
Research Articles

Joker de Bruijn:

Covering k-Mers Using Joker Characters

YARON ORENSTEIN,1,2 YUN WILLIAM YU,3 and BONNIE BERGER2,3

ABSTRACT

Sequence libraries that cover all k-mers enable universal and unbiased measurements of nu-
cleotide and peptide binding. The shortest sequence to cover all k-mers is a de Bruijn sequence of
length jSjk + k - 1. Researchers would like to increase k to measure interactions at greater detail,
but face a challenging problem: the number of k-mers grows exponentially in k, while the space
on the experimental device is limited. In this study, we introduce a novel advance to shrink
k-mer library sizes by using joker characters, which represent all characters in the alphabet.
Theoretically, the use of joker characters can reduce the library size tremendously, but it should
be limited as the introduced degeneracy lowers the statistical robustness of measurements. In
this work, we consider the problem of generating a minimum-length sequence that covers a
given set of k-mers using joker characters. The number and positions of the joker characters are
provided as input. We first prove that the problem is NP-hard. We then present the first solution
to the problem, which is based on two algorithmic innovations: (1) a greedy heuristic and (2) an
integer linear programming (ILP) formulation. We first run the heuristic to find a good feasible
solution, and then run an ILP solver to improve it. We ran our algorithm on DNA and amino
acid alphabets to cover all k-mers for different values of k and k-mer multiplicity. Results
demonstrate that it produces sequences that are very close to the theoretical lower bound.

Keywords: de Bruijn sequence, microarray library design, peptide arrays, protein binding, protein

binding microarrays.

1. INTRODUCTION

Protein-DNA, -RNA, and -peptide interactions drive nearly all cellular processes. Protein-DNA

binding regulates gene expression by binding to specific DNA sequences; protein-RNA interactions

regulate gene expression post-transcriptionally by stabilizing, splicing, and degrading RNA; and protein-

peptide interactions are key for cellular signaling in vivo.

1Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
2Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,

Massachusetts.
3Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Yaron Orenstein, et al., 2018. Published by Mary Ann Liebert, Inc. This Open Access article is distributed under
the terms of the Creative Commons Attribution Noncommercial License (http://creativecommons.org/licenses/by-nc/
4.0/) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s)
and the source are credited.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 25, Number 11, 2018

Mary Ann Liebert, Inc.

Pp. 1171–1178

DOI: 10.1089/cmb.2018.0032

1171

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

High-throughput experimental data describing the strength and specificity for individual proteins in-

teracting with universal unbiased libraries provide critical information required to reconstruct interaction

networks. Such a measurement can be achieved by directly measuring binding to sequence libraries that

cover a large space of DNA, RNA, or amino acid k-mers. The comprehensive coverage guarantees that

specificities can be identified de novo for any protein. Microarrays that cover all k-mers have been used

successfully in various technologies to measure protein-DNA, -RNA, and -peptide binding. In Table 1, we

summarize the specifications of five such technologies (Berger et al., 2006; Fordyce et al., 2010; Gurard-

Levin et al., 2010; Ray et al., 2013; Smith et al., 2013).

While these technologies have been used successfully to measure protein interactions, they all face a

similar challenge: space on the experimental device and the sequence length that can be used are both

limited, restricting the total sequence space that can be probed in a single experiment. In particular,

increasing k poses difficulties since the number of sequences needed to cover all k-mers increases expo-

nentially with k as the number of k-mers over alphabet S is jSjk.

Several solutions have been suggested to generate sequence libraries that cover all possible k-mers

in the most compact space possible. A de Bruijn sequence is the shortest sequence, in which each

k-mer appears exactly once. Its length is given by jSjk + k - 1. De Bruijn sequences were used in

protein-binding microarrays for k = 10 (Philippakis et al., 2008). A reduction of DNA libraries by half

was achieved by utilizing the reverse complementarity property of double-stranded DNA (D’Addario

et al., 2012; Orenstein and Shamir, 2013; Smith et al., 2013). Other methods produce compact,

unstructured RNA libraries to measure protein-RNA binding (Ray et al., 2013; Orenstein and Berger,

2015). However, in all solutions, all k-mers have to occur in the sequence set, thus limited by the

number of k-mers jSjk.

In this study, we introduce a novel idea to generate smaller libraries to cover a given set of k-mers by

using joker characters. Joker characters represent degenerate nucleotides (or amino acids) covering all

characters in the alphabet, that is, joker character x representing fA‚ C‚ G‚ Tg. Such degenerate nucleotides

(or amino acids) can be ordered directly from the vendor during oligonucleotide (or peptide) synthesis at no

extra cost, providing a new potential avenue for probing a larger sequence space within the constraints of

limited experimental space.

The downside of using joker characters is that they introduce degeneracy, which lowers the statistical

robustness of measurements: a measurement of a single microarray spot is now assigned to multiple

sequences instead of just one. In the extreme case, a sequence of k consecutive joker characters covers all

k-mers, but produces only a single measurement, which is useless for inferring protein-binding specificities.

To rectify this problem, we set a limit to the use of joker characters by having the user provide the number

and positions of joker characters in the sequence.

Previous studies have considered the problem of covering k-mers using joker characters. Blanchet-Sadri

et al. (2010) solved the problem of covering all binary k-mers with exactly one joker character. In the thesis

by Wyatt (2013), a solution was given to the problem of covering all binary k-mers with multiple joker

characters, but with no other restrictions. Last, Chen et al. (2016) studied the problem of covering all binary

k-mers with a few joker characters, but required that each k-mer appears exactly once and with no other

restrictions. None considered the coverage of a given set of k-mers with a limitation on the number and

positions of joker characters.

In this work, we study the problem of generating a minimum-length sequence to cover a given set of

k-mers with a given number and positions of joker characters. We first prove that the problem is NP-hard. We

then describe a novel greedy heuristic, which finds a sequence in time polynomial in the output length. Then,

Table 1. Specifications of Technologies Designed to Cover All k-Mers by k-Mer Value, Alphabet,

Probe Sequence Length, and Number of Sequences

Technology PBM MITOMI Synthetic enhancers RNAcompete Peptide arrays

k 10 8 6 9 2

Alphabet DNA DNA DNA RNA Amino acid

Sequence length 35 52 15 30–41 2

No. of sequences 40,330 1457 184 241,357 361

MITOMI, mechanically-induced trapping of molecular interaction; PBM, protein binding microarrays.

1172 ORENSTEIN ET AL.

we formulate the problem as an integer linear programming (ILP) problem to produce an optimal solution.

We suggest a two-step approach: running the greedy heuristic and improving its solution using an ILP solver.

We compare our results with theoretical lower bounds and a random approach. The implementation of our

algorithm is freely available at jokercake.csail.mit.edu

2. PRELIMINARIES

A k-mer is a word of length k over a given alphabet S. In this study, we refer to two alphabets

SAA = fA‚ R‚ N‚ D‚ C‚ Q‚ E‚ G‚ H‚ I‚ L‚ K‚ M‚ F‚ P‚ S‚ T‚ W‚ Y‚ Vg and SDNA = fA‚ C‚ G‚ Tg. We inter-

changeably refer to a k-mer as a word and an integer by the natural conversion in base jSj. A joker

character, denoted by x, represents all characters in S, that is, x representing fA‚ C‚ G‚ Tg. K-mer

w = (w1‚ . . . ‚ wk) is covered by sequence S if there exists 0 � i � jSj - k such that for 1 � j � k:

Si + j 2 fx‚ wjg. We say that w occurs at index i in S. In other words, any original character of w may be

replaced by the joker character.

We define two new notations relating to k-mer coverage with joker characters. Template t is a k-mer over

{0,1}, where 1 denotes joker positions. Sequence S follows template t if its joker positions are the 1

positions in a concatenation of multiple templates t. Denote jtj1 as the weight of template t, that is, the

number of 1s in it. For example, S = AxCCGxTA follows template t = 0100 and jtj1 = 1. We denote

S2t[S [fxg]‘, where in the example, ‘ = 2jtj. K-mer counts C is a vector over natural values of length jSjk.

Element C(w) corresponds to the number of times k-mer w is covered by the sequence. K-mer w is covered

at least C(w) times by sequence S if there are p � C(w) distinct indices fi1‚ . . . ‚ ipg such that w occurs at

index ij in S for 1 � j � p. Using the above notations, we define a (C‚ t‚S)-joker de Bruijn sequence as a

sequence covering k-mers according to C following template t.

We also define reverse complementarity. A complement relation is a symmetric nonreflexive relation,

that is, A = T and C = G. The reverse complement of k-mer w = fw1‚ . . . ‚ wkg is RC(w) = fwk‚ . . . ‚ w1g. A

k-mer is RC covered by sequence S if it occurs in either S or RC(S). A (C‚ t‚S)-RC-joker de Bruijn

sequence RC covers k-mers according to C and follows template t.

In this study, we consider the following problem and its version utilizing the reverse complement

property.

MINIMUM-LENGTH (C‚ t‚S)-JOKER DE BRUIJN SEQUENCE

INSTANCE: k-met counts C, template t, alphabet S.

VALID SOLUTION: (C‚ t‚S)-joker de Bruijn sequence S.

GOAL: Minimize jSj.

3. METHODS

3.1. Greedy heuristic

We present a novel algorithm to find a (C‚ t‚S)-joker de Bruijn sequence. It is based on a greedy

heuristic that examines at each step an addition of k characters from S [fxg that follow template t. The

addition that covers the most k-mers that are yet to be covered (including multiple k-mer instances if

needed) is chosen and added to the current sequence. The algorithm terminates when all k-mers have been

covered according to C. The algorithm is summarized as Algorithm 1.

We bound the runtime of Algorithm 1. We first prove the following Lemma on the minimum number of

k-mers covered in each iteration of the top while loop (line 4 in Algorithm 1).

Lemma 1. In each iteration of the while loop in Algorithm 1, at least one k-mer has an increased k-mer

count.

Proof. Denote w as a k-mer for which A(w) < C(w). The inner for loop (line 6) iterates over all possible

k-mers that follow template t, including those that cover w. Denote wt as k-mer w with jokers in 1 positions

of t. It follows t and covers w. Thus, CURR2:k � wt adds one to the coverage of w. Since the for loop finds the

maximum, it has to be at least one.

JOKER DE BRUIJN 1173

www.jokercake.csail.mit.edu

Corollary 1. The number of iterations of the while loop in Algorithm 1 is bounded by
PjSjk - 1

i = 0 C(i).

Proof. The number of required k-mer coverages is
PjSjk - 1

i = 0 C(i). By Lemma 1, at least one k-mer has an

increased count at each iteration. Thus, the bound on the total number of iterations is
PjSjk - 1

i = 0 C(i).

Algorithm 1 Generate a (C‚ t‚S)-joker de Bruijn sequence

1: Set CURR to be an arbitrary k-mer w, s.t. w 2t S [fxg½ �k.

2: Initialize SEQ to CURR.

3: Initialize array A of k-mer counts to 0.

4: while there is any k-mer y s.t. A(y) < C(y) do

5: Initialize MAX to 0.

6: for all k-mers w, s.t. w 2t S [fxg½ �k do

7: Set COUNT to the number of new k-mers covered by CURR2:k $ w.

8: if COUNT > MAX then

9: MAX = COUNT.

10: MAXK = w:
11: end if

12: end for

13: Set SEQ = SEQ �MAXK :
14: Update A by the number of new k-mers covered by CURR2:k �MAXK :
15: Set CURR = MAXK :
16: end while

17: Output sequence SEQ.

Theorem 1. The running time of Algorithm 1 is bounded by O(
PjSjk - 1

i = 0 C(i) � jSjk - jtj1 � k).

Proof. The while loop runs at most
PjSjk - 1

i = 0 C(i) iterations by Corollary 1. The inner for loop runs

jSjk - jtj1 iterations since it iterates over all k-mers over S [fxg that follow t. Inside the for loop, exactly

2k - 1 k-mers in CURR2:k �MAXK are examined. We assume that examining each k-mer takes constant time

O(1) as it is one array operation. Thus, the total running time is O(
PjSjk - 1

i = 0 C(i) � jSjk - jtj1 � k).

3.2. ILP formulation

Next, we present a novel ILP formulation to solve the MINIMUM-LENGTH (C‚ t‚S)-JOKER DE

BRUIJN problem. We start by defining variables. Y variables are k-mer counts of k-mers that include jtj1
joker characters. There are k � jSjk - jtj1 integer variables Yi‚ j. Each Yi‚ j corresponds to the number of times a

k-mer with jtj1 joker characters at positions following cyclic shift of offset j of template t and the rest of the

positions as (k - jtj1)-mer i occurs in the sequence. For simplicity, we solve the problem of generating a

cyclic sequence, but it can be easily turned into a linear sequence by a modification similar to that presented

by D’Addario et al. (2012).

As we aim for the shortest sequence, the objective function is

min
XjSjk - jtj1 - 1

i = 0

Xk

j = 1

Yi‚ j (1)

The first constraint is the coverage constraint, which requires that all k-mers occur as the number of times

according to C. Let f (i, j) be the (k - jtj1)-mer of all positions, but the joker positions of cyclic shift j of

template t of k-mer i are

Xj = k

j = 1

Yf (i‚ j)‚ j � C(i) 1 � i � jSjk (2)

The second constraint guarantees that k-mer occurrences can form a (cyclic) sequence. We require that

for each (k - 1)-mer, the number of k-mers with that (k - 1)-mer in their suffix is equal to the number of k-

1174 ORENSTEIN ET AL.

mers with that (k - 1)-mer in their prefix. Denote px(i) and sx(i) as the x-long prefix and suffix of i,

respectively.

P
sk - jtj1 - 1(i0) = i

Yi0‚ j + 1 =
P

pk - jtj1 - 1(i0) = i

Yi0‚ j 1 � j � k - 1

i 2 fpk - 1(i) = wj8t0 cyclic shift of t8w2t0 [S [fxg]kg
(3)

3.3. RC covering all k -mers

To further shrink libraries over double-stranded DNA, we utilize the reverse complement property and

generate a (C‚ t‚S)-RC-joker de Bruijn sequence. We made two modifications to the algorithms above. For

Algorithm 1, whenever we consider and choose a new addition of k characters (lines 7 and 14), we need to

account for both the k-mers and their reverse complement. For the ILP formulation, we modified the

coverage constraint (Eqn. 2). The modified constraint is

Xj = k

j = 1

Yf (i‚ j)‚ j + Yf (RC(i)‚ j)‚ j � C(i) + C(RC(i)) 1 � i � jSjk (4)

4. RESULTS

4.1. Hardness result

Given a set of strings s1‚ . . . ‚ sn, the shortest common superstring (SCS) optimization problem is to find

the shortest string S such that all si are substrings of S. SCS was proven to be NP-hard (Räihä and Ukkonen,

1981). We consider a problem equivalent to finding the SCS of a set of strings of length k, with alphabet

size S � 4, while allowing the superstring to have joker/wildcard characters at fixed positions every k

characters. Here, we show that adding a single wildcard no more than once every k characters to a

superstring where all substrings are of length k remains NP-hard.

Theorem 2. MINIMUM-LENGTH (C‚ t‚S)-JOKER DE BRUIJN SEQUENCE is NP-hard.

Proof. We build on a reduction from O(1)-degree Vertex Cover for the hardness proof (Vassilevska,

2005). Given an instance to Vertex Cover G = (V,E) with jV j = n and jEj = m, we construct unique labels

over S= f0‚ 1‚ 2‚ 3g for each vertex that are greater than Hamming distance 1 from any other label. That

way, joker characters cannot be used to cover multiple labels. Each vertex is assigned a unique binary string

over {0,1} of length Ø log2 nø. Denote the string as sa for vertex a. Then, let the string 23sasa32 be an

encoding of the vertex labels of length 4 + 2Ø log2 nø. Since the unique string is doubled, changing any

single character in the string will not give another valid vertex label encoding. In addition, the sentinel

characters, 23 and 32, at the ends, which are not used within the body of the label, prevent two labels from

overlapping by more than the single character 2 even when jokers are allowed. Let an edge (a, b) be

represented by strings abab and baba (merging adjacent 2s as possible). This is a set of strings of equal

length k = 13 + 8Ø log2 nø, corresponding to the k-mer size. The set of strings representing the set of edges is

the input of the Joker De Bruijn problem, allowing one joker character per k characters.

! Suppose G has a covering vertex set S of size j. Assign every edge (a, b) to its covering vertex (or

arbitrarily if both vertices are in S). If a is the assigned vertex for the edge (a, b), overlap the two strings to

get ababa, else overlap them the other way to get babab. Then, for every vertex c 2 S, we can overlap all

assigned edge strings by 1 to get ca1ca1ca2ca2c . . . cajc
cajc

c of length 4jc + 1 labels, where jc is the

number of edges assigned to vertex c 2 S. By concatenating all such strings together, we get a superstring

of length 4m + j labels.

) Conversely, it can be shown that all sequences for the Joker De Bruijn problem can be reduced by

reordering and overlapping to have a length of 4m + j labels, which can be translated in polynomial time to

a vertex cover. Thus, if we can get a joker de Bruijn sequence of length 4m + j labels, we can get a vertex

cover of size � j.

Making use of exact bounds from the O(1)-degree Vertex Cover problem, it is possible to show that SCS

is APX-hard and, by label construction earlier, the Minimum-Length Joker de Bruijn problem with one

JOKER DE BRUIJN 1175

joker character per k characters is also APX-hard and thus NP-hard. Note that the same proof holds with

minor modifications for any bounded number of joker characters per k.

4.2. Implementation

We implemented the algorithms in Java. We used Gurobi ILP solver, version 6.5.2 (Gurobi Optimiza-

tion, 2015). We set the method parameter in Gurobi to 3, as recommended, to improve the running time of

the root relaxation process. We set a time limit for the ILP solver since solutions for k � 5 for DNA and

k � 3 for an amino acid alphabet covering all k-mers with template t of weight 1 did not terminate based on

the default criteria. Running times were benchmarked on a single CPU of a 20-CPU Intel Xeon E5-2650

(2.3 GHz) machine with 384 GB 2133 MHz RAM.

4.3. Theoretical lower bound

We prove theoretical lower bounds for the (C‚ t‚S)-de Bruijn sequence.

Theorem 3. Denote n(C‚ t‚S) as the length of a (C‚ t‚S)-de Bruijn sequence Then,

n(C‚ t‚S) �
XjSjk - 1

i = 0

C(i)=jSjjtj1 (5)

Proof. The number of k-mers is
PjSjk - 1

i = 0 C(i). Since there are exactly jtj1 joker characters per k-mer, the

number of k-mers in the sequence can be reduced by at most jSjjtj1 . For a noncyclic sequence, k - 1

characters need to be added.

4.4. Results of greedy heuristic and ILP solver

We ran the greedy heuristic on 5 � k � 8 for a DNA alphabet, with and without the reverse complement

feature, and 3 � k � 4 for an amino acid alphabet, with C = 1jSj
k

and t = 0k - 11. We then ran the ILP solver,

starting from the greedy solution, with a time limit of 4 weeks. We compared the solution with a random

addition of k-mers that follow t and the original de Bruijn sequences without joker characters. Results are

summarized in Table 2.

To test the performance in covering k-mers multiple times, we ran the greedy heuristic on k = 6, DNA

alphabet, t = 0k - 11 and C = pjSj
k

, where 1 � p � 16. We compared the results with the original de Bruijn

sequence and a theoretical lower bound. Results are summarized in Table 3.

5. DISCUSSION

Sequence libraries that cover all k-mers are instrumental in measuring protein interactions in a universal

and unbiased manner, but they are limited by the exponential growth of k-mers as k increases. Shrinking

Table 2. Results of Greedy Heuristic and Integer Linear Programming Solver in Generating

(1jSj
k

‚ 0k - 11‚ S)-Joker de Bruijn and (1jSj
k

‚ 0k - 11‚ S)-RC-Joker de Bruijn Sequences

Alphabet DNA Reverse complement DNA Amino acid

K 5 6 7 8 5 6 7 8 3 4

de Bruijn 1028 4101 16,390 65,543 516 2085 8198 32,903 8002 160,003

Random 1544 7259 33,438 153,447 719 3293 16,127 70,007 2426 69,483

Greedy 314 1415 4689 19,903 204 797 2519 10,983 629 9919

ILP 290 1159 4436 19,903 162 678 2413 10,784 623 9699

Lower bound 260 1029 4102 16,391 132 525 2054 8231 402 8003

Greedy/de Bruijn 0.31 0.35 0.29 0.30 0.40 0.38 0.31 0.33 0.08 0.06

ILP/de Bruijn 0.28 0.28 0.27 0.30 0.31 0.33 0.29 0.33 0.08 0.06

Greedy time [s] 1.12 7.26 50.78 1213 1.58 9.54 74.96 1647 5.21 1129

Results are compared with the original de Bruijn sequence, a random algorithm, and a theoretical lower bound.

ILP, integer linear programming.

1176 ORENSTEIN ET AL.

these k-mer libraries is needed to enable an increase in k to measure interactions in greater detail. In this

work, we solved this problem by utilizing a novel idea of using joker characters that represent all possible

characters in the alphabet. We presented the first algorithm to solve the problem of covering a given set of

k-mers, such that the positions and number of the joker characters follow a given template. We prove that

the problem is NP-hard and suggest a novel heuristic to solve it. The solution is based on a greedy heuristic

that performs quite well by itself and then shows improvement by solving an ILP formulation. The results

are very close to theoretical lower bounds, implying that the solution is near optimal.

One clear advantage of our solution is its generality and flexibility. The alphabet is given as the input,

enabling a solution to any set of characters, for example, unnatural amino acids in the amino acid alphabet.

Moreover, since the problem is to cover a given set of k-mers, we can support exclusion of specific k-mers

for technical reasons. More generally, the solution also supports variable k-mer multiplicities and different

positions and numbers of joker characters.

There are several limitations in our study. First, our algorithm is not guaranteed to produce an optimal

result in polynomial time. The greedy heuristic is not guaranteed to produce an optimal result. However, we

show empirically that it performs very well and produces a result that is close to the lower bound. The ILP

solver is guaranteed to produce an optimal result, but is not guaranteed to terminate in polynomial time. In

general, the problem we solve, as well as an ILP, is NP-hard. Second, the joker library introduces ambiguity

in the measurements. Shrinking the library size comes with a cost of a smaller sample size, lowering the

statistical robustness of inferred scores.

Several open questions remain from our study. First, is there an optimal solution that runs in time

polynomial in O(
PjSjk - 1

i = 0 C(i))? Second, is there a good enough heuristic that runs in time linear in the

output length, that is, O(
PjSjk - 1

i = 0 C(i)=jSjjtj1), or at least asymptotically faster than Algorithm 1? Third, can

we provide tighter lower and upper bounds?

In summary, this work presented a new library design that covers a given set of k-mers at a size that is

almost 1=jSjjtj1 smaller compared with current libraries. This implies the ability to measure interactions

with longer k-mers and a reduction in cost. We made the implementation and calculated libraries that are

freely available for other researchers to use for their sequence sets. With smaller libraries and increase in k,

research and measurements of protein interactions will advance significantly.

ACKNOWLEDGMENTS

This work was supported by the National Institutes of Health grant R01GM081871. Y.W.Y. was partially

supported by a Hertz Foundation Fellowship.

AUTHOR DISCLOSURE STATEMENT

The authors declare that no competing financial interests exist.

Table 3. Results of Greedy Heuristic on k = 6, t = 0k - 11, C = pjSj
k

, Where 1 � p � 16 and DNA Alphabet

P 1 2 3 4 5 6 7 8

de Bruijn 4101 8197 12,293 16,389 20,485 24,581 28,677 32,773

Greedy 1415 2435 3491 4625 5537 6503 7661 8681

Lower bound 1029 2053 3077 4101 5125 6149 7173 8197

Greedy/de Bruijn 0.35 0.30 0.28 0.28 0.27 0.26 0.27 0.26

P 9 10 11 12 13 14 15 16

de Bruijn 36,869 40,965 45,061 49,157 53,253 57,349 61,445 65,541

Greedy 9791 10,769 11,849 12,857 13,937 15,011 16,139 17,189

Lower bound 9221 10,245 11,269 12,293 13,317 14,341 15,365 16,389

Greedy/de Bruijn 0.27 0.26 0.26 0.26 0.26 0.26 0.26 0.26

Results are compared with the original de Bruijn sequence and a theoretical lower bound.

JOKER DE BRUIJN 1177

REFERENCES

Berger, M.F., Philippakis, A.A., Qureshi, A.M., et al. 2006. Compact, universal DNA microarrays to comprehensively

determine transcription-factor binding site specificities. Nat. Biotechnol. 24, 1429–1435.

Blanchet-Sadri, F., Schwartz, J., Stich, S., et al. 2010. Binary de Bruijn partial words with one hole, 128–138. In

Kratochvı́l, J., Li, A., Fiala, J., et al., eds. Theory and Applications of Models of Computation. TAMC 2010. Lecture

Notes in Computer Science, Vol 6108. Springer, Berlin, Heidelberg.

Chen, H.Z., Kitaev, S., Mütze, T., and Sun, B.Y. 2017. On universal partial words. Electronic Notes in Discrete

Mathematics, 61, 231–237.

D’Addario, M., Kriege, N., and Rahmann, S. 2012. Designing q-unique DNA sequences with integer linear programs

and Euler tours in de Bruijn graphs, 82–93. In Böcker, S., Hufsky, F., Scheubert, K., et al., eds. German Conference

on Bioinformatics 2012. OASIcs-OpenAccess Series in Informatics, Volume 26. Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik, Dagstuhl, Germany.

Fordyce, P.M., Gerber, D., Tran, D., et al. 2010. De novo identification and biophysical characterization of

transcription-factor binding sites with microfluidic affinity analysis. Nat. Biotechnol. 28, 970–975.

Gurard-Levin, Z.A., Kilian, K.A., Kim, J., et al. 2010. Peptide arrays identify isoform-selective substrates for profiling

endogenous lysine deacetylase activity. ACS Chem. Biol. 5, 863–873.

Gurobi Optimization, U.C. 2018. Gurobi optimizer reference manual. www.gurobi.com

Orenstein, Y., and Berger, B. 2016. Efficient design of compact unstructured RNA libraries covering all k-mers. J.

Comput. Biol. 23, 67–79.

Orenstein, Y., and Shamir, R. 2013. Design of shortest double-stranded DNA sequences covering all k-mers with

applications to protein-binding microarrays and synthetic enhancers. Bioinformatics. 29, i71–i79.

Philippakis, A.A., Qureshi, A.M., Berger, M.F., et al. 2008. Design of compact, universal DNA microarrays for protein

binding microarray experiments. J. Comput. Biol. 15, 655–665.

Räihä, K.-J., and Ukkonen, E. 1981. The shortest common supersequence problem over binary alphabet is NP-

complete. Theor. Comput. Sci. 16, 187–198.

Ray, D., Kazan, H., Cook, K.B., et al. 2013. A compendium of RNA-binding motifs for decoding gene regulation.

Nature. 499, 172–177.

Smith, R.P., Riesenfeld, S.J., Holloway, A.K., et al. 2013. A compact, in vivo screen of all 6-mers reveals drivers of

tissue-specific expression and guides synthetic regulatory element design. Genome Biol. 14, 1.

Vassilevska, V. 2005. Explicit inapproximability bounds for the shortest superstring problem, 793–800. In

Jexdrzejowicz, J., and Szepietowski, A., eds. Mathematical Foundations of Computer Science 2005. MFCS 2005.

Lecture Notes in Computer Science, Vol 3618. Springer, Berlin, Heidelberg.

Wyatt, B.J. 2013. De Bruijn Partial Words. University of North Carolina at Greensboro.

Address correspondence to:

Prof. Bonnie Berger

Department of Mathematics

Massachusetts Institute of Technology

77 Mass Avenue, 2-373

Cambridge, MA 02139

E-mail: bab@mit.edu

1178 ORENSTEIN ET AL.

