −80°C prior to analysis. Urine sam-
ples were subjected to vortex mixing and then centrifuged at 
1600 g for 10 minutes to remove precipitated proteins and par-
ticulates. For metabolic profiling analysis by reversed-phase 
(RP) and hydrophilic interaction chromatography (HILIC) 
ultraperformance liquid chromatography-mass spectrom-
etry (UPLC-MS), samples were prepared as follows: 200 µL 
of supernatant was diluted (1:1) with high-purity (ultrap-
erformance liquid chromatography [HPLC]-grade) water, 
subjected to vortex mixing, centrifuged at 2700 g for 20 min-
utes, and divided into aliquots for analysis. QC samples were 
prepared by pooling 50-µL volumes of each sample. For 
1H nuclear magnetic resonance (1H-NMR) spectroscopy, 
each sample contained 540 µL of urine mixed with 60 µL of 
phosphate buffer (pH 7.4; 80% D2O) containing a 1 mmol/L 
concentration of the internal standard, 3-(trimethylsilyl)-
[2,2,3,3,-2H4]-propionic acid (TSP)–2 mmol/L sodium azide 
(Na3N), as described previously.33 During the analyses, sam-
ples were maintained at 4°C in the autosampler.

Fecal samples underwent two freeze-thaw cycles. 
Following the freeze-thaw cycles, 100 mg of homogenized 
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sample was placed in a microtube containing 250  µL of 
25% acetonitrile (ACN) (1:2 ACN/H2O), 2  mmol/L so-
dium azide, and ~0.05  g 1-mm-diameter zirconia beads. 
Each microtube was processed for 10 seconds in a Biospec 
bead beater. Samples were then centrifuged at 16 000 g for 
20 minutes. The fecal-water supernatant was subsequently 
centrifuged through centrifuge tube filters (cellulose ac-
etate membrane; pore size, 0.22  µm) to remove any re-
maining particulate matter. The centrifuge tube filters were 
washed three times with 25% acetonitrile prior to use. The 
resulting fecal water was prepared for UPLC-MS profiling 
using HILIC by diluting 3:1 with acetonitrile and for bile 
acid profiling by diluting 1:1 with isopropanol. Samples 
were subjected to vortex mixing and incubated at −20°C 
for 1  hour. Following the incubation step, samples were 
centrifuged at 4°C at 16 000 g for 1 hour and divided into 
aliquots for analysis. QC samples were prepared by pool-
ing 20-µL volumes of each fecal-water sample followed 
by preparation as described above. For 1H-NMR spectros-
copy, 50 µL of the filtered fecal water was added to a glass 
tube (Pyrex), which was placed under a nitrogen gas flow 
for 30 minutes or until all the liquid had evaporated. The 
dried sample was reconstituted with 540  µL of D2O and 
60 µL of phosphate-buffered solution as described above. 
The solution was mixed and sonicated for 5  minutes be-
fore undergoing further centrifugation at 14  000  rpm for 
10 minutes, and then 600 µL of the supernatant was trans-
ferred to an NMR tube for 1H-NMR spectral acquisition.

Metabolomic analysis
RP, HILIC, and bile acid UPLC-MS metabolic profiling 
experiments were performed using a Waters Acquity Ultra 
Performance LC system (Waters) coupled to a Xevo G2 
quadrupole-time of flight (Q-TOF) mass spectrometer 
(Waters) with an electrospray source. Samples were ana-
lyzed in randomized order, with QC analyses performed 
every 10 samples. First, urine samples were analyzed using 
UPLC-MS and an RP chromatographic method with both 
positive and negative MS ionization modes. Second, to 
separate and detect the more polar molecules, a HILIC 
chromatographic stage was used with the positive MS 
ionization mode. Fecal-water samples underwent analysis 
using HILIC and bile acid profiling chromatographic meth-
ods in positive and negative ionization modes, respectively. 
HILIC, RP, and bile acid profiling liquid chromatographic 
separation procedures were performed as previously de-
scribed.34,35 Mass spectrometry was performed with the 
following settings. Capillary and cone voltages were set at 
1.5 kV and 30 V, respectively. The desolvation gas level 
was set at 1000 L/h at a temperature of 600°C. The cone 
gas level was set to 50  L/h. The source temperature was 
set to 120°C. To ensure the accuracy of the mass data, a 
lock-spray interface was used, with leucine enkephalin 

(556.27741 Da ([M+H]+), 554.2615 Da ([M−H]−)) solu-
tion used as the lock mass at a concentration of 2000 ng/
mL and a flow rate of 15 µL/min.

1H-NMR spectroscopy was performed on the aqueous-
phase extracts at 300 K on a Bruker 600-MHz spectrometer 
(Bruker Biospin) using a standard one-dimensional (1D) 
pulse sequence corresponding to RD − gz1 − 90° − t1 −90° 
− tm − gz2 − 90°− ACQ,33 where the value of 90° represents 
the applied 90° radio frequency pulse; the relaxation delay 
(RD) was set at 4 seconds, the interpulse delay (t1) was set at 
4 µs, the mixing time (tm) was set at 10 ms, the magnetic field 
gradients (gz1 and gz2) were applied for 1 ms, and the acquisi-
tion period (AQA) was 2.7 seconds. Water suppression was 
achieved through irradiation of the water signal during RD 
and tm. Urine sample spectra were acquired using 4 dummy 
scans followed by 32 scans whereas fecal spectra were ac-
quired using 256 scans and 4 dummy scans and collected into 
64 K data points. A spectral width of 12 000 Hz was used for 
all the samples. Prior to Fourier transformation, the free in-
duction decay values were multiplied by an exponential func-
tion corresponding to a line broadening of 0.3 Hz.

Metabolomic data treatment
The raw mass spectrometric data acquired were preprocessed 
using xcms in R. Centwave peak picking methods were used 
to detect chromatographic peaks.36 The xcms-centWave pa-
rameters were data set specific. Feature grouping across sam-
ples was performed using the “nearest” method within xcms. 
Peak filling and MinFrac (0.5), and coefficient of variation 
(CV) (0.3) filters were applied to the features. Data were 
normalized using median fold change normalization to the 
median dataset.37

1H-NMR spectra were automatically corrected for phase 
and baseline distortions and referenced to the TSP singlet at 
δ 0.0 using TopSpin 3.1 software. Spectra were then digi-
tized into 20  K data points at a resolution of 0.0005  ppm 
using an in-house MatLab R2014a (MathWorks, Inc) script. 
Subsequently, spectral regions corresponding to the internal 
standard (δ −0.5 to 0.5), water (δ 4.6-5), and urea (δ 5.4-
6.3) peaks were removed. Spectra were normalized using 
median fold change normalization to the median spectrum.37 
Combinations of data-driven strategies, such as SubseT op-
timization by reference matching (STORM)55 and Statistical 
TOtal Correlation SpectroscopY (STOCSY),56 and analytical 
identification strategies were used to identify metabolites of 
interest from 1H-NMR data sets. Specifically, a catalogue of 
1D 1H-NMR and 2D NMR experiments was performed using 
techniques such as J-RESolved spectroscopy,  1H-1H TOtal 
Correlation SpectroscopY (TOCSY),  1H-1H COrrelation 
SpectroscopY (COSY), 1H-13C Heteronuclear Single Quantum 
Coherence (HSQC), and  1H-13C Heteronuclear Multiple-
Bond Correlation (HMBC) spectroscopy. Finally, for those 
metabolites giving ambiguous data, for example, TMAO, the 
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metabolites were confirmed using in situ spiking experiments 
and authentic chemical standards. Semiquantification data 
corresponding to the identified metabolites were calculated 
through peak intensity measurements of the normalized 1H-
NMR spectra using an in-house script. GC-MS data were 
processed using MassHunter Quantitative Analysis (Agilent 
Technologies, RRID:SCR_015040) software.

Quantification and statistical analysis
Statistical assessment of dissimilarity matrices (Bray-Curtis) 
derived from microbial data was facilitated with the adonis2 
function in the vegan R package (V.2.4-3, RRID:SCR_01
1950).38  Measurements of α-diversity and calculations of 
relative abundances were also performed with the vegan R 

package using Shannon index. Relative-abundance data were 
generated separately for identified species within each phy-
logenetic domain (eg, Bacteria). False discovery rate (FDR) 
correction for multiple tests was applied with a significance 
threshold of pFDR < .05.

For metabolomic analysis, the resulting 1H-NMR and 
LC-MS data sets were imported into MatLab to conduct 
multivariate statistical analysis. Data were centered and 
scaled to account for the repeated-measures design and 
then modeled using partial least squares discriminant 
analysis (PLS-DA) with Monte Carlo cross-validation 
(MCCV).29 The fit and predictability of the models ob-
tained were determined and expressed as R2 and Q2 val-
ues, respectively.
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