
RESEARCH ARTICLE

LASSI: A lattice model for simulating phase

transitions of multivalent proteins

Jeong-Mo ChoiID
1,2☯, Furqan Dar2,3☯, Rohit V. PappuID

1,2*

1 Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of

America, 2 Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis,

St. Louis, MO, United States of America, 3 Department of Physics, Washington University in St. Louis,

St. Louis, MO, United States of America

☯ These authors contributed equally to this work.

* pappu@wustl.edu

Abstract

Many biomolecular condensates form via spontaneous phase transitions that are driven by

multivalent proteins. These molecules are biological instantiations of associative polymers

that conform to a so-called stickers-and-spacers architecture. The stickers are protein-pro-

tein or protein-RNA interaction motifs and / or domains that can form reversible, non-cova-

lent crosslinks with one another. Spacers are interspersed between stickers and their

preferential interactions with solvent molecules determine the cooperativity of phase transi-

tions. Here, we report the development of an open source computational engine known as

LASSI (LAttice simulation engine for Sticker and Spacer Interactions) that enables the cal-

culation of full phase diagrams for multicomponent systems comprising of coarse-grained

representations of multivalent proteins. LASSI is designed to enable computationally effi-

cient phenomenological modeling of spontaneous phase transitions of multicomponent

mixtures comprising of multivalent proteins and RNA molecules. We demonstrate the appli-

cation of LASSI using simulations of linear and branched multivalent proteins. We show that

dense phases are best described as droplet-spanning networks that are characterized by

reversible physical crosslinks among multivalent proteins. We connect recent observations

regarding correlations between apparent stoichiometry and dwell times of condensates to

being proxies for the internal structural organization, specifically the convolution of internal

density and extent of networking, within condensates. Finally, we demonstrate that the con-

cept of saturation concentration thresholds does not apply to multicomponent systems

where obligate heterotypic interactions drive phase transitions. This emerges from the ellip-

soidal structures of phase diagrams for multicomponent systems and it has direct implica-

tions for the regulation of biomolecular condensates in vivo.

Author summary

Spatial and temporal organization of molecular matter is a defining hallmark of cellular

ultrastructure and recent attention has focused on membraneless organelles, which are

also referred to as biomolecular condensates. Of interest are condensates that form via
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phase transitions that combine phase separation and networking of multivalent protein

and nucleic acid molecules. Building on recently recognized analogies between associative

polymers and multivalent proteins, we have developed and deployed LASSI, an open

source computational engine that enables the calculation of architecture-specific phase

diagrams for multivalent proteins. LASSI relies on a priori identification of stickers and

spacers within a multivalent protein and mapping the stickers onto a 3-dimensional lat-

tice. A Monte Carlo engine that incorporates a suite of novel and established move sets

enables simulations that track density inhomogeneities and changes to the extent of net-

working among stickers as a function of protein concentration and interaction strengths.

Calculation of distribution functions and other order parameters allow us to compute full

phase diagrams for multivalent proteins modeled using a stickers-and-spacers representa-

tion on simple cubic lattices. These calculations allow us to rationalize experimental

observations and open the door to the design of protein architectures with bespoke phase

behavior. LASSI can be deployed to study the phase behavior of multicomponent systems,

which allows us to make direct contact with the physical principles underlying cellular

biomolecular condensates.

Introduction

Biomolecular condensates organize cellular matter into non-stoichiometric assemblies of pro-

teins and nucleic acids [1]. Prominent condensates include nuclear bodies [2] such as nucleoli,

nuclear speckles [3, 4], and germline granules [1, 5, 6]. Condensates also form in the cyto-

plasm. These include stress granules [7], membrane-anchored signaling clusters [8, 9], and

bodies in post-synaptic zones [10]. All of these condensates share key features: (i) they range in

size from a few hundred nanometers to tens of microns [1, 2, 11]; (ii) they are multicomponent

entities comprising of hundreds of distinct types of proteins and nucleic acids; (iii) and of the

hundreds of different types of molecules that make up condensates, a small number are essen-

tial for the formation of condensates [1, 12]. The simplest feature that distinguishes proteins

that are drivers of biomolecular condensates is the valence of interaction domains / motifs that

can participate in non-covalent crosslinks [1, 12–14].

Biomolecular condensates can form and dissolve in an all-or-none manner [2, 11, 15]. The

reversible formation and dissolution of condensates can be controlled by the concentrations of

multivalent proteins that drive the formation of condensates; in simple two-components sys-

tems comprising of macromolecules and solvent, condensates form when macromolecular

concentrations cross macromolecule-specific threshold values known as saturation concentra-
tions [15]. The transitions that characterize condensate formation bear the hallmarks of a

sharp transition in macromolecular density, leading to the formation of a dense phase that is

in equilibrium with a dilute phase. This type of transition, known as phase separation, sets up

two or more coexisting phases to equalize the dense and dilute phase chemical potentials of

the macromolecules across phase boundaries [15]. Phase separation is reversible and this

reversibility can be achieved by (i) changes to concentrations of the driver macromolecules [9,

16], (ii) changes to solution conditions that alter the effective interaction strengths among

driver molecules [17–20], (iii) altering saturation concentrations through ligand binding–a

phenomenon known as polyphasic linkage [21, 22], or (iv) via biological regulation such as

post-translational modifications of proteins [8, 12, 23].

Recent studies have focused on uncovering the defining features of proteins [13, 15, 17–19,

24–40] and RNA molecules [41–43] that drive phase transitions. Protein and RNA molecules
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that drive phase transitions are biological instantiations of associative polymers [44] character-

ized by a stickers-and-spacers architecture [45]. Stickers contribute to a hierarchy of specific

pairwise and higher-order interactions that are either isotropic or anisotropic whereas spacers

control the concentration-dependent inhomogeneities in the densities of stickers around one

another. Stickers can be hot spots or sectors [46] on the surfaces of folded proteins [15, 29] or

short linear motifs within intrinsically disordered regions (IDRs) [15, 24, 47]. Spacers are typi-

cally IDRs that contribute through their sequence-specific effective solvation volumes to the

interplay between density transitions (phase separation) and networking transitions that are

better known as percolation [28, 29]. Spacers can also be folded domains that are akin to uni-

formly reactive colloidal particles, although this has not yet been explored. Proteins can be

mapped onto the stickers-and-spacers architecture as linear multivalent proteins, branched

multivalent proteins, or some combination of the two [13, 15].

Simple two-component systems comprise of the solvent (which includes all components of

the aqueous milieu) and a multivalent protein / RNA molecule. For fixed solution conditions,

one can generate phase diagrams [25] as a function of protein concentration, the valence of

stickers, the affinities of stickers, the sequence-specific effective solvation volumes of spacers,

and the lengths / stiffness of spacers. The phase diagram can be investigated by keeping the

valence of stickers, the lengths of spacers, and effective solvation volumes of spacers fixed

while varying the concentration of stickers and the affinities between stickers [29]. Changes to

protein concentration will enable density fluctuations and above the saturation concentration,

designated as csat, the density inhomogeneities lead to separation of the system into coexisting

phases. The concentration of multivalent proteins in the dilute and dense phases will be

denoted as csat and cdense, respectively. For a given bulk concentration cbulk that lies between

csat and cdense, the fraction of molecules within each of the coexisting phases is governed by the

lever rule [48].

Stickers also form reversible physical crosslinks and these crosslinks generate networks of

inter-connected proteins. The number of proteins within the largest network of the system

grows continuously as the protein concentration increases. Above a concentration threshold

known as the percolation threshold and designated as cperc, the single largest network spans

the entire system and this phenomenon is called percolation [49–51]. If the percolated net-

works have the rheological properties of viscoelastic fluids, the fluids are referred to as network
fluids [15, 52].

Phase separation and percolation can be coupled to one another. The coupling will depend

on the values of csat, cdense, and cperc relative to cbulk. If cbulk is smaller than all of csat, cdense, and

cperc, the system is in a single dilute phase with no large molecular networks (Fig 1A). If cbulk >

cperc and cperc < csat, then a system-spanning percolated network forms without phase separa-

tion (Fig 1B). However, the system undergoes phase separation and a dense phase forms as a

percolated droplet if cbulk > (csat, cperc) and csat < cperc < cdense (Fig 1C). Recent studies, using

three-dimensional lattice models designed to mimic the poly-SH3 and poly-PRM systems of Li

et al. [16], show that sequence-specific effective solvation volumes of linkers / spacers between

folded domains directly determine whether phase separation and percolation are coupled or if

percolation occurs without phase separation for linear multivalent proteins [28, 29]. The cou-

pling between phase separation and percolation is controlled by the extent to which spacers /

linkers preferentially interact with the surrounding solvent.

Theory [17, 24, 25, 27, 34, 53–59] and computations [28, 29, 43, 60–68] have important

roles to play in modeling and describing the phase behavior of multivalent protein and RNA

molecules. Theories provide analytical routes to explain experimental observations and to

make testable predictions. On the other hand, simulations work around many of the simplify-

ing assumptions that are needed to make theories analytically tractable. In doing so, they
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provide numerical routes to enable comparative assessments across different systems; they

help in making testable predictions about phenomenology through what if calculations tar-

geted toward specific systems; and they pave the way for designing systems with bespoke phase

behavior.

Phase transitions are collective phenomena that involve highly cooperative transitions of

large numbers of multivalent polymers. The collective interactions that drive phase transitions

are captured in terms of a small number of order parameters that are similar across disparate

systems and represent a generic coarse-graining of the underlying system that defines parame-

ters such as the correlation length and the sizes of cooperative units. Accordingly, practical

considerations of computational tractability and rigorous considerations of identifying the rel-

evant collective coordinates mandate the use of coarse-grained models for simulations of

Fig 1. Characteristic phases in the stickers and spacers formalism. (a) Dispersed solution phase where the polymers are uniformly mixed in solution. (b) Percolated

fluid wherein the polymer chains form a percolated, system-spanning network through physical crosslinks among stickers results. (c) Droplet wherein network

formation also causes the polymers to form condensed phases. (d) Two-dimensional representation of the LASSI architecture. The beads with arms denote stickers

where arms denote that the monomers are capable of orientational interactions, and the curved lines connecting the monomers represent phantom tethers, which are

allowed to freely overlap (implicit spacer model). Different colors denote different sticker and spacer species respectively. Note that the physical bonds are allowed to

overlap (dashed circle). For the rest of this work, physical bonds will not be labeled and will only be depicted as overlapping orientational arms.

https://doi.org/10.1371/journal.pcbi.1007028.g001
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phase transitions driven by multivalent protein and RNA molecules. We focus here on multi-

valent proteins, although the methods we describe are readily adaptable to RNA molecules as

well.

Coarse-graining, an essential aspect of making simulations of large numbers of multivalent

proteins a tractable proposition, comes in different flavors [69]. For simplicity, we divide con-

siderations that go into the development of a suitable coarse-grained model into three catego-

ries (Fig 2). These are (1) the type of model, (2) the types of interactions among the entities in

the simulation, and (3) parameterization of the interaction potentials for the model of interest.

Two distinct choices for the type of model are the choice between simulations being performed

using lattice models versus off-lattice models. In either space, one or all of the molecules can be

represented explicitly using architectures that represent coarse-grained mappings of the pro-

tein of interest. Next, the interactions among the units that make up each protein can be mod-

eled as being isotropic or anisotropic. This is true of simulations where proteins of interest are

modeled explicitly. In contrast, numerical instantiations of field theoreticmodels model can

also be brought to bear where only a single chain is modeled explicitly [60, 70]. The remaining

protein and solvent molecules are modeled as fields whose fluctuations are concentration

dependent [71]. The effects of all other molecules influence the phase behavior of the explicitly

modeled single chain through interactions of the chain with the field. Finally, the choice of

interaction potentials is the bedrock of every simulation. The functional forms and parameters

for potentials can be derived using phenomenological considerations intended to enable calcu-

lations of the “what if” variety–an approach that is common practice in statistical and polymer

physics. One can also obtain system-specific parameters using information gleaned from

atomistic simulations of smaller-scale facsimiles of the system of interest. These system-spe-

cific parameters are derivable using force matchingmethods pioneered by Voth and coworkers

[72–77] or by prescribing a functional form for the potential that describes interactions in the

Fig 2. Considerations that go into designing a coarse-grained model. As discussed in the text, the choice of a coarse-grained model has at least three

ingredients. These include the type of conformational space (lattice or off-lattice), the nature of the interactions among entities that are represented in

the coarse-grained description (isotropic, anisotropic or fluctuating fields), and the parameterization approach. LASSI, as described here, is based on a

lattice model that uses anisotropic interactions and a phenomenological model.

https://doi.org/10.1371/journal.pcbi.1007028.g002
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coarse-grained space and employsmachine learningmethods to derive the relevant parameters

[74, 78]. Finally, one can adopt approaches similar to the parameterization of molecular

mechanics forcefields and develop a single transferablemodel that should be applicable to a

large number of disparate systems.

Different coarse-grained simulations represent different combinations of model, interac-

tion type, and parameterization. Two illustrative examples for deriving coarse-grained models

for simulations of phase behavior of multivalent proteins come from the works of Ruff et al.
[78] and Dignon et al. [64, 65]. Ruff et al. show how one can generate off-lattice models, of

bespoke resolutions and learned parameters for isotropic potentials derived using machine

learning that leverages information gleaned from atomistic simulations of individual proteins

and protein oligomers. Dignon et al. also use an off-lattice model based on isotropic potentials

whose parameters are designed to be transferable across disparate intrinsically disordered

proteins.

It is worth emphasizing that at this juncture, there is no valid reason to stipulate that one

combination of approaches for deriving a coarse-grained model is superior to another combi-

nation. As noted by Das et al. [67, 68], all models have distinct strengths and limitations. How-

ever, for specific applications, some methods afford quantifiable computational advantages

over others. In our case, we are interested in uncovering conceptual nuances of phase diagrams

for multicomponent systems that comprise of multivalent proteins characterized by aniso-

tropic interactions among domains / motifs. As noted above, these systems can be mapped

onto a stickers-and-spacers architecture. The questions we are interested in answering pertain

to the order parameters that describe phase behavior, the impact of chain connectivity and

spacer effective solvation volumes on phase behavior, and the determinants of the shapes of

phase diagrams of multicomponent systems where phase transitions are driven by heterotypic

as well as homotypic interactions. In this context, it is noteworthy that lattice models have

been adapted to model phase transitions for systems comprising of different numbers of multi-

valent protein and RNA molecules [28–30, 43, 79–81].

In the present work, we provide a formal description of the design and implementation of

system-specific lattice models for simulating phase transitions of multivalent proteins. The

simulation engine, known as LASSI for LAttice simulation engine for Sticker and Spacer Inter-

actions, formalizes the approaches that have been developed and deployed in recent studies

[28–30, 79, 80]. Accordingly, LASSI combines a lattice model with anisotropic interactions

among stickers and the model, at least in the current formalism, is derived based on phenome-

nological considerations (Fig 2). Ongoing work shows that a machine learning methodology

known as CAMELOT [78] can be adapted for using LASSI as a tool to model sequence-specific

phase behavior. We describe the design of LASSI, focusing first on the overall structure of the

model, the Monte Carlo sampling, and their justification for generic multivalent proteins. We

further describe the calculation of order parameters for quantifying phase separation and per-

colation. Then, using two specific examples of linear and branched multivalent protein sys-

tems, we illustrate the deployment of LASSI to two biologically relevant systems. In both

systems, we make a priori assumptions regarding the identities of stickers and spacers, which

is a requirement for the deployment of LASSI. Although we focus here on systems with a few

components, it should be emphasized that the design of LASSI is able to handle a wide range

of multicomponent systems.

Materials and methods

Considerations that go into the development of a suitable lattice model include (a) the choice

of themapping between a specific multivalent protein of interest and a lattice representation,

Simulations of phase transitions of multivalent proteins

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007028 October 21, 2019 6 / 39

https://doi.org/10.1371/journal.pcbi.1007028


(b) the parameterization of the strengths and ranges of interactions for all unique pairs of

beads and vacancies, (c) the design of move sets and acceptance criteria for Monte Carlo simu-

lations that enable the sampling of local and collective motions of large numbers of lattice-

instantiated multivalent proteins, (d) the efficient titration of key parameters such as protein

concentrations and interaction strengths, and (e) the extraction of phase boundaries in terms

of known and hidden collective parameters, which become the relevant order parameters for

phase transitions of interest.

Generating lattice representations of multivalent proteins

For a given linear or branched multivalent protein, we first choose a suitable mapping between

the protein degrees of freedom and a lattice representation. The conformational space is a sim-

ple cubic lattice with periodic boundary conditions used to mimic a macroscopic system.

Phase transitions represent the collective effects of large numbers of molecules, and simula-

tions have to include at least 103–104 protein molecules to observe facsimiles of these collective

transitions in finite sized systems [82]. Further, we need to be able to test for the effects of finite

size artefacts and this requires a titration of the effects of varying the numbers of molecules.

Accordingly, the lattice has to be large enough to accommodate at least 103 molecules of each

type for the most dilute concentrations. Often, we might need to increase the number of mole-

cules to be of O(104). Accordingly, a one-to-one mapping between the protein degrees of free-

dom and a lattice representation would lead to a computationally intractable model. Instead,

we adopt system-specific coarse-graining approaches, whereby the coarse-graining is guided

by a priori rigorous or phenomenological knowledge of the identities of stickers versus spacers.
For disordered proteins, the stickers within disordered regions often correspond to single

amino acid residues or short linear motifs. For multivalent folded proteins, the stickers are

either an entire protein domain or sectors on domain surfaces [28, 29]. Residues correspond-

ing to spacers may either be modeled explicitly, where one or more spacer residues are mod-

eled by a single bead on the lattice site, or be modeled as phantom tethers, where the intrinsic

lengths of tethers are calibrated in terms of the numbers of lattice sites [28, 29]. In both cases,

the tethers can stretch, bend, and rotate and these degrees of freedom contribute to density

inhomogeneities that are the result of altered patterns of inter-sticker interactions.

LASSI and bond fluctuation models

The structure of LASSI is inspired by the bond fluctuation model (BFM) for lattice polymers

[83]. This is a general lattice model for simulations designed to extract equilibrium conforma-

tional distributions and dynamical attributes of polymers in dilute solutions as well as dense

melts. There are two versions of the BFM viz., the Carmesin-Kremer BFM or CK-BFM [84]

and the Shaffer BFM or S-BFM [83]. Both models are based on the use of simple cubic lattices,

which discretizes the conformational space for polymers.

In the CK-BFM [84], each repeating unit or monomer within a polymer is modeled as a

3-dimensional cube where the 8 corners of the cube occupy lattice sites and bond vectors con-

nect pairs of monomers. Overlap of monomers is associated with an energetic penalty, and

each bond vector can have up to 108 distinct directions. The choice of bond vector set encodes

the geometry of the polymer and places constraints on the bond lengths and bond angles. All

other interactions are governed by the inter-monomer potentials, and evolution of the system

through conformational space is driven by changes to the overall potential energy. In contrast,

the S-BFM places each monomer on a single lattice site. Covalently bonded monomers are

connected by bonds that are constrained to be of three types, leading to chains that have bonds

of length 1,
ffiffiffi
2
p

or
ffiffiffi
3
p

in units of lattice size. Monte Carlo moves with suitable acceptance
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criteria can be designed for both types of BFMs. The simulations are used to generate equilib-

rium conformational distributions of lattice polymers in either dilute or dense phases. The

move sets control the overall polymer dynamics and the acceptance of different types of moves

and the calculation of correlation functions allows one to compute dynamical quantities for

lattice polymers [83]. If we were to use either of the established BFMs without modification,

then each amino acid residue would be modeled as a monomer, and such an approach would

be useful when the identities of stickers and spacers remain ambiguous. This approach under-

lies a different simulation engine known as PIMMS [43].

LASSI is a generalization of the S-BFM that also adapts features of the CK-BFM. Given a

choice of the mapping for coarse-graining, each multivalent protein is described as a chain of

non-overlapping monomers viz., beads that occupy sites on a 3-dimensional cubic lattice.

Note that the choice of a single site per bead is similar to that of the S-BFM, although the bead,

which is a sticker or spacer monomer, need not be the monomeric unit, i.e., an amino acid res-

idue in the case of proteins. Each sticker monomer is linked to its adjacent sticker on the chain

via either a phantom tether or a set of spacer beads that occupy individual lattice sites [28, 29].

A spacer / tether length of unity implies that adjacent monomers are within
ffiffiffi
3
p

lattice units of

one another (Fig 1D). The choice of the spacer length will be sequence-specific or more pre-

cisely, specific to the architecture of the protein of interest.

Inter-monomer (sticker-sticker, sticker-spacer, and spacer-spacer) interactions are mod-

eled as contact-based pairwise interactions. A sticker monomer can bind to another sticker

monomer that occupies an adjacent lattice site with an interaction energy that depends on the

types of both monomers. Monomers are considered to be adjacent to one another if they are

within a lattice distance of
ffiffiffi
3
p

. By this criterion, each lattice site occupied by a sticker mono-

mer will have 26 adjacent lattice sites. This is reminiscent of the interaction geometry of a

CK-BFM for each monomer. In the current implementation of LASSI, the interactions are

mutually exclusive, implying that a sticker cannot interact simultaneously with more than one

other sticker, even though there are 26 adjacent sites that the interaction partner can occupy. If

the sticker in question is already engaged in another inter-monomer interaction with stickers

or spacers, then the unoccupied sites of the sticker will be unavailable for interaction. The

combination of the geometry of the interaction sites per monomer and the single occupancy

constraint leads to anisotropic interactions between sticker interactions. This feature is unique

to LASSI and it is not incorporated in other variants of BFMs; this allows us to deploy LASSI

for modeling heteropolymeric systems. In the context of LASSI, we note that stickers are dis-

tinguished by their ability to participate in anisotropic or isotropic interactions. In contrast,

explicitly modeled spacer sites only participate in isotropic interactions with other spacer or

sticker sites. Furthermore, the interaction strengths involving spacers are typically weaker than

those involving stickers. However, it is worth emphasizing that these distinctions only matter

inasmuch as LASSI allows us to capture a numerical instantiation of the stickers-and-spacers

model. For simplicity, one might simply think of LASSI as a model that has sites that are differ-

entiated by whether or not they can involve themselves in anisotropic interactions, by their

intrinsic site valence (a variable that we do not titrate in this work), and by the comparative

magnitudes of site-site interaction strengths.

Setup of simulations

A system with nmultivalent proteins is in reality an n+1 component system since the solvent

is the implicit component. In LASSI, sites that are not occupied by protein units automatically

represent solvent sites. Although the interaction potentials do not explicitly include terms

between solvent and protein sites, the effective interaction strengths between pairs of protein
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units represent an averaging over protein-protein, protein-solvent, and solvent-solvent inter-

actions. The solvent sites, i.e., the sites that are not occupied by protein units, represent contri-

butions from the solvent to the overall translational and mixing entropies. Simulations are

initiated by randomizing the positions of protein units, subject to the constraints of chain

connectivity.

The parameters that are set at the start of each LASSI simulation include the total number

of molecules ni of type i and the size of the lattice L, from which we can calculate the total num-

ber n of all protein components n ¼
X

i

ni and the concentration or number density of each

protein ci = ni/L3. The setup also includes stipulations for the architectures of each protein

such as specification of the number of monomers per chain, the overall topology of each pro-

tein (linear vs. branched), the lengths of spacers, and the types of spacers (implicit / phantom

vs. explicit) [28–30, 79, 80]. The number of monomers per molecule will equal the sum of the

number of stickers and spacers if spacer residues are modeled explicitly. Alternatively, if spac-

ers are modeled as phantom tethers, then the number of explicitly modeled monomers will

equal the number of stickers. Specification of the energetics of the system includes specifica-

tion of the simulation temperature in normalized units, homotypic and heterotypic interaction

strengths between pairs of stickers, the energetic cost for the overlap of stickers, and the inter-

action strengths between sticker and spacer sites if the spacers are modeled explicitly.

Design of monte carlo move sets

Our goal is to compute architecture-specific phase diagrams for systems comprising of one or

more types of linear or branched multivalent proteins. This requires a simulation strategy that

enables the sampling of the full spectrum of coexisting densities and networked states for mul-

tivalent proteins. Accordingly, the conformations of randomly initialized systems of proteins

on a simple cubic lattice are sampled via a series of Markov Chain Monte Carlo (MCMC)

moves that are designed to ensure efficient sampling of changes in protein density and net-

working while maintaining microscopic reversibility. We have developed and deployed a col-

lection of moves and these are described below.

Monte carlo sampling with biases

In LASSI, we have independent contributions from two main energetic sources. Monomer

units are not allowed to overlap, and this can be described by a position-dependent energy

Epos where Epos = 0 or1. On the other hand, inter-monomer pairwise interactions also con-

tribute to the total energy, and Erot denotes the sum over all of the effective pairwise inter-

monomer interaction energies. The subscript “rot”(rotational) indicates the fact that for a pair

of nearest neighbor stickers their interaction energies are actually governed by their mutual

orientations. Accordingly, the total system energy in a specific configuration i is written as:

Ei ¼ Ei;pos þ Ei;rot; ð1Þ

The equilibrium probability associated with configuration i is given by the Boltzmann distribu-

tion as:

pi / expð� bEiÞ ¼ expð� bEi;posÞexpð� bEi;rotÞ; ð2Þ

In Eq (2), β is the inverse of the simulation temperature in units of the Boltzmann constant

(effectively, kB = 1 energy unit / temperature unit). The frequency with which a transition

from configuration i to j is proposed will be governed by the elements Tij of the targeting

matrix T. The proposed transition is accepted / rejected based on the elements Aij of the
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acceptance ratio matrix A. A MCMC move that transitions the system from configuration i to

j defines a flow in configuration space and this flow has to satisfy microscopic reversibility:

TijAijpi ¼ TjiAjipj; ð3Þ

If the targeting matrix is symmetric, then Tij = Tji and the acceptance ratios such as those pre-

scribed by Metropolis et al. [85] will ensure the preservation of microscopic reversibility. How-

ever, if biases are incorporated into the targeting matrix, which is often essential to enhance

the sampling of configurations that contribute to density inhomogeneities and the making /

breaking of bonds in dense networks, then the elements of the acceptance ratio matrix have to

be designed to ensure the preservation of microscopic reversibility. We deploy a general strat-

egy of using biased moves to enhance the sampling of different mutual orientations among

pairs of stickers. The incorporation of these orientational biases is accounted for by modifying

the acceptance criterion of Metropolis et al. [85] whereby each element of A is written as:

Aij

Aji

 !

¼
Tjipj
Tijpi

 !

such that :Aij ¼ min 1;
Tjipj
Tijpi

( ) ; ð4Þ

For a symmetric targeting matrix, we recover the standard acceptance ratio of Metropolis et al.
[85] viz.,

Aij

Aji

 !

¼
pj
pi

� �

or Aij ¼ min 1;
pj
pi

� �

; ð5Þ

Since the moves within LASSI generally involve orientational biases, the elements Tij are

rewritten in terms of a Rosenbluth weighting factor Wj [86, 87] whereby:

Tij ¼
expð� bEj;rotÞ

Wj
; ð6Þ

Substituting (6) into (4) leads to:

Aij ¼ min 1;
Wj

Wi
exp½� bðEj;pos � Ei;posÞ�

� �

; ð7Þ

The specific form for the weighting factorsWi will depend on the type of move because the

extent of asymmetry in the targeting matrix will depend on the nature of the bias incorporated

into the biasing move that proposes a transition from i to j. The specific forms for weighting

factors are discussed in the context of the move types that are introduced next.

Rotational moves

A monomer is in an associated or a dissociated state and in the associated state it has a speci-

fied binding partner. This defines the rotational state of a monomer. To change the rotational

state, we randomly pick a monomer from the system, and exhaustively sample all 26 adjacent

sites to construct a list of potential binding partners. The rotational state of the monomer is

changed, at random, by drawing a random integer k from a uniform distribution between [0,

b], where b is the number possible binding partners available to the monomer. If k = 0, the

monomer is set to be in a dissociated state. Otherwise, the kth candidate bond (reversible phys-

ical crosslink) is formed and the state of the monomer is set to be in an associated state. If the
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monomer cannot be involved in a rotational interaction, as would be the case for an explicitly

modeled spacer, the rotational move is rejected outright. The accessible volume for rotational

interactions is within a cube of unit volume centered on the randomly chosen monomer (see

S1 Fig for a 2-dimensional representation), and hence, each sticker monomer will have at

most bmax = 33–1 possible sites as neighbors. Since this number is not large, we sample all 26

possible interaction sites.

Local moves

This move serves as the basic unit of local displacement of monomers–be they stickers or spac-

ers. A randomly chosen monomer is moved from position ri to rj = ri + Δr. Acceptance of the

move is predicated on the move not leading to an overlap with a site occupied by another

monomer and the satisfaction of linker constraints. The choice for Δr is made by uniformly

sampling each component from the interval [–2,2] such that jDrj � 2
ffiffiffi
3
p

(shown in S2 Fig)

moves if the selected monomer is in the interior of a molecule [88], and they become analo-

gous to end rotationmoves if end monomers are selected [89].

Local moves have a rotational bias in LASSI and the Rosenbluth factor is calculated as fol-

lows. Starting with Eq (7), we shall designate the chosen monomer by index k. In configuration

i, assume that monomer k has a binding partner of index l. Typically in coarse-grained systems

there are a finite number of unique monomer types, and thus it is more efficient to simply

define interaction energies between different monomer types than between all monomer pairs.

The energy associated with the bond between monomers k and l is written as εt(k)t(l), where t
(x) indicates the type of monomer x. The local move causes a change in binding partner,

whereby the monomer k now binds to monomer m. The local move leads to a bond swap that

causes a change in rotational energy, which is written as:

Ei;rot � Ej;rot ¼ εtðkÞtðlÞ � εtðkÞtðmÞ; ð8Þ

Use of Eq (8) in Eq (6) leads to:

Tij
Tji
¼

expð� bεtðkÞtðlÞÞWi;k

expð� bεtðkÞtðmÞÞWj;k
; ð9Þ

In Eq (9), each Rosenbluth weight has an additional index in the subscript to indicate that

the change in configuration is achieved by a change in the binding partner for the monomer k.

To accelerate the creation of density inhomogeneities in supersaturated systems and facilitate

the making and breaking of networks, we decomposeWi;k as:

Wi;k ¼W
ðaÞ
i;k þW

ðdÞ
i;k ; ð10Þ

The two terms in Eq (10) respectively represent the contributions to the Rosenbluth weights

for monomers in associated (a) and dissociated states (d). First, we calculate the weight factors

for the interacting monomers as a partition function over all nearest neighbor contributions,

such that:

WðaÞ
i;k ¼

X

l

expð� bεtðkÞtðlÞÞ; ð11Þ

In Eq (11), the summation runs over all potential binding partners l (nearest neighbors) for

the monomer k. To illustrate how the Rosenbluth factor is calculated, we assume that the sys-

tem has only one type of interaction with the pairwise energy designated as ε. If the number of

nearest neighbors for monomer k in configuration i is designated as Nk;i, then the Rosenbluth
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weight factor in Eq (11) becomes:

WðaÞ
i;k ¼ Nk;iexpð� bεÞ; ð12Þ

SettingWðdÞ
i;k ¼ 1 to incorporate a bias towards associated states, and using the simplifica-

tion that leads to Eq (12), we rewrite Eq (9) as a definition of the acceptance criterion for the

move from configuration i to j via local move involving monomer k as:

Aij;k ¼ min 1;
Nj;k þ 1

Ni;k þ 1
exp½� bðEj;pos � Ei;posÞ�

( )

; ð13Þ

This choice for the acceptance criterion ensures that detailed balance is preserved while

enhancing the sampling of configurations characterized by the breaking of old bonds and the

forming of new ones.

Reptation–or slithering snake–moves

In dense configurations, it becomes difficult to realize large-scale translational or rotational

motions of polymers. The slithering snake move is a Monte Carlo instantiation of reptation as

first conceived by de Gennes [90]. In this move, a chain is chosen at random, and the mono-

mer at one end of the target chain is moved to a new position. The remaining monomers

within the target chain are then successively moved such that monomer m along the chain

moves into the previous position of monomer m–1 (S3 Fig). This move relies on an inherent

symmetry of chain molecules, because bond lengths between monomers are the same; if one

swaps monomers across chains, the identity of the chain remains invariant. However, this

move cannot be used if the molecule has heterogeneous bond lengths or if it is a branched

polymer.

The reptation move is rotationally biased, and this is true for every monomer in a chain.

The bias is independent for each monomer and accordingly, the Rosenbluth factor for a single

reptation move can be calculated from the Rosenbluth factors for each monomer-specific local

move. In configuration i we obtain:

Wi ¼
Y

m

Wi;m ¼
Y

m

ðNi;m þ 1Þ; ð14Þ

In Eq (14), the product runs over all monomers m within the chain of interest. The accep-

tance criterion for a reptation move takes the form:

Aij ¼ min 1;

Y

m

ðNj;m þ 1Þ

Y

m

ðNi;m þ 1Þ

8
><

>:

9
>=

>;
exp½� bðEj;pos � Ei;posÞ�; ð15Þ

The inclusion of the bias for every interacting monomer, rather than just the end monomers,

is to emulate how a real transiently bonded polymer would slither along its contours. Note that

for strict detailed balance, the Rosenbluth factors for the two end monomers should be calcu-

lated and added to the acceptance criterion, but the current implementation of LASSI uses the

first trial position that satisfies the position constraints.

Double pivot moves

These moves swap a part of a chain with the corresponding part of another chain of the same

type. A monomer is picked at random; it is denoted as im, where i is the monomer index within
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a chain, andm is the chain index. A search is then performed around the monomer within a

prescribed distance for a monomer within the same type of chain. The requirement for the

search is that the monomer of interest be one index ahead along its own chain, (i+1)n. Next a

check is performed to ensure that the distance between im and (i+1)n is within the bond con-

straint connecting im to (i+1)m, and that the distance between (i+1)m and in is within the bond

constraint for im and (i+1)m. Each monomer (i+1)n that satisfies each of these constraints is

stored and one of these is randomly picked for the double pivot move (S4 Fig). The move is

always accepted if there is a candidate because only connectivity changes unless bonds are

modeled using elastic springs.

The purpose of this move is to engender large configurational changes in dense polymer

melts, which approximate the dense phases formed upon phase separation. In dense regions

the rate of acceptance of local moves decrease precipitously. At high enough densities, poly-

mers become entangled and local moves reduce to slithering-snake moves and polymers are

restricted to motions along tubes around one another [91, 92]. Therefore, rather than physi-

cally moving polymers to create a change in configurations, we incorporate move sets that

break and make bonds while ensuring that monomers do not overlap, and that bond con-

straints are always satisfied. If two chains are close enough to each other that the bonds

between two monomers can be swapped, then such the double pivot move results in a large

configurational change for both chains, and for the system.

Chain and cluster translation moves

The chain translation move is designed to move single chains while forming new bonds at

the proposed location. This move attempts to translate the center of mass of a chain i from ri

to rj = ri + Δr where jDrj �
ffiffi
3
p
L

4
and L is the size of the simulation cell. Multiple trial displace-

ments are proposed until a trial position that does not result in steric clashes for the entire mol-

ecule is generated. The move is then attempted. As with the slithering snake move, each

monomer in the molecule that is translated will have an orientational bias. Accordingly, the

Rosenbluth factors are calculated as in Eqs (14) and (15). The translational move results in

large displacements for single chains and correctly biases the system for efficient sampling of

configurations with alternate interaction patterns.

Translational moves can also be applied to clusters of molecules. A connected cluster refers

to a collection of unique chains connected via rotational interactions. A proposed move only

results in a translation, and the move is readily accepted if there is no steric clash. Since no

new physical bonds are created at the proposed location, the cluster remains invariant and the

move is accepted. Naively this move might seem unnecessary as this move simply moves clus-

ters around. However, once a physical bond has formed between two molecules, it is highly

unlikely for any of the non-cluster translation moves to move the centers-of-masses of clusters

closer together.

Considerations for setting move set frequencies

The structure of each move set serves as a guide for selecting an optimal set of frequencies.

This leads to a set of heuristics that are as follows: (i) in the cluster move we pick a random

chain from the system, perform a networking analysis on that chain, and then propose a dis-

placement of the cluster. As the cluster size grows it is more likely that a randomly picked

chain will be part of the largest cluster which itself will result in a steric clash after the proposed

move. Therefore, the frequency of the cluster move should be low, if not the lowest, in the

entire set. (ii) In the translational move, we pick a random chain from the system for transla-

tion; as the size of the largest cluster increases it becomes less likely for a proposed translation

Simulations of phase transitions of multivalent proteins

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007028 October 21, 2019 13 / 39

https://doi.org/10.1371/journal.pcbi.1007028


move to be accepted. However, unlike the cluster move the translation move is rotationally

biased and thus results in new interactions being formed. Hence, translational moves enable

single-molecule to cluster-surface interactions. Therefore, this move should be proposed more

often than the cluster move, although not as often as rotational or local moves. (iii) The rota-

tion move is computationally inexpensive and it enables the switching of physical bonds and

should thus be proposed fairly frequently. (iv) Similarly, local moves and slithering snake

moves are also rotationally biased, and they help with the local rearrangements of physical

bonds. Local moves are the primary route to enable local conformational changes, and to

enable local physical bond rearrangements. Therefore, local moves should be proposed most

frequently. The slithering snake move is particularly effective because it allows for large local

physical bond rearrangements in dense configurations. Thus, this move should also be pro-

posed frequently, less so than local moves but more so than translation moves. Note that in a

system where some molecules are non-linear or have heterogeneous linker lengths, the fre-

quency would need to be higher since the move is rejected if an incorrect molecule is picked at

random. (v) The double pivot move allows for large-scale changes to conformations within

dense configurations and accordingly, this move should be proposed more frequently than

both cluster and translation moves. One can track the acceptance ratios of each move over a

very rough initial sweep across the relevant system parameters. Moves that are always rejected

do not enable any changes in configuration and only add computational costs. Therefore, the

frequency for that particular move should be lowered. This is especially the case for the cluster

move in high-density systems.

Identifying phase boundaries using measures for density inhomogeneities

In order to detect the onset of phase separation, we can calculate excess chemical potentials

using the Widom particle insertion method [93] and equalize these chemical potentials across

distinct phases. This process requires a priori knowledge of the densities of both phases. An

efficient variant of this approach, based on fast Fourier transforms, was recently developed

and deployed by Qin and Zhou [61]. They demonstrated their method for calculations of liq-

uid-liquid coexistence curves for a patchy colloid model of γII-cyrstallin. Given that LASSI

simulations are lattice-based, we instead rely on properties of pair distribution functions that

help us diagnose the onset of phase separation and compute phase boundaries. Pair distribu-

tion functions are helpful because phase separation is the result of the system partitioning into

phases of different densities. The pair distribution, which is a reduced-dimension partition

function, serves as a rigorous thermodynamic and structural measure of the average local den-

sity and inhomogeneities of density. To first order, the density fluctuations are quantified by

averaging over all orientations. Accordingly, the pair distribution function can be converted to

a radial distribution function that allows us to probe local densities and local structural organi-

zation of molecules around one another. However, normalization of the pair distribution func-

tion requires some caution. The system contains polymer molecules and using a prior

distribution that assumes an ideal gas of the chain monomers to normalize the pair distribu-

tion function is problematic because it does not accurately capture the effects of non-idealities

due to chain connectivity. We leverage the efficient sampling of polymer fluids in LASSI and

obtain suitable prior distributions by simulating the system of interest in the absence of

sticker-sticker interactions.

The pair distribution function P(2)(r) quantifies the equilibrium distribution of distances

between chain monomers, where r is the inter-monomer distance. If Pð2Þ0 ðrÞ denotes the prior

pair distribution function calculated from simulations where the inter-sticker interactions are
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ignored (see Fig 3A), then the normalized radial distribution function is written as:

~gðrÞ ¼
Pð2ÞðrÞ
Pð2Þ0 ðrÞ

ð16Þ

The function ~gðrÞ is a direct measure of the local density of the protein of interest. Since

LASSI uses periodic boundary conditions, the maximal inter-monomer distance is
ffiffi
3
p

L
2

. Given

this normalized ~gðrÞ, we note that if the system has short-range ordering as in a canonical liq-

uid, the radial distribution function will oscillate around unity but eventually approach one as

r!1. Conversely, if the system undergoes a density transition, ~gðrÞ will have two distinct

spatial regimes (Fig 3B): for small r, ~gðrÞ will be characterized by a tall and broad peak such

that ~gðrÞ > 1 until ~gðrÞ intersects the ~gðrÞ ¼ 1 line; this region corresponds to the dense phase

and we shall denote the value of r at this intersection to be r = rb. For r> rb, ~gðrÞ will be

between 0 and 1, and for lattices that are large enough to avoid finite size artefacts, ~gðrÞ will

converge to a value lower than one and this corresponds to the density in the dilute phase

region. Furthermore, ~gðrÞ can be used to estimate the densities within the dense and dilute

phases.

Fig 3. Distribution functions used for calculation of density inhomogeneity. The data shown are obtained from 5 independent simulations for the An-Bn system with

total protein concentration c = 6.89×10−5 voxels-1 and reduced temperature T� = 0.383. Error bars indicate standard deviations. (a) Pair distribution functions P(2)(r)
and P0

(2)(r), where the former is from the interacting system and the latter from the non-interacting system with chain connectivity (prior pair distribution function).

Note that P(2)(r) shows two peaks, the first of which indicates dense phase formation. (b) Radial distribution function ~g ðrÞ. This captures the droplet formation by a

sharp and broad peak in the beginning. The inset shows rb where ~g ðrÞ intersects the line corresponding to ~gðrÞ ¼ 1 line, delineating between the dense and solution

phases. The global density inhomogeneity measure, �r�, is obtained by integration of absolute deviation of ~g ðrÞ from 1.

https://doi.org/10.1371/journal.pcbi.1007028.g003
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To quantify the global density inhomogeneity we introduce a simple measure, �r, which is

calculated as follows:

�r ¼
1

L

� �Z
ffiffi
3
p
L

2

0

j~gðrÞ � 1jV
r
L

� �
dr ð17Þ

In Eq (17), V(x), the volume element for the normalized radial distance x = r/L defined as:

VðxÞ ¼

4px2; if 0 < x �
1

2

2pxð3 � 4xÞ; if
1

2
< x �

ffiffiffi
2
p

2

2xð3p � 12f1ðxÞ þ f2ðxÞÞ; if
ffiffiffi
2
p

2
< x �

ffiffiffi
3
p

2

ð18Þ

8
>>>>>>><

>>>>>>>:

and

f1ðxÞ ¼ arctanð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 � 1
p

Þ;

f2ðxÞ ¼ 8xarctan
2xð4x2 � 3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 � 2
p

ð4x2 þ 1Þ

 !
ð19Þ

If �r � 0, the global density inhomogeneity in the system is small and this will be characteristic

of a single homogeneous phase dominating the simulation volume. As �r increases beyond

zero, the system accommodates density inhomogeneities. We construct coexistence curves

using a cutoff value of �r = 0.025, which is universal to all systems, to delineate between a

homogeneous system and one that has undergone phase separation.

Quantitative assessments of finite size effects

The pair distribution function is central to our calculation of density inhomogeneities and

constructing coexistence curves for a system of multivalent proteins simulated using LASSI. At

the start of this section we emphasized the importance of including 103–104 distinct molecules

within the simulation cell in order to avoid finite size artefacts. Prior to presenting detailed

results that mimic specific systems, we present an analysis of finite size effects that we will con-

front if the requisite numbers of molecules are not included in the simulations. The data we

present are for simulations of mimics of the protein FUS, specifically the An + Bn system intro-

duced in the results section. The phenomenological mapping of this protein architecture onto

a cubic lattice is discussed at the start of the results section. Here, we present an analysis that

makes a crucial technical point about finite size effects.

First, we start with simulations for ideal polymers. The data shown in Fig 4 plots the pair

distribution function Pð2Þ0 ðrÞ extracted for simulations of ideal models of FUS-like proteins.

Results are shown for simulations that use 20 chain molecules of An + Bn as an example of a

small system. These results are compared to those from simulations with 100, 200, 1000, 1500,

2000, 3000, and 4000 An + Bn molecules, respectively. The pair distribution functions have a

self-similar character and this is revealed by plotting Pð2Þ0 ðr�Þ for all of the simulations, where

r� is the reduced distance that accounts for the fact that for a similar concentration, the simula-

tion cells are made larger (higher values of L, which is box size) as the numbers of molecules

increase. This analysis shows that even for a truly ideal system, the smallest simulation com-

prising of only 20 molecules will generate noisy estimates of the pair distribution function.

This clearly demonstrates the problems inherent to small systems where finite size effects are
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accentuated. Interestingly, for the ideal chain system, all simulations with 100 or more mole-

cules yield similar pair distribution functions as assessed in Fig 4B.

Next we assessed the impact of finite size effects with all of the terms in the potential being

included in the simulation. There are three columns, one each for different values of the

reduced temperature T�, in Fig 5. As discussed in the results section, these values of T� place

the system of interest in the two-phase regime, with the quench depth into the two-phase

regime increasing as T� increases. The first row (a to c) of Fig 5 shows the same data as Fig 4A

while the second row (d to f) in Fig 5 show the normalized data like Fig 4B. Each panel shows

eight unnormalized pair distribution functions, one each for the systems with 20, 100, 200,

1000, 1500, 2000, 3000, and 4000 molecules, respectively.

The onset of phase separation should be manifest by the presence of a trough located

between two peaks in the profiles for P(2)(r�). This is evident for T� = 0.267 (Fig 5, panel (c))

for all systems providing the numbers of molecules are greater than or equal to 103. This quali-

tative trend is preserved even for T� = 0.217, although sampling difficulties in large systems

become obvious in the noisy estimates for P(2)(r�). At the reduced temperature of T� = 0.167

we confront two problems: The small systems where the numbers of molecules are less than

103 cannot support the distinction between a proper dense phase that coexists with a dilute

phase. This behavior is similar to that observed for lower quench depths i.e., higher simulation

temperatures as shown in panels (b) and (c) of Fig 5. However, as the system size grows, an

additional problem arises and this has to do with large clusters becoming frozen, and thus

Fig 4. Assessment of finite size effects in simulations of ideal, non-interacting chains. (a) Pair distribution functions computed in terms of the spatial separation

between chain units. The distributions are maximal at r = L/2, where L is the size of the simulation cell for a given system. Note that L increases as the number of

polymers in the system increases. With the exception of the smaller systems, the ideal chains show self-similar behavior for different system sizes. (b) The data plotted in

panel (a) are re-plotted in terms of the scaled variable r� ¼ 2rffiffi
3
p
Li

where Li is the size of the simulation cell for boxes with imolecules.

https://doi.org/10.1371/journal.pcbi.1007028.g004
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inhibiting the achievement of equilibrium. This is evident from the pair distribution functions

shown in panels (a) and (d) of Fig 5 for systems where the numbers of molecules exceed 103.

To overcome this broken ergodicity and obtain reliable converged pair distribution functions,

we need additional biasing potentials and temperature sweep approaches used recently [43] to

break up frozen clusters and enable their coalescence. In the results that we report here, we use

the system size titration to identify the reduced temperatures below which broken ergodicity

becomes evident. We do not include data from these simulations in our constructions of phase

diagrams. Importantly, our analysis confirms the presence of finite size effects for small sys-

tems and sets a lower bound on the numbers of molecules that are needed to observe facsimiles

of phase separation as diagnosed by the calculated pair distribution functions. The conclusions

drawn from analysis of the pair distribution functions are reinforced in our analysis of the

radial distribution function ~gðr�Þ shown in S5 Fig.

Fig 5. Assessment of finite size effects in simulations with real interacting chains. Panels (a), (b), and (c), respectively are the real chain equivalents of panel (a) in Fig

4 computed for three different simulation temperatures that represent three different quench depths of the system into its two-phase regime. Panels (d), (e), and (f),

respectively are the real chain equivalents of panel (b) in Fig 9 computed for three different simulation temperatures that represent three different quench depths of the

system into its two-phase regime.

https://doi.org/10.1371/journal.pcbi.1007028.g005
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Estimating the percolation transition line that delineates percolated and

non-percolated networks

Associative polymers form networks characterized by physical crosslinks among stickers.

Accordingly, we use the concept of a cluster, viz., a collection of unique chains connected via

rotational interactions, to define the extent of percolation. In polymer melt simulations, the

extent of percolation, known as the gel fraction in the polymer literature, is defined as the frac-

tion of polymers participating in a percolating network that spans the simulation box in at

least one direction [94]. More generally, we can use the fraction of polymers that make up the

single largest cluster to quantify the onset of percolation and the changes to the extent of net-

working beyond the percolation threshold [95]. A molecular network cannot percolate the

whole simulation cell when dilute and dense phases coexist. Accordingly, we choose the sec-

ond definition for the order parameter that describes the percolation transition, and we denote

this as ϕc [29].

Semenov and Rubinstein demonstrated that a percolation transition is purely a connectivity

transition [45]. This implies that the identification of the percolation threshold is not achiev-

able using a bona fide order parameter but instead relies on a suitable topological description.

Here, we employ the midpoint of the ϕc vs. concentration curve to assess the onset of percola-

tion and the percolation line or curve is obtained as the locus of points in the phase diagram

for which ϕc = 0.5. In a system where finite size effects are minimized, the percolation transi-

tion is sharp having either a hyperbolic or sigmoidal shape as a function of concentration.

Accordingly, the location of the percolation line will be relatively robust to the choice one

makes for the percolation threshold.

Results

We demonstrate the use of LASSI by applying it to study two archetypal systems that are

known to undergo phase separation [24, 31, 33]. The systems are instantiations of linear and

branched multivalent protein systems, respectively. The simulation results obtained for linear

multivalent proteins illustrate how phase diagrams are generated when protein concentration

(at a fixed stoichiometry) and temperature are the independent variables. In the second exam-

ple that includes a branched multivalent protein and a linear peptide, the temperature is fixed,

and the concentrations of the individual components are varied. The simulation parameters

for both systems are summarized in Table 1. For each system, we conducted 5 independent

simulations, each of which consists of 5×108 MC steps after 5×106 equilibration steps. The data

were taken over the last half of the trajectories at a frequency of 5×105 steps.

Table 1. Simulation parameters for system description.

FUS-like system

(see Fig 6)

N130 + rpL5 system

(see Fig 10)

Bead notations A/B: stickers

N: neutral spacers

A/B: stickers

N: neutral hub spacers

Number of stickers si sA = 5, sB = 5 sA = 10, sB = 5

Linker length lij
(in lattice units)

lAN = 1, lBN = 1, lNN = 4 lNA = 1, lAA = 3, lBB = 3

Position-dependent energy Epos(r1, r2) 1, if r1 = r2

0, otherwise

1, if r1 = r2

0, otherwise

Pairwise interaction energy εij (in temperature units) εAB = -3, εii = 0, εiN = 0 εAB = -3, εii = 0, εiN = 0

https://doi.org/10.1371/journal.pcbi.1007028.t001
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A FUS-like system as an example of a linear multivalent protein

Wang et al. [24] recently uncovered the molecular grammar that contributes to the driving

forces for phase separation of the protein FUS and a family of related proteins. They showed

that, to first order, csat/(sYsR)−1, where csat is the measured saturation concentration of the

FUS family proteins and sY and sR are the number of tyrosine (Tyr) and arginine (Arg) resi-

dues, respectively. In FUS and other proteins of similar architectures, the Tyr residues are

located primarily within the N-terminal disordered prion-like domain (PLD), whereas the Arg

residues are located primarily within the partially disordered C-terminal RNA binding domain

(RBD).

Using mutagenesis experiments, Wang et al. established that Tyr and Arg residues are the

stickers in the FUS family proteins. Accordingly, the zeroth-order stickers and spacers repre-

sentation used to model FUS in LASSI comprises of two parts: An N-terminal mimic of the

PLD encompassing Tyr residues as stickers and a C-terminal mimic of the RBD that encom-

passes Arg residues as stickers. Wang et al. also measured csat for a 1:1 mixture of independent

PLDs and RBDs interacting in trans. The csat for this system is approximately twice that of the

csat for full-length FUS. Given the block copolymeric architecture of FUS, we denote the PLD

and RBD as An and Bn, respectively for A and B-blocks of valence n. The model system of

PLDs and RBDs interacting in trans is denoted as An+Bn (Fig 6A), whereas the system mim-

icking full-length FUS where the stickers can interact in cis and in trans is denoted as An-Bn

(Fig 6B).

Within An and Bn blocks, spacers provide a uniform spacing of six lattice sites between

stickers along the chain. We model spacers using a hybrid approach whereby a neutral spacer

Fig 6. Architecture of the linear multivalent systems. (a, b) Cartoons to depict the An+Bn and An-Bn systems, respectively. Different colors of beads denote different

species of stickers. Note that An-Bn can be simply considered as An+Bn where the two different sections of the proteins are joined together. (c) Linker lengths involved

in the architecture (see also Table 1). Each sticker has a neighboring spacer bead that is 1 lattice site apart whereas the neighboring spacer beads are 4 lattice sites apart.

This means that consecutive stickers are 6 lattice sites apart and also that the linkers connecting the two have a positive effective solvation volume.

https://doi.org/10.1371/journal.pcbi.1007028.g006
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monomer is attached to each sticker with spacing of a single lattice site (Fig 6C). This choice

was made to provide a distinction between An-Bn and An+Bn. Accordingly, the relative con-

centration of neutral beads will be higher in An-Bn when compared to An+Bn. This allows us to

study linker-mediated differences between the driving forces for phase separation for An-Bn

vs. An+Bn

Fig 7 shows phase diagrams for the An+Bn and An-Bn systems calculated using data from

LASSI-based simulations. In panels (a) and (b), the ordinate quantifies the reduced tempera-

ture T� calculated as T� ¼ kBT
ε where ε is the effective energy of pairwise interactions between

stickers from the An and Bn blocks. Panel (a) shows results for the An+Bn system. The bulk

concentration in the An+Bn system is quantified along the abscissa as cbulk ¼
ffiffiffiffiffiffiffiffiffiffifficAn
cBn

p
where

cAn
and cBn are the bulk concentrations of An and Bn, respectively. Panel (b) shows the phase

diagram for the An-Bn system where the abscissa represents the bulk concentration of this

system.

Experiments show that the driving forces for phase separation are roughly twice as large for

the full-length FUS compared to the system comprising of a 1:1 mixture of PLDs and RBDs

[24]. This feature is recapitulated in LASSI simulations. For example, the width of the two-

phase regime is larger for the An-Bn system compared to the An+Bn system for all values of T�

as shown in panel (e) of Fig 7. The critical temperature is higher for the An-Bn vs. An+Bn sys-

tem (T�c � 0:56 vs. T�c � 0:36, respectively). The valence of stickers is the main determinant of

the concentration at the critical point whereas the interactions mediated by spacers determine

the density inhomogeneities and the critical temperature. The impact of longer chains and

increased valence of stickers per chain is also evident from the percolation threshold, which is

crossed at a bulk protein concentration that is two-fold lower for the An-Bn system when com-

pared to the An+Bn system, across all the simulation temperatures. Differences between the

two systems are also evident in the degree of cooperativity of phase separation and the percola-

tion transition as shown in panels (d) and (e) of Fig 7.

For each system, the intersection of the percolation threshold line with the two-phase

regime shows that the dense phase predominantly forms a percolated droplet–panels (a) and

(b) in Fig 7. Therefore, while phase separation without percolation is realizable, this is not the

dominant scenario for associative polymers, where phase separation and percolation are typi-

cally conjoined to give rise to percolated droplets. The density of proteins in these percolated

droplets is governed by the interaction strengths, modulated by T� and the effective solvation

volumes of spacers [28, 29]. Unlike homopolymers, which comprise entirely of stickers or

spacers depending on the solvent quality, associative polymers encompass a mixture of stickers

and spacers. Stickers provide the driving forces for networking via reversible crosslinks and

spacers determine whether or not these driving forces lead to phase separation via condensa-

tion. Indeed, the importance of sticker-driven percolation is evidenced in the persistence of

percolated networks for both systems at high values of T�.
The observation that dense phases form percolated droplets has several implications: (1) on

timescales that are concordant with or smaller than the average lifetime of physical crosslinks

between stickers, the condensates will have elastic properties; this will be replaced by viscous

behavior on timescales that are longer than the average lifetime of physical crosslinks [96]; (2)

accordingly, condensates will have an intrinsic tendency for viscoelasticity [97] and long-lived

crosslinks will cause hardening behavior as has been observed in many systems [1, 6, 7, 11, 22,

24, 39–41]; (3) the extent of crosslinking above the percolation threshold will change continu-

ously with concentration [16, 29], and this will govern the overall structure, internal dynamics,

and porosity of condensates; (4) reactions within condensates are likely to be constrained by

the network topology formed as a result of inter-sticker interactions [98]; these constraints can
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Fig 7. Phase behavior of the linear multivalent systems. (a, b) Phase diagrams for the An+Bn and An-Bn systems, respectively. The purple line is a 2-dimensional linear

interpolation for �r� = 0.025, and the area encapsulated by the purple line are where the systems have large density inhomogeneities and are thus considered to be phase

separated. The green line is a 2-dimensional linear interpolation for ϕc = 0.5 and thus is the proxy for the percolation line. (c, d) �r� and ϕc curves as a function of

concentrations at T� = 0.383 (solid lines in (a) and (b)). (e) Width of the two-phase regime, w(T�), as a function of the reduced temperature. Not only does the An-Bn
system have a higher critical temperature (T� ~ 0.6 vs. T� ~ 0.4), but also has a wider two-phase regime than the An+Bn system.

https://doi.org/10.1371/journal.pcbi.1007028.g007
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create a variety of interesting kinetic signatures for reactions [99], including temporal memo-

ries as has been demonstrated recently for a system that undergoes thermoresponsive phase

behavior [66]. Clearly, any description of biochemical reactions within condensates has to

account for the structural and dynamical attributes of percolated droplets that are best

described as network fluids.

Move set frequencies and diagnostics of converged simulations

We used results from simulations of linear multivalent protein system to assess the design of

LASSI. The frequencies of the different move sets for simulations of the linear multivalent pro-

tein system are summarized in Table 2. Considerations that go into the design of move sets

include the achievement of converged equilibrium distributions, with maximal computational

efficiency, for each bulk concentration. Details of these considerations were described in the

methods section. Diagnostics from short simulations are often useful to optimize the move set

frequencies especially if multiple short trials are performed using very different starting

configurations.

Fig 8 shows the concentration dependence of acceptance ratios for each of the move set

types, diagnosed for simulations of the An+Bn and An-Bn systems. The acceptance ratios show

similar qualitative trends for both systems, even though there are clear quantitative differences.

The move with the highest acceptance ratio in the dense regime is the double pivot move, sig-

nifying that the systems are transitioning into a pure polymer melt. The second most accepted

move is the local move; extrapolating from the higher concentrations it is expected that the

acceptance of local moves should also become small and that the double pivot move will be the

most dominant way to alter chain configurations, since even the move of an individual mono-

mer will require that multiple monomers from multiple chains are moved simultaneously.

Both systems have similar qualitative trends for the translation move where we see a transition

from being accepted at low concentrations to not being accepted at higher concentrations.

Since the proteins in the An-Bn system are twice long as the An+Bn system, the absolute accep-

tance ratio of the translation move is always lower in the An-Bn system.

Analysis of acceptance ratios of different move sets within droplets will be helpful for esti-

mating correlation lengths and amplitudes of conformational and concentration fluctuations

within droplets. Cluster moves have high acceptance ratios in the dilute regime whereas the

acceptance ratio nearly vanishes as the concentration increases. This is intuitive since the like-

lihood of steric clashes increases with a decrease in available volume and this is coupled to the

simultaneous increase in the fraction of molecules in the largest cluster. We note here that the

cluster moves have the most dramatic change in acceptance ratios from values near 1 to values

near 0. However, the apparent inefficiency of cluster moves in dense configurations cannot be

used as a rationale to quench such moves. In fact, as shown in panel (a) of Fig 9, phase separa-

tion, diagnosed in terms of �r, is suppressed if cluster moves are not part of the move set. This

Table 2. Move frequencies according to their types. They are normalized to the sum of all frequencies used in each

simulation.

FUS-like system N130 + rpL5 system

Cluster translation move 1 1

Chain translation move 10 10

Rotation move 100 100

Local move 250 250

Reptation move 0 50

Double pivot move 50 10

https://doi.org/10.1371/journal.pcbi.1007028.t002
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highlights the importance of cluster moves for generating bona fide phase separation as these

facilitate coalescence that leads to condensation.

Mixtures of N130 and the rpL5 peptide as an example of a branched

multivalent protein system

LASSI can also be deployed to study the phase behavior of branched multivalent proteins that

undergo phase separation via obligate heterotypic interactions. Examples of branched multiva-

lent proteins are molecules that form symmetric, stable oligomers such as nucleophosmin 1

(NPM1) and synthetic systems such as the corelets designed by Bracha et al. [100]. NPM1 is a

key molecule within the granular component (GC) of the nucleolus [101]. Three coexisting

layers define the nucleolus and the GC is the outermost layer. Within the GC, NPM1 appears

to form facsimiles of percolated droplets in complex ribosomal proteins with Arg-rich motifs

[17, 30]. A minimalist system that mimics the phase behavior of the GC comprises of a trun-

cated version of NPM1, referred to as N130, and an Arg-rich peptide, designated as rpL5 [31–

33]. Both NPM1 and N130 form symmetric pentamers in the presence of Arg-rich peptides

[102]. The pentamer formed by the association of folded domains serves as a scaffold for dis-

playing disordered C-terminal tails that are defined by two distinct acidic tracts. The system

also features an N-terminal disordered region with a well-defined acidic motif.

The FUS system is an example of a protein that undergoes phase separation via obligate

homotypic interactions. This implies that the interactions necessary and sufficient for driving

phase separation are encoded within the sequence of FUS and the strengths of these

Fig 8. Analysis of acceptance ratios for different move sets. Curves with different colors indicate acceptance ratios of different types of moves. The dashed lines show

the saturation concentrations. The data are obtained from simulations with T� = 0.383. (a) Acceptance ratio data for the An+Bn system. (b) Acceptance ratio data for the

An-Bn system.

https://doi.org/10.1371/journal.pcbi.1007028.g008
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interactions can be modulated by changes to solution conditions. The N130 + rpL5 system is

an example of a system that undergoes phase separation mainly via obligate heterotypic inter-

actions that involve interactions between residues in the acidic tracts of N130 and the Arg

motifs of rpL5. This could be viewed as an example of phase separation via complex coacerva-

tion, providing the heterotypic interactions are purely electrostatic in nature [31–33]. How-

ever, in general, there is likely to be combination of long- and short-range interactions that

contribute to the spectrum of heterotypic interactions, and hence we refer to this class of mole-

cules as drivers of phase separation via obligate heterotypic interactions.

In addition to demonstrating the applicability of the LASSI engine for simulations of

branched systems, we use the analysis as an opportunity to highlight key conceptual features of

multicomponent systems that undergo phase separation via obligate heterotypic interactions.

There are three main features that are borne out in the analysis: (1) For fixed temperature, the

order parameters are the concentrations of the proteins that drive phase separation via obligate

heterotypic interactions. In such systems, the coexistence curves, i.e., the binodals, will have a

closed loop form. These will be ellipses for two components and n-ellipsoids for systems that

involve up to n obligate heterotypic interactions to drive phase separation. (2) The systems will

support reentrant phase behavior as has been reported recently for protein-RNA mixtures that

undergo phase separation via obligate heterotypic interactions [103]. (3) The apparent satura-

tion concentration of a component molecule in a system that undergoes phase separation via

obligate heterotypic interactions will show non-trivial dependencies on its bulk concentration.

Fig 9. Importance of cluster translation moves. (a) �r� and (b) ϕc curves for the An+Bn (purple) and An-Bn systems (green) at T� = 0.383. The solid lines are identical

with the curves in panels (c) and (d) of Fig 7. The dotted lines show the simulation results under the same system conditions but the frequency for cluster translation

moves is set to zero. Not only do the systems phase separate and percolate at higher saturation concentrations, but also we can see that both percolation and separation

are suppressed highly. Furthermore, errors are generally higher, due to the systems being highly dependent on the initial conditions of the system.

https://doi.org/10.1371/journal.pcbi.1007028.g009
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These dependencies are governed directly by the slopes of the tie lines that pass through

the point corresponding to the bulk concentration and intersect the binodal at coexisting

concentrations that equalize the chemical potentials of all species in the dense and dilute

phases. Here, we use the example of the N130 + rpL5 system to showcase the three central fea-

tures of phase diagrams for systems that undergo phase separation via obligate heterotypic

interactions.

In the LASSI representation, N130 pentamers with disordered tails are modeled using a

five-armed structure. This approach follows the strategy of Feric et al. [30], which was based

on the fact that pentamers do not dissociate under conditions where NPM1 / N130 undergo

phase separation. Each arm comprises of two sticker sites to mimic the presence of the A1 and

A2 acidic tracts within the disordered tails of NPM1 / N130. Therefore, each N130 pentamer

displays a total of ten sticker sites. The spacers between each A1 tract and the N130 core as well

as between each pair of A1 and A2 tracts on a disordered tail are phantom tethers, which

means that their effective solvation volumes [29] are set to zero. Each rpL5 peptide has two

sticker sites corresponding to the two Arg-rich motifs along the sequence. Schematic represen-

tations of the coarse-grained architecture used for N130 and rpL5 are shown in Fig 10, and the

move set frequencies are summarized in Table 2.

Fig 10. Architecture of an archetypal branched multivalent system. (a) Schematic to depict the overall architecture. The pentamer with 10 orange stickers represents

the N130 molecule where the gray central oligomerization domain is modeled as a neutral spacer monomer, and the rpL5 peptide is modeled as a linear molecule with 2

blue stickers. (b) Relevant length scales for the architecture (see also Table 1). For the rpL5 molecule a linker length of 3 was chosen between the two stickers, and for the

N130 molecule the first sticker (modeling the A1 tract) is 1 lattice site away from the hub spacer whereas the second sticker (modeling the A2 tract) is 3 lattice sites away

from the first sticker.

https://doi.org/10.1371/journal.pcbi.1007028.g010
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Percolation lines have parabolic shapes

The percolation line, constructed as a function of the concentrations of two multivalent mole-

cules, has an overall parabolic shape (panel (a) of Fig 11). This feature may be explained as fol-

lows: Let f1 and f2 denote the fractions of N130 and rpL5 molecules that are bound in a

network; s1 and s2 will denote the valence of stickers on N130 and rpL5, respectively; for the

current implementation of the N130 + rpL5 system, s1 = 10 and s2 = 2. Based on the Flory-

Fig 11. Phase behaviors of the branched multivalent systems for T� = 0.25. (a) Full phase diagram, where the purple line denotes the proxy for the binodal and the

green line is the proxy for the percolation line (see also the caption for Fig 7). The phase-separated region has an elliptical shape and we have a closed loop, which

demonstrates re-entrant phase behavior, whereas the percolation line has a conical shape extending into much higher densities. The solid black lines denote contours of

constant total concentration where L1 is the lowest concentration and L3 is the highest concentration. Note that both axes are represented in the log scale. (b, c) �r� and ϕc

curves as a function of relative stoichiometric ratio of N130 and rpL5 along the constant-concentration contours. (d) Plot of Λ vs. the apparent stoichiometry along lines

L1, L2, and L3.

https://doi.org/10.1371/journal.pcbi.1007028.g011

Simulations of phase transitions of multivalent proteins

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007028 October 21, 2019 27 / 39

https://doi.org/10.1371/journal.pcbi.1007028.g011
https://doi.org/10.1371/journal.pcbi.1007028


Stockmayer theory [49, 51], the percolation threshold is crossed when f1f2(s1−1)(s2−1)> 1. If

we keep (s1−1)(s2−1) constant, the threshold concentration for percolation will be governed by

the product f1f2. Accordingly, if there is a large excess of N130 (component 1) compared to

rpL5 (component 2), then f1! 0 and f2! 1, and the system does not undergo a percolation

transition. In this scenario, every rpL5 molecule is crosslinked to two sticker sites from one or

two N130 molecules. However, since the relative stoichiometry favors N130 molecules, there is

a vast excess of un-crosslinked N130 molecules and the network cannot grow. Percolation is

also inhibited when the converse situation arises, i.e., when there is a large excess of compo-

nent 2 with respect to component 1. Accordingly, the percolation line takes on a parabolic

form in the plane defined by the concentrations of N130 and rpL5.

Binodals for systems defined by obligate heterotypic interactions will form

closed loop ellipses

Given that the phase behavior of the N130 + rpL5 system is driven by heterotypic interactions

involving the A1 / A2 tracts from the N130 tails and the Arg-motifs from rpL5, we constructed

binodals by keeping the simulation temperature fixed and varied the concentrations of N130

and rpL5 molecules. Phase diagrams defined by N130 concentration along the abscissa and

rpL5 concentration along the ordinate are shown in panel (a) of Fig 11. The general shape of

the binodal is comparable with that of the experimentally determined phase diagram [33],

even though direct comparison is not straightforward because the scarcity of experimental

data points does not yield a full binodal.

The phase boundary, defined by the density transition, is an ellipse that forms a closed loop

in the plane defined by the concentrations c1 and c2 of N130 and rpL5, respectively. In associa-

tive polymers, the phase behavior is governed by the affinity between stickers, the valence of

stickers, and the effective solvation volumes of spacers [28, 29]. For fixed c1 that intersects the

two-phase regime an increase in c2 will lead to an entry into the two-phase regime caused by a

density transition as c2 approaches c1. However, as c2 increases well beyond c1, the joint system

exits the two-phase regime. This is because phase separation is driven by obligate heterotypic

interactions and while there is a growing excess of rpL5 molecules there are not enough N130

molecules to drive the density transition via inter-sticker interactions. Similar reasoning

applies to describe the reentrant behavior that will result by keeping c2 fixed at a value that

intersects the two-phase regime and increasing c1.

Taken together, the parabolic percolation lines and elliptic forms for two-phase regimes

define conic sections that highlight reentrant phase behavior whereby fixing the concentration

of component 1 and increasing the concentration of the second species can lead to phase sepa-

ration and percolation at a low threshold concentration of component 2 and exit into the one-

phase, non-percolated regime beyond a second higher threshold concentration for component

2. This type of reentrant phase behavior, will be a general feature of multicomponent systems

that undergo phase separation via obligate heterotypic interactions; indeed, reentrant phase

behavior has been reported for a model protein + RNA system [103].

Apparent stoichiometric ratios can be different from effective

stoichiometric ratios

Stoichiometry of molecules that drive phase separation is another key parameter that deter-

mines the functions of biomolecular condensates formed by multicomponent systems [104].

The apparent stoichiometric ratio is calculated as the ratio of the concentrations of stickers of

types s1 and s2 for N130 and rpL5, respectively such that n
app
12 ¼

cs1
cs2

. However, the effective stoi-

chiometric ratio neff
12

can be different from n
app
12 if excluded volume effects modulate the effective
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concentration of stickers. We fit an ellipse to the two-phase boundary and determined the

major axis of this ellipse. The effective stoichiometric ratio should be unity along the major

axis. As shown in panel (a) of Fig 11, the major axis deviates from the line along which

n
app
12 ¼ 1. Therefore, n

app
12 6¼ n

eff
12

and angle between the major axis and the line along which

n
app
12 ¼ 1 quantifies the impact of excluded volume on changes to effective concentrations of

stickers that in turn modifies the stoichiometric ratios.

The synergy between stoichiometry and phase behavior can be analyzed by quantifying the

order parameter �r and the topological parameter ϕc as a function of apparent stoichiometry for

fixed bulk concentration. Along each gray line in panel (a) of Fig 11 the total concentration defined

as cbulk = (c1c2)½ is fixed, although the stoichiometries will vary. The mean values of cbulk along L1,

L2, and L3 are 2.09×10−2 (voxel–1), 2.46×10−3 (voxel–1), and 3.33×10−4 (voxel–1), respectively and

the value of n
app
12 ranges from 0.36 to 22.62 along each of L1, L2, and L3. Panels (b) and (c) in Fig 11

show the variation of �r and ϕc as n
app
12 increases along L1, L2, and L3, respectively. Along L1, the

value of �r is essentially zero irrespective of stoichiometry because L1 lies is outside the two-phase

regime. However, a system spanning percolated network forms for stoichiometries in the range 1.2

� ν12� 13 along L1. This is because the concentrations of both components are well above the

percolation threshold along L1 thus ensuring that stickers readily find one another even without a

density transition. In direct contrast, along L3, we observe phase separation, characterized by val-

ues of �r > 0.025 for a range of stoichiometries, but none of these support the formation of a perco-

lated droplet (ϕc< 0.5 for all stoichiometries). Along L2, we observe phase separation for

stoichiometries in the range 1.15� ν12� 16 and percolation for stoichiometries in the range 2.14

� ν12� 11.3 such that phase separation enables the formation of a percolated droplet.

In panel (d) of Fig 11, we introduce a new structural parameter Λ, which we define as a

convolution of �r and ϕc such thatL ¼ �r � �c. Here, the convolution is calculated as a logical

AND gate, which becomes a simple product. The parameter Λ quantifies the convolution of

the density and network transition and provides an estimate of the extent to which the phase

separation and percolation are coupled as the apparent stoichiometry is varied for a fixed bulk

concentration. The profile of Λ is reminiscent of profiles measured by Case et al. [104] for the

dwell time of signaling molecules as a function of stoichiometric ratios that govern the forma-

tion of condensates at membranes. This suggests that dwell times, which are experimentally

accessible parameters, might actually be proxies for the structural features of the condensates

as measured by the convolution between phase separation and percolation and the extent of

network formation within the condensate.

The key finding is that the combination of the bulk concentration and stoichiometric ratio

(as opposed to stoichiometry alone) will determine the quench depth into the two-phase

regime. This in turn determines whether a system-spanning network forms without phase sep-

aration or if phase separation enables the formation of a droplet-spanning network. The struc-

ture of condensates and the overall phase behavior cannot be fully described in terms of cbulk

or ν12 alone. Instead, this requires the consideration of both parameters jointly and relative to

the quench depth, which refers to the location in the two-phase regime and with respect to the

percolation line. This is important because the extent of crosslinking and the time scales asso-

ciated with crosslinks will determine the material properties of the condensate. This in turn

should contribute to parameters such as the dwell times of clients within condensates [104].

Saturation concentrations need not be fixed parameters in

multicomponent systems

The concept of a saturation concentration is one of the defining hallmarks of phase separation

[2, 27]. For fixed solution conditions, phase separation in a closed two-component system (or
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pseudo one-component system) comprising of a protein and solvent is realized when the bulk

concentration of the protein denoted as c exceeds a saturation concentration denoted as csat.

The presence of a saturation concentration can be quantified by measuring the concentration

of protein in the coexisting dilute phase as c increases. This value will not go above csat. Strik-

ingly, the presence of a saturation concentration has been confirmed in living cells for model

disordered proteins by Brangwynne and coworkers using optogenetic tools in mammalian

cells [100, 105] and by Khan et al. [106] using yeast as a model system.

If the protein whose phase behavior is being interrogated is part of a system where obligate
heterotypic interactions drive phase separation, then whether or not the concept of a saturation

concentration continues to be valid will depend on the nature of the binodals. We illustrate

this by coopting the elliptic phase boundary from Fig 11 for a three-component system that

comprises of N130, (component A), rpL5 (component B), plus a solvent that is implicit in the

LASSI simulations. This 3-component system may be thought of as a pseudo two-component

system. For fixed temperature, the top row of panels (a)-(c) in Fig 12 show three types of ellip-

tical, closed loop binodals. These are constructed in a plane where [B] increases along the posi-

tive direction of the abscissa and [A] increases along the positive direction of the ordinate. The

bottom row in each panel shows the result to be expected were we to measure the concentra-

tion of A in the dilute phase, designated as [A]Sol, as the bulk concentration [A] is varied. In

each of these measurements, the concentration of B is fixed at a specific value.

Slopes of tie lines within the elliptic binodals determine how [A]Sol varies

with [A] in the two-phase regime

For concentrations of A and B that place the pseudo two-component system in the two-phase

regime–red points along each of the curves in the bottom rows of panels (a)–(c)–we find that

[A]Sol can change as [A] increases. If the tie lines are horizontal or nearly horizontal, then

[A]Sol will vary linearly with [A]. Non-linear variations of [A]Sol with [A] will result for tie lines

with positive or negative slopes. This is shown in panel (b) for tie lines with positive slopes. If

the tie lines are essentially vertical, then the standard expectation regarding the invariance of

[A]Sol with [A] within the two-phase regime is recovered. However, even in this scenario, the

plateau value of [A]Sol will shift upward or downward as the value of [B] increases–the upward

shift is shown in panel (c) of Fig 12. Here, B acts as a bona fide ligand for A, which is the mac-

romolecule. Preferential binding of B to the dilute phase leads to an increase in [A]Sol as

depicted in panel (c) of Fig 12. Ligand-mediated shifts in saturation concentrations arise due

to polyphasic linkage, a phenomenon first introduced by Wyman and Gill [107].

The main conclusion is that the concept of a saturation concentration, as defined for a pseudo
one-component system, does not transfer over to multicomponent systems where phase transi-
tions are driven by obligate heterotypic interactions. Instead, the slopes of tie lines or the geome-

tries of tie planes in higher dimensional ellipsoids will have a direct bearing on inferences from

measurements where the bulk concentration of a protein or RNA component is varied when

condensates are observed and the concentration of the molecule of interest is quantified in the

coexisting dilute phase. This insight emerges from our ability to deploy LASSI to compute full

binodals for multicomponent systems.

Discussion

In this work, we have built on the connection between multivalent proteins and associative

polymers [44, 45, 98] with their stickers-and-spacers architecture [15, 17, 24, 28, 29, 40, 43, 47]

to develop and deploy LASSI, a lattice-based open source computational engine that enables

the simulation of system-specific phase diagrams of single and multi-component systems. The
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foundations of LASSI derive from the formalism of the bond fluctuation model [83, 84, 108].

We demonstrate how canonical ensemble Monte Carlo simulations with appropriately

designed move sets and analysis of order parameters derived from the distribution functions

allow us to calculate coexistence curves and percolation lines as a function of protein concen-

tration and interaction strengths.

The choice of a lattice-based approach for coarse-graining and modeling phase behavior of

multivalent proteins is guided by the advantages of lattice models [109] for polymeric systems.

To titrate across the full range of volume fractions, one needs to balance considerations of

finite size effects–which requires large numbers of molecules–with large simulation volumes–

which makes it difficult to observe density fluctuations that can grow into density inhomoge-

neities. On lattices the conformational space is discretized and the calculation of interaction

Fig 12. Slopes of tie lines within elliptic binodals are important for systems that undergo phase separation via obligate heterotypic interactions. The ellipse is

drawn to fit the locus of points based on the value �r� that meets our criteria for a density transition (see main text). Data for constructing the ellipse were taken from

simulations of the N130 + rpL5 system–see Fig 11(A). This ellipse is used to assess the impact of slopes of tie lines for a two-component system comprising of

macromolecule A that undergoes phase separation via obligate heterotypic interactions with macromolecule B. (a) Ellipse with nearly horizontal tie lines. The vertical

lines shown in green, grey, and blue correspond to fixed values for [B] along the abscissa. As [A] increases, the system traverses across the two-phase regime, delineated

by the ellipse, starting outside the ellipse, crossing the ellipse, and exiting the ellipse at high concentrations of A. (b) For each fixed value of [A], the plot shows how

[A]Sol varies with [A]. The red points on each curve were extracted from within the two-phase regime, whereas the black points lie outside the two-phase regime.

Clearly, [A]Sol does not stay fixed as [A] increases. (c) Equivalent plot to that shown in panel (a) for the tie lines that we obtain for the N130 + rpL5 system. (d)

Equivalent plot to that shown in panel (b). Note the non-linear variation of [A]Sol as [A] increases. (e) Ellipse annotated with vertical tie lines. In this case, phase

separation of [A] does not depend on obligate heterotypic interactions with B, but B can bind to A and has a choice of binding preferentially to A in either the dense or

dilute phase. Here, A becomes the macromolecule and B the ligand. (f) Preferential binding of the ligand to the macromolecule in its dilute phase will shift the

saturation concentration, assessed in terms of [A]Sol, upward and this shift will depend on [B]. Accordingly, the plateau value of [A]Sol in the two-phase regime shifts to

higher values for higher values of [B].

https://doi.org/10.1371/journal.pcbi.1007028.g012
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potentials can be made to be very efficient through the use of look up tables. Importantly, we

have generalized lattice-based simulations to incorporate anisotropic interactions.

LASSI allows us to query the impacts of overall and intrinsic valence of stickers, interaction

strengths between stickers, the spatial ranges of these interactions, the effective solvation vol-

umes and lengths of spacers, and protein concentrations. These titrations generate multidi-

mensional phase diagrams. The approaches underlying LASSI have been applied to model a

variety of multicomponent systems, including mimics of RNA molecules [24, 28–30, 43, 79].

What is required is the development of approaches that enable systematic coarse-graining and

adaptation of machine learning based methods to parameterize interaction potentials [78].

Engineering LASSI to be interoperable to cell-based modeling suites [110] will also allow for

larger scale deployment of the overall framework. The calculation of pair and higher order dis-

tribution functions should afford multiscale descriptions of the structural organization of

molecular components within condensates. The acceptance ratios associated with different

move sets and the length scales spanned by distinct move sets open the door to analyzing the

dynamics of phase separation, percolation, and the interplay between the two. Another major

direction for future application of LASSI is to uncover the determinants of compositional spec-

ificity of condensates [1, 12].

Supporting information

S1 Fig. Two-dimensional representation of rotation move. For a given randomly selected

monomer (middle orange bead), 33−1 nearest lattice sites (yellow box) are checked for possi-

ble interaction candidates, where eligible candidates have a non-zero interaction energy with

the selected monomer. In this figure, orange stickers interact with blue stickers and thus this

sticker has 3 possible candidates. The end orientational state of the monomer is then picked

using the metropolis criterion, which also includes the non-interacting state.

(TIF)

S2 Fig. Two-dimensional representation of local move. For a given randomly selected

monomer, a new location is proposed by sampling ±2 lattice sites in each coordinate (brown

box) and picking a lattice site that is empty. If an empty lattice site is found within a pre-deter-

mined number of trials, the numbers of interacting candidates are calculated at the old and

proposed location (yellow boxes). Then the move is accepted or rejected using the modified

Metropolis criterion that considers orientational bias (see text).

(TIF)

S3 Fig. Two-dimensional representation of reptation move. For a given randomly selected

chain that has the same linker lengths between each monomer, an end is randomly picked.

Then, a version of the local move is performed where the selected end is moved to a new ran-

dom location that is an empty lattice site within 2 lattice sites in each coordinate (brown box).

If an empty site is found within a predetermined number of trials, the number of orientational

candidates is calculated for the whole chain in the old and the new configuration (yellow

boxes). The modified metropolis criterion is then used to determine if the move is accepted or

rejected. Note that since the whole chain is orientationally biased, monomers may have a dif-

ferent orientational state after the move is accepted, as shown in the figure.

(TIF)

S4 Fig. Two-dimensional representation of double pivot move. For a randomly selected

monomer, a 2×2×2 cube around the monomer is searched for appropriate bridging candidates

(brown box), where an appropriate bridging candidate is the next monomer from a different

chain, is within a linker length of the selected monomer as shown by the dashed line

Simulations of phase transitions of multivalent proteins

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007028 October 21, 2019 32 / 39

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007028.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007028.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007028.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007028.s004
https://doi.org/10.1371/journal.pcbi.1007028


connecting im and (i+1)n. Furthermore, the distance between (i+1)m and in must also be within

a linker length as depicted by the upper dashed line. A list of all possible candidates is calcu-

lated and then a randomly chosen candidate is used to break and remake covalent bonds. This

results in a large conformational change for both polymers. If the selected polymer is not lin-

ear, the move is rejected outright.

(TIF)

S5 Fig. Assessments of finite size effects analyzed in terms of ~gðr�Þ . The pair distributions

from Figs 9(B) and 11 are used to compute the relevant radial distribution functions. This

analysis is relevant because the radial distribution functions are used to extract the value of the

order parameter that detects the onset of phase separation. For systems where the number of

molecules An + Bn molecules is greater than 200, the radial distribution functions ~gðr�Þ start

to deviate from one another only at the lowest temperatures where broken ergodicity becomes

an issue. Therefore, for the An + Bn system studied in this calibration, it appears that the num-

bers of An + Bn molecules have to be greater than 200 in order to obtain reliable information

about the phase behavior. (a) ~gðr�Þ extracted for different numbers of An and Bn molecules

for T� = 0.167. (b) ~gðr�Þ extracted for different numbers of An and Bn molecules for T� =

0.217. (c) ~gðr�Þ extracted for different numbers of An and Bn molecules for T� = 0.267.

(TIF)
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