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Abstract: Pyrrolizidine alkaloids (PAs) are common constituents of plants and have serious hepato-
toxicity. Intermedine (Im) and lycopsamine (La) are two monoesters of PAs that frequently coexist in
the PA-containing plants (e.g., comfrey and tea). The present study aimed to explore the combined
hepatotoxicity and toxicity mechanism of the Im and La mixture. In vitro, the combined cytotoxicity
of the Im and La mixture on human hepatocytes (HepD) was examined by CCK-8, colony forma-
tion, wound healing, and Annexin V/PI staining assays. The combination of Im and La inhibited
the ability of HepD cells to proliferate, colonize, and migrate and induced hepatocytes apoptosis
in a dose-dependent manner. In addition to significantly causing a burst of intracellular reactive
oxygen species (ROS), mitochondrial apoptosis, and endoplasmic reticulum (ER) stress, the Im and
La mixture can also cause an increase in intracellular Ca2+, triggering the PERK/eIF2α/ATF4/CHOP
apoptosis pathway. This study provided the first direct evidence that the combined PAs induced
hepatotoxicity through ER-mediated apoptosis. These results supplemented the basic toxicity data for
the combined PAs and provided a new perspective for the risk assessment of combined PA toxicity.

Keywords: pyrrolizidine alkaloids; intermedine; lycopsamine; tea; combined toxicity; endoplasmic
reticulum stress

Key Contribution: The combined intermedine and lycopsamine not only caused ROS burst and mi-
tochondrial apoptosis, but also triggered intracellular Ca2+ increase and PERK/eIF2α/ATF4/CHOP
apoptosis pathway to induce hepatocytes apoptosis. The endoplasmic reticulum stress is a novel
mechanism of the combined PAs hepatotoxicity.

1. Introduction

Pyrrolizidine alkaloids (PAs) are secondary metabolites in plants and exist in about
3% of the flowering plants worldwide [1,2]. To date, over 660 structurally different PAs
and their N-oxide derivatives (PANOs) have been identified in over 6000 plant species of
three families: Boraginaceae, Asteraceae, and Fabaceae [3]. Among those, about half of the PAs
exhibit toxicity and carcinogenicity [4]. PAs poison grazing animals and domestic livestock
through PA-containing plants or feed. PAs poison humans through PA-contaminated food
(e.g., grains, honey, and milk); herbal medicine; and plant-derived supplements [5,6]. It was
reported that PAs-contaminated food caused chronic liver diseases and hepatic sinusoidal
obstruction syndrome (HSOS) in humans [5,7–9]. PA-induced HSOS clinically manifests
as painful hepatomegaly, ascites, and abdominal distension [10,11]. In 2020, the European
Union set the maximum levels of PAs in certain foodstuffs. The limit of PAs in herbal
infusions was 200 µg/kg and, in flavored tea, was 150 µg/kg. The limit of PAs in liquid
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herbal infusions for infants and young children was low to 1.0 µg/kg [12]. The severe
toxicity of PAs has attained urgent attention all around the world.

PA toxicity is closely related to the structure of PAs. PAs are formed by a necine base
(amino alcohol) and one or more necic acid (aliphatic carboxylic acids) (Figure 1A). The
double bond in the C1,2 position of necine base is the leading cause of PA toxicity [13].
As shown in Figure 1B, the 1,2-unsaturated PAs are classified into a retronecine type, he-
liotridine type, and otonecine type. The saturated PAs only consist of the platynecine type.
Among the structures of the unsaturated PAs, the retronecine-type and heliotridine-type
are diastereomers, and the main difference between them is the structure of the C-7 posi-
tion. According to the structure of necic acid, the retronecine-type PAs are further divided
into a 12-membered cyclic diester, 11-membered cyclic diester, open-ring diester, and mo-
noester [14]. The 1,2-unsaturated PAs require further metabolic activation to exert toxicity.
Mediated by a dehydrogenation step, PA is transformed into a highly reactive intermediate
dehydropyrrole ester with catalyzing by hepatic cytochrome P450s [15]. Dehydropyr-
role esters react with DNA in the nucleus and generate DNA crosslinks or DNA–protein
crosslinks, then causing serious liver damage [16]. In addition, active dehydropyrrole
esters are also combined with proteins and generate pyrrole–protein adducts in the blood.
Pyrrole–protein adducts are the biomarker for PA-induced liver injury [17], and the levels
of the pyrrole–protein adducts indicate the potential toxicity of PAs. It was reported that
the toxicity of monoesters was lower than diesters in retronecine-type PAs [14]. PAs cause
cumulative damage to hepatocytes [18], which will cause liver damage when humans are
exposed to monoester PAs for a long time.
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In practice, various PAs are usually detected in one kind of sample. About 91% of tea
samples have been found to contain one or more PA in the European union market [19]. Our
previous research found that intermedine N-oxide, jacobine, jacobine N-oxide, senecionine,
senecionine N-oxide, seneciphylline, and senkirkine were detected in tea samples, and
the maximum content of them was 151.33 µg/mL [20]. In addition, the copresence of
echimidine, echiumine, acetylechimidine, lycopsamine, and intermedine was detected in
the honey samples [21]. A large number of studies have reported the toxicity and toxicity
mechanism of single PA [22–24]. However, no studies have reported the hepatotoxicity of
complex PAs. Hence, extensive and in-depth research on the combined toxicity of PAs is
urgently desired.

Intermedine (Im) and lycopsamine (La) are monoesters in retronecine-type PAs, and
both of them have a high detection rate and high exposure in PA-containing plants. Im and
La are epimeric monoesters and are usually detected in one plant [25]. In Artemisia capillaris
Thunb plants, Im and La are the main PA, and their proportions in the total PA contents
were 79.1% and 82.6%, respectively [26]. Meanwhile, Im and La are the predominant PA in
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comfrey plants [27], and intermedine N-oxide and lycopsamine N-oxide are the predominant
alkaloids in Amsinckia genus plants [25]. In addition, the previous study reported that
100 µg/mL Im had obvious toxicity on human hepatocytes (HepD) and induced HepD cell
apoptosis by triggering intracellular reactive oxygen species (ROS) burst and mitochondrial
apoptosis [28]. La also had cytotoxicity toward rat primary hepatocytes [18]. Thus, the
combined hepatotoxicity and the underlying molecular mechanisms of the Im and La
mixture warrant an in-depth evaluation.

In addition to mitochondria-mediated hepatocyte apoptosis, endoplasmic reticulum
(ER) stress is also closely related to phytotoxin-induced apoptosis [29,30]. ER is a crucial or-
ganelle in cells and is formed by a continuous membranous network of sacs and tubes [31].
Meanwhile, ER is also the main place for the synthesis, folding, and secretion of proteins,
including secreted proteins, membrane-bound proteins, and some organelle-targeted pro-
teins. Intracellular ROS burst and calcium (Ca2+) overload could cause ER dysfunction
and further result in ER stress [31,32]. ER stress leads to the continuous accumulation
and aggregation of the unfolded proteins in cells and further induces cytotoxicity [30].
However, whether ER stress is associated with the combined hepatotoxicity of PAs has not
been reported.

In this study, we demonstrated the combined effects of Im and La on human hepa-
tocyte (HepD) proliferation, colonization, and migration ability, and the mixture caused
significantly cytotoxicity. Meanwhile, the combined PAs induced hepatocytes apoptosis
by initiating an intracellular ROS burst, Ca2+ overload, mitochondrial membrane poten-
tial drops, and mitochondrial structure disruption. Moreover, the mixture of Im and La
increased the protein expressions of Bax, caspase-3, caspase-9, and cl-PARP to activate
mitochondrial apoptosis. On the other hand, we found that combined Im and La treatments
accelerate hepatocytes apoptosis by increasing the related protein expressions of the ER-
stress pathway (ATF4 and CHOP). This study provided the first evidence for the toxicity
mechanism of the combined PAs being related to ER-mediated apoptosis. This research
provided basic toxicity data for the combined PAs and contributed to further knowledge of
the true toxicity of plants containing PAs.

2. Results
2.1. Cytotoxicity of Im and La Mixture on HepD Cells

The effect of mixed PAs on the viability of HepD cells was examined by the CCK-8
assay. We assessed the individual or combined toxic effects of eight PAs at a concentration
of 5 µg/mL. It was found that a single PA with 5 µg/mL had no obvious toxicity on
HepD cells, as indicated in Figure 2A. However, a mixture with eight PAs had a significant
cytotoxicity on HepD cells. After treatment with the mixture, the cell viability of HepD
cells was decreased to 83.2% compared to the control group. Subsequently, to further assess
the cytotoxicity of the combined PAs, we examined the cell viability after treatment with
individual PA (Im or La) and combined PA (Im and La mixture), respectively. As depicted
in Figure 2B, compared with the control group, the cell viability was 48.8% with the Im
treatment at 75 µg/mL and 24.9% at 100 µg/mL. Meanwhile, the cell viability was 47.0%
and 23.5% with the treatment of La at 75 and 100 µg/mL, respectively. These data showed
that Im or La with a high dose had significant effects on the HepD cell viability. In addition,
the cell viability was 32.9% and 19.3% for the treatment of the mixture of Im and La at 75
and 100 µg/mL, respectively. Compared with Im or La, the Im and La mixture had more
significant cytotoxicity on the HepD cells. These results indicated that the combined PAs
had a more significant inhibition on HepD cell viability than the single PA.

Since the CCK-8 assay proved that the Im and La mixture exhibited high inhibitory
effects on HepD cell proliferation, the cell colony formation assay was further used to
evaluate the ability of a single cell to grow into a colony in vitro. HepD cells were treated
with different concentrations of the Im and La mixture (0, 20, 50, 75, and 100 µg/mL).
As shown in Figure 3A, the Im and La mixture inhibited the long-term proliferation and
colonization of HepD cells. Compared with the control group, the ratio of the HepD
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cell colony formation was 53.6% and 11.3% with the treatment of the Im and La mixture
at 75 and 100 µg/mL, respectively (Figure 3B). These data showed that the number of
colonies decreased with the increasing concentration of the Im and La mixture. The wound-
healing assay further assessed the inhibitory effects of the Im and La mixture on HepD
cell migration by detecting the ability of single-cell layers to migrate in vitro [33,34]. HepD
cells were treated with the Im and La mixture at a series of concentrations of 0, 20, 50, 75,
and 100 µg/mL. Compared with the control group, the Im and La mixture had a significant
inhibition of HepD cell migration. The inhibitory effect of the Im and La mixture was
increased with the increasing treatment concentrations (Figure 3D). The migration distance
of the control was set as 100%, and the wound-healing rates of the HepD cells were 6.7%
and 0% with the treatment of the Im and La mixture at 75 and 100 µg/mL, respectively
(Figure 3C). The migration ability of HepD cells was completely lost after the treatment
with the 100 µg/mL Im and La mixture.
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2.2. Im and La Mixture Induced Cell Apoptosis

The results of the CCK-8, colony formation, and wound-healing assays have demon-
strated that the Im and La mixture had an inhibitory ability on cell proliferation, colony
formation, and migration. Here, we further applied the Annexin V/PI double-staining
assay and flow cytometry to qualitatively and quantitatively assess the Im and La mixture-
induced apoptosis. The Annexin V-FITC probe marked early apoptotic cells with green
fluorescence. PI probes penetrated incomplete cell membranes and marked late apoptotic
cells, dead cells, or necrotic cells with red fluorescence. HepD cells were treated with the 0,
20, 50, 75, and 100 µg/mL Im and La mixture for 24 h. Cells showed no fluorescence in
the PBS treatment group and began to appear weak as green and red fluorescence at the
concentration of 20 µg/mL and indicating that HepD cells began apoptosis (Figure 4A–C).
The appearance of red fluorescence indicated that cell membranes began to be destroyed.
The green and red fluorescence increased obviously in HepD cells at the concentration of
50 µg/mL. Meanwhile, the number of cells with bright green and red fluorescence increased
significantly at the concentrations of 75 and 100 µg/mL, indicating that the integrity of
the cell membranes was further destroyed. These results indicated that the green and
red fluorescence intensity increased with the increasing concentration of the Im and La
mixture. The flow cytometry analysis was applied to quantitatively detect the number of
181 apoptotic cells (Figure 4D). The results revealed that the ratio of apoptotic cells elevated
as the Im and La mixture concentration increased. The apoptotic rates of the HepD cells
treated with 0, 20, 50, 75, and 100 µg/mL Im and La mixture were 7.2%, 32.7%, 40.7%,
91.1%, and 99.1%, respectively. These results disclosed that the Im and La mixture strongly
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induced HepD cell apoptosis. The rate of apoptotic cells was increased with the treated
concentration and was in a concentration-dependent manner.
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2.3. Im and La Mixture Triggered ROS Burst in HepD Cells

The PA-induced hepatoxicity by causing intracellular oxidative stress damage has
been widely reported [24], and oxidative stress causes the overproduction of ROS. To
explore whether ROS was involved in the hepatotoxicity induced by the Im and La mixture,
we used the DCFH-DA probe to detect the levels of intracellular ROS after Im and La
mixture treatment. HepD cells were incubated with 0, 20, 50, 75, and 100 µg/mL the
Im and La mixture, respectively. As shown in Figure 5A,B, HepD cells showed weak
green fluorescence for the treatment at 50 µg/mL in comparison to the control. The green
fluorescence intensity reflected the number of intracellular ROS. The green fluorescence
intensity was significantly increased at the concentrations of 75 µg/mL and 100 µg/mL Im
and La mixture. These results showed that the green fluorescence intensity and numbers
significantly increased with the increasing concentration of the Im and La mixture and
indicated that the Im and La mixture significantly enhanced the levels of intracellular ROS.
Combined with the results of the flow cytometry analysis, HepD cell apoptosis caused by
the Im and La mixture was tightly related to intracellular ROS overproduction.
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2.4. Im and La Mixture Elevated Intracellular Calcium Levels

Ca2+ is the vital second messenger in intracellular signal delivery. The intracellular
Ca2+ levels are related to the physiological activities of cells and cell death [35]. To explore
the Ca2+ levels whether related to Im and La mixture-induced hepatocytes apoptosis, we
used a Fluo 4-AM probe to detect the intracellular Ca2+ levels. HepD cells were treated with
different concentrations (0, 20, 50, 75, and 100 µg/mL) of the Im and La mixture for 24 h. As
shown in Figure 5C, the green fluorescence intensity was increased significantly with the
increasing concentrations of the Im and La mixture. The weak green fluorescence appeared
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in the 50-µg/mL dose group, and the intensity of the green fluorescence significantly
increased for the Im and La mixture treatment at 75 and 100 µg/mL, respectively. These
results revealed that the Im and La mixture increased the intracellular Ca2+ levels in a
dose-dependent manner. According to the results of the Annexin V/PI assay, the Im and
La mixture caused HepD cell apoptosis and was related to the intracellular Ca2+ overload.

2.5. Im and La Mixture Destroyed Mitochondrial Structure

Mitochondria are important organelles and play a crucial role in regulating cell physi-
ological activities. Mitochondria are closely related to cell apoptosis and the regulation of
intracellular ROS and the Ca2+ levels [36]. To detect whether mitochondria were related to
Im and La mixture-induced HepD cells apoptosis, the Mito-Tracker Red CMXRos probe
was used to detect the physiological state of the mitochondria. Mito-Tracker Red CMXRos
probes depend on the mitochondrial membrane potential to specifically label active mi-
tochondria. The HepD cells were treated with the Im and La mixture (0, 20, 50, 75, and
100 µg/mL) for 24 h. As shown in Figure 5D,E, the red fluorescence intensity was reduced
gradually with the treatment of the Im and La mixture. The red fluorescence was extremely
reduced with the treatment of the Im and La mixture at 50 µg/mL, with almost no red fluo-
rescence for the treated concentrations at 75 and 100 µg/mL, respectively. It was indicated
that the Im and La mixture caused mitochondrial structural disruption. The decrease of
the mitochondrial inner membrane potential marks the occurrence of cell apoptosis [37].
The results of this experiment indicated that the Im and La mixture induced cell apoptosis.
We further used JC-1 probes to detect the decrease of the mitochondrial inner membrane
potential. JC-1 probes could mark the mitochondrial inner membrane potential. JC-1
probes aggregate and generate a red polymer at a high mitochondrial membrane potential.
JC-1 probes are green monomers when the mitochondrial membrane potential is low [38].
HepD cells were treated with different concentrations (0, 20, 50, 75, and 100 µg/mL) of
the Im and La mixture for 24 h; then, we used the fluorescence microscope to observe
cells after staining with JC-1 dye. The bright green fluorescence appeared for the treated
concentration at 75 and 100 µg/mL, respectively (Figure 6A,B), while the red fluorescence
was significantly reduced with the increasing concentration (Figure 6A,C). These results on
the statistical graph of the red and green fluorescence intensity indicated that the Im and La
mixture reduced the mitochondrial membrane potential. On the other hand, the changes in
the mitochondrial morphology with the Im and La mixture treatment were observed by
TEM. In Figure 6D, compared with the control group, most of the mitochondria shrunk and
gathered around the nucleus in cells after the Im and La mixture treatment at 75 µg/mL.
The nucleus appeared to be ruptured, and a few mitochondria showed cysts with the
treatment of the Im and La mixture (purple circle in Figure 6D). These TEM images directly
showed that the combined Im and La treatment caused the mitochondrial structure to
be damaged, which further led to the impairment of mitochondrial function and caused
cell necrosis.

2.6. Im and La Mixture Caused ER-Mitochondria Colocalization and Triggered Hepatocyte Apoptosis

The overload of Ca2+ could cause functional damage to the ER and mitochondria.
Ca2+ are secondary signaling molecules, and the ER is an important organelle to store
Ca2+ in the cytoplasm. The ER is a crucial organelle for regulating cellular physiological
activities [35]. The transportation of Ca2+ between the ER and mitochondria requires the
membrane fusion of two organelles [39]. Mito-Tracker Red fluorescent probes could mark
the mitochondria, and ER-Tracker Green probes mark the ER. As shown in Figure 7A,B,
compared to the control, the area of mitochondria and ER colocalization became larger
after 75 µg/mL Im and La mixture treatment. These results showed that the Im and La
mixture induced the crosslink of the ER and mitochondria, and changes in the membrane
structure in the ER and mitochondria happened.



Toxins 2022, 14, 633 9 of 19Toxins 2022, 14, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 6. (A) The JC-1 green/red fluorescence images of HepD cells were treated with 0, 20, 50, 75, 
and 100 μg/mL Im and La mixture. (B) The statistical graph of JC-1 green fluorescence intensity of 
(A). (C) The statistical graph of JC-1 red fluorescence intensity of (A). (D) TEM images about mito-
chondrial morphological changes in HepD cells after 0 and 75 μg/mL Im and La mixture treatment 
for 24 h. Scale bar = 1 μM, 0.5 μM, 0.2 μM. 

2.6. Im and La Mixture Caused ER-Mitochondria Colocalization and Triggered Hepatocyte 
Apoptosis 

The overload of Ca2+ could cause functional damage to the ER and mitochondria. Ca2+ 
are secondary signaling molecules, and the ER is an important organelle to store Ca2+ in 
the cytoplasm. The ER is a crucial organelle for regulating cellular physiological activities 

Figure 6. (A) The JC-1 green/red fluorescence images of HepD cells were treated with 0, 20, 50, 75,
and 100 µg/mL Im and La mixture. (B) The statistical graph of JC-1 green fluorescence intensity of (A).
(C) The statistical graph of JC-1 red fluorescence intensity of (A). (D) TEM images about mitochondrial
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Scale bar = 1 µM, 0.5 µM, 0.2 µM.
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Figure 7. (A) The ER and mitochondria membrane crosslinking images of HepD cells. Cells were
treated with 0 and 75 µg/mL Im and La mixture for 24 h and marked with Mito-Tracker Red probes
and ER-Tracker Green probes. (B) The statistical chart of the ER and mitochondria membrane
crosslinking areas. (C) The protein expression levels of PERK, eIF2α, ATF4, and CHOP in HepD
cells. Cells were treated with 0, 20, and 50 µg/mL Im and La mixture for 24 h. (D) The quantitative
Western blot results of PERK, ATF4, eIF2α, and CHOP. (E) The protein expression levels of Bax,
caspase-3, caspase-9, PARP, and cl-PARP in HepD cells were treated with 0, 20, and 50 µg/mL Im and
La mixture for 24 h. (F) The quantitative Western blot results of Bax, caspase-3, caspase-9, PARP, and
cl-PARP. The data were presented as the mean ± S.D., n = 3. *: p < 0.05, **: p < 0.01, and ***: p < 0.001.

The membrane structure changing is the early sign of mitochondria apoptosis. The
mitochondrial-mediated pathway is an endogenous pathway that causes cell apoptosis [15].
Based on the results of the Im and La mixture destroying the mitochondrial structure, we
further examined the expression of mitochondrial-mediated apoptosis pathway proteins,
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including Bax, caspase-3, caspase-9, and RARP. When the apoptosis signal entered cells, the
proapoptotic protein (Bax) was activated. The permeability of the mitochondrial membrane
was increased, and cytochrome c (Cyt c) was released from the mitochondria into the
cytoplasm. In the cytoplasm, Cyt c activated the expression of the caspase-9 protein.
Phosphorylated caspase-9 bonded with the apoptotic protease activating factor (Apaf1),
generating apoptosome. Next, the apoptosome activated caspase-3 to start the apoptosis
process. Poly ADP-ribose polymerase (PARP) was their substrate, and the presence of
cleaved PARP demonstrated that caspase-3 was activated. The apoptosis process was
started [15,40]. As depicted in Figure 7E,F, after treatment of the Im and La mixture for
24 h, the expression of Bax, caspase-3, caspase-9, and cl-PARP was upregulated in HepD
cells in a concentration-dependent manner, while the protein expression of PARP was
downregulated with the increasing concentration of the Im and La mixture. Caspase-9
protein is the initiator of the apoptosis program, and the executor of cell death is caspase-3.
The increased expression of caspase-3 and caspase-9 revealed that the caspase-dependent
apoptotic pathway was involved in the combined PA-induced apoptosis of HepD cells.

On the other hand, we first found that ER was related to Im and La mixture-induced
apoptosis. The expression of ER stress-related proteins was examined with the Western
blotting assay, including PERK, eIF2α, ATF4, and CHOP. PERK is pancreatic ER kinase or
PKR-like ER kinase, the active PERK phosphorylates eukaryotic initiation factor 2 (eIF2α).
Then, the phosphorylated eIF2α activates the translation of transcription factor 4 (ATF4).
Next, ATF4 induces the expression of C/EBP homologous protein (CHOP). CHOP is an
important proapoptotic protein, and the expression of CHOP initiates apoptosis [30,32].
HepD cells were treated with 0, 20, and 50 µg/mL Im and La mixture for 24 h. The
expression of PERK and eIF2α proteins was downregulated at 20 µg/mL and further
reduced at 50 µg/mL. However, the levels of ATF4 and CHOP expression were markedly
elevated in HepD cells when treated with the 20 µg/mL and 50 µg/mL Im and La mixtures
(Figure 7C,D). These results indicated that the Im and La mixture induced ER stress through
the PERK/eIF2α/ATF4 /CHOP pathway.

3. Discussion

Various PAs were generally detected in PAs-containing foods and plants. Im and
its epimer (La) usually coexisted in one plant, and previous research has proved the
individual cytotoxicity of Im or La [18,28]. In our study, we found eight retronecine-type
PA mixtures at a very low concentrations had higher cytotoxicity than individual PAs at a
low concentration (Figure 2). The results showed that the combined toxicity of the PAs was
higher than the toxicity of individual PAs. Given that monoester PAs have a high detection
rate and exposure level, the mixture of monoester PAs drastically increased the risk of PAs.
Therefore, we explored the combined toxicity and toxicity mechanisms of the Im and La
mixture in the study.

The results of the CCK-8 assay showed that the Im and La mixture had significant
inhibitory effects on the viability of human hepatocytes (HepD). Compared to individual Im
or La, the Im and La mixture had higher cytotoxicity on HepD cells (Figure 2). Meanwhile,
the cell colony formation assay and the cell wound-healing assay proved that the Im and
La mixture severely affected the colonization and migration ability of HepD cells in vitro
(Figure 3). The results of these experiments directly suggested that the Im and La mixture
markedly inhibited the proliferation, colonization, and migration ability of HepD cells.

In addition, the Im and La mixture induced a significant apoptosis of HepD cells. As
shown by the Annexin V/PI double-staining experiment (Figure 4A–C), cell apoptosis
was not observed in the control group. In contrast, a large of HepD cells were killed by
the treatment of the Im and La mixture and observed with the intensive red and green
fluorescence signals. Meanwhile, the results of the flow cytometry proved that the number
of apoptotic cells increased after incubation with the Im and La mixture in a concentration-
dependent manner. These data all confirmed the Im and La mixture markedly caused
cell apoptosis. We speculated that the reason for the results was the Im and La mixture



Toxins 2022, 14, 633 12 of 19

had synergistic toxicity effects on HepD cells. The concept of synergistic toxicity effects
was widely used for the environmental health risk assessment of combined exposure to
pesticides [41]. More research is needed to further explore the risk of combined exposure
to PAs.

Lots of previous research has proven that the molecular mechanisms of PA-induced
hepatotoxicity trigger intracellular ROS burst and mitochondria-mediated apoptosis [15,24,40].
ROS are the products of normal metabolism in intracellular mitochondria, the CYP450 sys-
tem, peroxisomes, and inflammatory cells [42,43]. The generated ROS are eliminated by
intracellular antioxidant enzymes [44]. When exogenous substances disrupt the balance of
intracellular redox reactions and cause the excessive production of ROS, the over-productive
ROS bond to macromolecules (DNA, RNA, proteins, or lipids), then cause cellular death [13].
We found that the concentrations of 75 µg/mL and 100 µg/mL Im and La mixture caused a
significant increase in the ROS levels (Figure 5A). The green fluorescence intensity statistic
graph intuitively reflected the increase in fluorescence intensity (Figure 5B). Therefore, these
results showed that ROS overproduction was related to the apoptosis induced by the Im and
La mixture.

On the other hand, the present study demonstrated that the Im and La mixture in-
duced HepD cell apoptosis through mitochondrial-mediated apoptosis. When apoptosis
signals were delivered to the mitochondria in the early stages of apoptosis, the membrane
permeability of the mitochondria was disrupted [45,46]. Then, electrochemical poten-
tial energy was stored in the inner mitochondrial membrane and was released into the
cytoplasm [37,38]. The increased green fluorescence intensity and the decreased red fluo-
rescence intensity revealed that the Im and La mixture caused a drop in the mitochondrial
membrane potential (Figure 6A–C). Following, we used TEM to observe the morphology
of the mitochondria after the Im and La mixture treatment. From the microscopic images,
we found that the mitochondria were spherical, and the intact mitochondrial structure
was disrupted in the 75 µg/mL treatment group. This image intuitively indicated the
occurrence of mitochondrial structural damage. Meanwhile, a Mito-Tracker Red CMXRos
probe was used to detect the physiological status of the cell, and the decreased red flu-
orescence intensity in Figure 5D demonstrates the occurrence of cell apoptosis. Further
studies have revealed that the combined PA-induced apoptosis was tightly related to the
Bax/caspase-3/caspase-9/cl-PARP pathway in mitochondria. The Western blotting assay
proved that the protein expression of Bax, caspase-3, caspase-9, and cl-PARP were all in-
creased. The mitochondria-mediated apoptosis was the underlying molecular mechanism
of the combined PA-induced hepatotoxicity.

In addition, the present study, for the first time, directly demonstrated that the Im and
La mixture induced hepatoxicity through ER-mediated apoptosis. The Western blotting
assay proved ER stress induced by the combined PAs. The expression of the ER-stress-
related proteins (PERK, eIF2α, ATF4, and CHOP) was affected. Therein, HepD cells were
treated with 0, 20, and 50 µg/mL Im and La mixtures. After the treatment of the Im and La
mixtures, the expressions of PERK and eIF2α were decreased, and the expressions of ATF4
and CHOP were increased obviously (Figure 7C,D). The phosphorylated eIF2α increased
the translation of the activating transcription factor 4 (ATF4), which is a member of the
CCAAT/enhancer-binding protein (C/EBP) family of transcription factors [35,39]. Finally,
the active ATF4 protein increased the expression of the downstream protein-CHOP and
induced ER stress-mediated apoptosis [30]. These results indicated that ER stress-mediated
apoptosis was involved with the Im and La mixture-induced hepatotoxicity.

Meanwhile, we also found intracellular Ca2+ was related to the apoptosis induced
by the Im and La mixture. Intracellular Ca2+ is the ubiquitous secondary messenger,
and Ca2+ is involved in numerous physiological activities [35]. The results of the Ca2+

fluorescence detection assay proved that the intracellular Ca2+ levels were significantly
increased by the Im and La mixture in a concentration-dependent manner (Figure 5E).
Ca2+ homeostasis is closely related to the normal function of the mitochondria and ER [47].
Therefore, the damage to the mitochondria and ER caused Ca2+ in the organelles to flow
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into the cytoplasm, then caused Ca2+ overload in the cytoplasm. Ca2+ overload may act
as a potentiation loop for apoptosis, which was related to Im and La mixture-induced
hepatocyte apoptosis [36]. Moreover, compared with the control, the crosslinked areas of
the ER and mitochondria were increased after the treatment with the 75 µg/mL Im and La
mixtures. We speculated that the release of Ca2+ from ER stores caused Ca2+ overload in
the mitochondria through the ER–mitochondria crosstalk and further caused mitochondrial
dysfunction. The underlying mechanism of Ca2+ overload required further experiments
to explore.

4. Conclusions

In summary, we confirmed the toxicity of the Im and La mixture on HepD cells, and
the hepatotoxicity was directly related to the intracellular ROS burst and the Bax/caspase-
3/caspase-9/cl-PARP mitochondrial apoptosis pathway. Additionally, the previous study
found monocrotaline induced hepatotoxicity with ER stress [48]. Compared to this, we
observed that the Im and La mixture caused Ca2+ overload in the cytoplasm and induced
the ER-mediated PERK/eIF2α/ATF4/CHOP apoptosis pathway, which had not been
reported in previous PA toxicity studies. Based on these findings, we believed that ER-
mediated apoptosis was the new crucial step in PA mixture-induced hepatotoxicity. Our
study provided the basic theory for evaluating the toxicity of combined PAs.

5. Materials and Methods
5.1. Chemicals and Reagents

PAs were purchased from Standards Biotechnology Co., Ltd. (Shanghai, China), in-
cluding Im, La, retrorsine (Re), senecionine (Sc), intermedine N-oxide (ImNO), lycopsamine
N-oxide (LaNO), retrorsine N-oxide (ReNO), and senecionine N-oxide (ScNO). Their purity
was more than 95%. The structures of these compounds are shown in Figure 8.
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5.2. Cell Culture

The human hepatocellular carcinoma cell line (HepG2) was obtained from X-Y Biotech-
nology Co., Ltd. (Shanghai, China). HepG2 cells were proliferated in minimum essential
medium (MEM, Hyclone, Thermo Scientific, Waltham, MA, USA) supplemented with
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10% (v/v) fetal bovine serum (FBS, Gibco, Waltham, MA, USA), 100 U/mL penicillin, and
100 µg/mL streptomycin (Gibco, Waltham, MA, USA). As shown in Figure 9, HepG2
cells were incubated in MEM medium supplemented with 10% FBS and 1% antibiotics
(100 U/mL penicillin and 100 µg/mL streptomycin) for 14 days. After the proliferation
phase, cell differentiation was initiated by adding 1.7% dimethyl sulfoxide (DMSO, Sigma,
St. Louis, MO, USA). After the differentiation for 14 days, the cell morphology changed
and was polygonal, which resembled normal human hepatocytes (HepD) [49,50]. All
experiments were conducted with differentiated cells (HepD).
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Figure 9. The incubation steps for HepD cells. HepG2 cells were incubated with MEM (10% FBS and
1% streptomycin–penicillin) medium for 14 days and were further differentiated with 1.7% DMSO
for another 14 days, and HepG2 cells transformed into human hepatocytes (HepD).

5.3. Cell Viability Assay

The viability of HepD cells after treatment was evaluated by the colorimetric CCK-8
assay. Briefly, after 14 days of differentiation, HepD cells at a density of 2 × 104/well
were seeded in the inner 60 wells of the 96-well plate. After incubation of 24 h, in one
plate, cells were treated with the individual or mixtures of Im, La, Re, Sc, ImNO, LaNO,
ReNO, and ScNO at the concentration of 5 µg/mL for each PA and PBS treatment (Hyclone,
Waltham, MA, USA) as the control. In addition, the cells were treated with different
concentrations (20, 50, 75, and 100 µg/mL) of single PA (Im or La) and the combined PAs
(Im and La mixture; the ratio of Im and La is 1:1), with PBS treatment as the control. After
incubation for 24 h, the medium was removed, and 10 µL of CCK-8 reagent (Dojindo,
Kumamoto, Japan) was added per well in the plate. The plate was incubated for 30 min at
37 ◦C, and the absorbance of living cells at 450 nm was recorded using a microplate reader
(SpectraMAX M2, Sunnyvale, CA, USA). The absorbance values reflected the cell viability
of each group. The cell viability was calculated by a percentage of the control group, and
the PBS treatment group was set to 100%. The experiment was repeated three times.

5.4. Colony Formation Experiment

HepD cells were seeded in a 6-well plate at a density of 500 cells/well. Cells were
cultured in the incubator at 37 ◦C, with 5% CO2 for 7 days, and the medium was changed
every 2 days in each well. Next, cells were treated with 0, 20, 50, 75, and 100 µg/mL Im and
La mixture, respectively. After incubation overnight, the culture medium was aspirated.
Then, 4% paraformaldehyde (Macklin, Shanghai, China) was utilized to fix cells, and cells
were stained with 0.1% crystal violet (Beyotime, Shanghai, China). The colony numbers
in each well were observed and counted under an inverted optical microscope (Olympus,
Tokyo, Japan). The experiment was repeated three times.

5.5. Wound Healing Assay

The wound-healing assay was employed to assess cell motility. HepD cells were
grown in a 6-well plate at a density of 1 × 106 cells/well and were cultured with a medium
for 24 h. When cells reached 90% confluence, the wound was made with the 200-µL pipette
tip in the cell monolayer. Then, cells were treated with the Im and La mixture (0, 20, 50,
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75, and 100 µg/mL, respectively) and incubated for 24 h. Then, cells were fixed with 4%
paraformaldehyde and stained with 0.1% crystal violet for 30 min. The representative
images of 0 h and 24 h were obtained under a light microscope (Olympus, Tokyo, Japan),
and the wound width was measured using ImageJ software. The experiment was repeated
three times.

5.6. Annexin V/PI Staining Assay

The Annexin V/propidium iodide (PI) double-staining assay was employed to detect
cell apoptosis. HepD cells (2 × 105 cells/well) were seeded in the laser confocal glass-
bottom culture dish and incubated for 24 h. Then, cells were treated with the Im and La
mixture (0, 20, 50, 75, and 100 µg/mL, respectively) for 24 h. According to the protocol of
the Annexin V-FITC/PI cell apoptosis detection kit (Beyotime, Shanghai, China), Annexin
V-FITC (10 µL) solution and PI (5 µL) dye were added to the cell culture dish and incubated
for 30 min in the dark at 37 ◦C. Then, the fluorescence images were obtained with a
fluorescence microscope (Olympus Corporation, Tokyo, Japan).

5.7. Flow Cytometry

Flow cytometry was used to quantitatively detect the apoptosis rate of the cells. Briefly,
HepD cells were seeded in a 60-mm culture dish at a density of 1.0 × 106 cells/well and
incubated in MEM (10% FBS and 1.7% DMSO) medium at 37 ◦C in a 5% CO2 atmosphere.
Then, the cells were treated with 0, 20, 50, 75, and 100 µg/mL Im and La mixture for 24 h.
After being washed with PBS three times, the cells were stained by Annexin V-FITC/PI
dye. The number of the apoptotic cells was analyzed by flow cytometry (Thermo Attune,
Waltham, MA, USA).

5.8. Intracellular ROS Levels Detection

The intracellular ROS levels were marked using a DCFH-DA fluorescent probe (Bey-
otime, Shanghai, China). In brief, HepD cells at a density of 2 × 105 per well were grown in
a laser confocal glass-bottom culture dish and incubated for 24 h. HepD cells were treated
with the Im and La mixture (0, 20, 50, 75, and 100 µg/mL, respectively) for 24 h. Then,
the cells were stained with 5 µL DCFH-DA green fluorescent probes and 0.2 µL Hoechst
33342 nuclear blue fluorescent probes (Beyotime, Shanghai, China) at 37 ◦C for 30 min in
the dark. Finally, the cells were washed with PBS twice, and the intracellular ROS levels
were imaged using a fluorescence microscope (Olympus Corporation, Tokyo, Japan). The
fluorescence intensity was analyzed with ImageJ software.

5.9. Intracellular Calcium Concentration Detection

The cytoplasmic Ca2+ concentration was related to ER stress and mitochondria apop-
tosis, and the increase of Ca2+ occurred at the early and late stages of the apoptotic path-
way [36] To determine the Ca2+ levels in cells, HepD cells were seeded in a laser confocal
glass-bottom culture dish at a density of 2 × 105 and incubated for 24 h up to 80% conflu-
ence. Then, the cells were treated with the Im and La mixture (0, 20, 50, 75, and 100 µg/mL,
respectively) for 24 h. Next, the cells were incubated with 5 µM Fluo-4 AM fluorescent
probes (Beyotime, Shanghai, China), 0.2 µL Hoechst 33342 nuclear blue fluorescent probes,
and 50 nM Mito-Tracker Red CMXRos probes at 37 ◦C for 30 min. The intracellular Ca2+ lev-
els and mitochondrial apoptosis were imaged using the fluorescence microscope (Olympus
Corporation, Tokyo, Japan). The fluorescence intensity was analyzed with ImageJ software.

5.10. ER—Mitochondria Colocalization

The membrane crosslinking between the ER and mitochondria is the structural basis
of Ca2+ transportation [39]. The fluorescent assay was used to explore the crosslinking
between the ER and mitochondria. HepD cells were seeded in the laser confocal glass-
bottom culture dish at a density of 2 × 105. HepD cells were treated with the Im and
La mixture (0, 75 µg/mL) for 24 h. Then, cells were stained with 50 nM ER-Tracker
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Green probes (Beyotime, Shanghai, China) and 50 nM Mito-Tracker Red CMXRos probes
(Beyotime, Shanghai, China) for 30 min at 37 ◦C in the dark. Finally, the fluorescent
images of the cells were obtained by a fluorescence microscope (Olympus Corporation,
Tokyo, Japan). The fluorescence areas were analyzed with ImageJ software.

5.11. Mitochondrial Membrane Potential Detection

JC-1 probe was used to detect the changes in the mitochondrial membrane poten-
tial [38]. HepD cells were seeded in a glass-bottomed culture dish at a density is 2 × 105/mL
and were incubated with 0, 20, 50, 75, and 100 µg/mL Im and La mixture for 24 h. After
that, the HepD cells were washed with PBS three times and incubated with JC-1 solu-
tion (10 µg/mL; Beyotime, Shanghai, China) for 30 min at 37 ◦C. Then, the stained cells
were imaged by the fluorescence microscope (Olympus Corporation, Tokyo, Japan). The
fluorescence intensity was analyzed with ImageJ software.

5.12. Cell Morphological Observation

A transmission electron microscope (TEM) was used to observe the cell ultrastructure.
We used TEM to observe the structure of the mitochondria in cells. HepD cells were seeded
in a 60-mm culture dish at a density of 1 × 106 and treated with 0 and 75 µg/mL Im and La
mixtures for 24 h. Then, the cells were digested by 0.25% trypsinization-EDTA and washed
with ice-cold PBS twice. Cell pellets were obtained by centrifugation and were fixed with
2.5% glutaraldehyde–PBS buffer for 12 h at 4 ◦C. Next, cell pellets were washed with PBS
three times and were fixed in 1% osmic acid for 2 h. Then, the samples were dehydrated
in a graded series of ethanol (50–70–90–95–100%). Cells were embedded in epoxy resins.
The samples were sliced with an ultramicrotome and stained with uranyl acetate. Finally,
the structures of the mitochondria were observed and imaged with TEM (Talos F200C, FEI,
Hillsboro, OR, USA).

5.13. Western Blotting Analysis

HepD cells were seeded in a 6-well plate at a density of 2 × 105 cells/well and
incubated overnight. Then, cells were treated with 0, 20, and 50 µg/mL Im and La mixtures
for 24 h. After treatment, the cells were washed with precooled PBS twice. Protein samples
were collected using the RIPA lysis buffer (Beyotime, Shanghai, China). The cell proteins
were collected by centrifugation at 12,000× r/min for 15 min at 4 ◦C. The concentrations
of the proteins were measured by the BCA assay kit (Beyotime, Shanghai, China). Then,
the samples were mixed with 5× loading buffer and heated at 100 ◦C for 5 min. Samples
with equal protein amounts were run on 10% SDS-PAGE (Beyotime, Shanghai, China)
and transferred to a 5% nonfat milk-blocked PVDF membrane for one hour and were
incubated with the primary antibodies as follows: Bax, caspase-3, caspase-9, PARP, cl-
PARP, eIF2α, CHOP, PERK, and ATF4 (Abcam, Cambridge, UK) overnight at 4 ◦C. The
membranes were incubated at 37 ◦C for 1.5 h with the horseradish peroxidase-conjugated
secondary antibodies anti-rabbit IgG (Abcam, Cambridge, UK) and horseradish peroxidase-
conjugated secondary antibodies anti-mouse IgG (Abcam, Cambridge, UK). Finally, the
bands were visualized with an ECL Western blot detection reagent (Pierce Biotechnology,
Rockford, IL, USA). Representative bands were gained from three independent experiments,
and the protein levels were analyzed by ImageJ software.

5.14. Statistical Analysis

The experimental results were presented as the mean± standard deviation (S.D.) of
three independent experiments. Statistical analysis was performed using Origin software
(version 8.0). One-way ANOVA was applied to evaluate the statistical difference be-
tween the treatments. p-value < 0.05 (*) was considered a statistically significant difference.
p-value < 0.01 (**) and p-value < 0.001 (***) were considered as highly significant differences.
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