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Abstract: The pathogenesis of nasal inflammatory diseases is related to various factors such as
anatomical structure, heredity, and environment. The nasal microbiota play a key role in coordinating
immune system functions. Dysfunction of the microbiota has a significant impact on the occurrence
and development of nasal inflammation. This review will introduce the positive and negative roles
of microbiota involved in immunity surrounding nasal mucosal diseases such as chronic sinusitis
and allergic rhinitis. In addition, we will also introduce recent developments in DNA sequencing,
metabolomics, and proteomics combined with computation-based bioinformatics.
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1. Introduction

In 2020, a panel of international experts, with more than 100 representatives from
all over the world, defined the term “microbiota” [1]. They concluded that microbiota
are composed of prokaryotes and eukaryotes, and that they are active within the range
of microbial structures, metabolites, and movable genetic elements. Whipps et al. [2]
first defined the term “microbiome” in 1988. Microbiomes encompass a wider range
than microbiota. Phages, viruses, plasmids, free DNA, and a number of others such as
prions and viroids are not considered to be members of the microbiota, but are included in
the microbiome [3].

Many studies were conducted regarding gut microbiota, involving the most intensive
and diverse microbial communities, which represent approximately 1.5 kg of bacteria in the
gut [4,5]. pH of the gut, bile acids, and components of the innate immune system operate
together to select and identify members of the gut microbiota [6–8]. Gut microbiota play
a significant role in four domains of the human body. First, with regard to metabolism,
gut microbiota can use dietary fiber and undigested proteins to provide energy and a
variety of nutrients for the human body. Second, gut microbiota can protect the gut by
secreting antimicrobial peptides, secretory IgA, and short-chain fatty acids. Third, they
can also upregulate the expression of tight junction proteins, thereby improving the gut
structure. Fourth, the gut is connected to the brain through the enteric nervous system
(ENS), and neurotransmitters produced by gut microbiota participate in a variety of nervous
systems [9]. Recently, various studies reported that changes in the gut microbiota are
related to multiple disorders such as inflammatory bowel disease [10], Crohn’s disease [11],
hepatitis C [12], Alzheimer’s disease [13], and depression [14].

Although the relevant mechanisms are still being studied, increasing evidence empha-
sizes the effect of gut microbiota on lung immunity, which is referred to as the gut-lung
axis [15]. Bacterial community in the lungs is similar with that in the mouth. Streptococcus,
Prevotella, and Veronica are the most commonly encountered genera [16]. Components of
the pulmonary microbiota are thought to be transported from the oropharynx through
micro-inhalation events and by mucosal diffusion involving adjacent tissues [17]. Various
studies showed that changes in microbiota have a certain impact on the immunity of the
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lower airway mucosa. Eosinophilic inflammation, TH17 gene expression, neutrophilic
inflammation, and the markers of allergic inflammation are all related to the differences
in airway microbiota composition [18]. A report concluded that Staphylococcus, Propioni-
bacterium, Corynebacterium, and Streptococcus are common bacterial genera in the nasal
mucosal diseases of chronic rhinosinusitis (CRS) and allergic rhinitis (AR) [19]. In the
upper respiratory tract immune system, microbiota are tolerated due to the low reactivity
of the host immune system [20], and dysbiosis in the microbiome results in diseases of the
upper respiratory tract, similarly to that in other human body sites [21].

Human nasal mucosa is the first contact point of inhaled environmental insults. Just
as gut microbiota can protect the intestinal mucosa through immune regulation, microbiota
in nasal mucosa are likely to play an important role in mucosal immunity. Although
much research was conducted concerning the role of microbiota in lower respiratory tract
disorders such as asthma, the role of microbiota in the upper respiratory tract including
human nasal mucosa has not been studied in detail, especially with respect to immunity.
Therefore, this review aims to clarify the relationships between different types of nasal
mucosal diseases and microbiota in immunity, and introduces new technologies and
methods to study microbiota.

2. CRS and Microbiota
2.1. CRS Classification

CRS is a chronic inflammatory disease that occurs in the nasal cavity and sinuses and
affects 12% of the global population [22]. The phenotypic classification of CRS is mainly
based on the presence or absence of nasal polyps, which can be divided into CRS with
nasal polyps (CRSwNP) or CRS without nasal polyps (CRSsNP) [23]. In contrast to the phe-
notype, the endotypic classification of CRS mainly represents an individual’s inflammatory
mechanisms, rather than a clear entity with a direct biological basis. In a very meaningful
study, researchers used 14 different inflammatory markers for hierarchical cluster analysis
to determine the putative inflammatory endotype of CRS, and identified ten different
clusters, including eosinophils and T helper-(Th) 2 related markers such as interleukin
(IL)-5 and immunoglobulin E (IgE), neutrophils, or proinflammatory mediators such as
IL-1β, IL-6, IL-8, and myeloperoxidase; Th17/Th22 markers such as IL-17A, IL-22, and
tumor necrosis factor-α (TNF-α); and interferon-γ (IFN-γ) [24]. In recent years, a deeper
understanding of the role of microbiota in the human immune system evolved; various
inflammatory diseases, such as CRS, were reported to be associated with a significant shift
in host microbiota from a healthy state to a diseased state [25]. Compared with that on
other disorders such as asthma, research concerning microbiota and nasal diseases is still
in its infancy, and causal relationships involving the existence of microbial communities
and the development of CRS cannot be readily explained [26].

There are different types of microbiota in the upper airway of healthy adults (Figure 1).
The nasal cavity is directly connected to the external environment. Through inhalation, the
nasal cavity can directly contact various microbiota, fungal spores, and pollutants [27]. The
microbiota of healthy adults’ anterior nares is mainly composed of Actinobacteria, Firmi-
cutes, and Proteobactera [28]. Researchers examined the anterior nares of 236 healthy adults
using nasal swabs and concluded that Staphylococcus, Propionibacterium, Corynebacterium,
and Moraxella were the most common microbiota in their anterior nares [29]. One study
concluded that tissue samples were more suitable for assessing microbiological groups
in CRS patients than nasal swabs, because they observed significant differences in the
microbiota groups in the nasal swabs, while the differences observed in the tissue samples
were smaller [30]. However, there are some discrepancies about the usefulness of the two
methods. [31]. Other data showed that a tissue biopsy cannot provide additional infor-
mation compared with multiple swab tests. In more than 90% of their cases, swabs from
multiple sites provide comprehensive information about patients’ culturable pathogens. In
the middle meatus of healthy adults, the most abundant microbiota were Staphylococcus
aureus (S. aureus), Staphylococcus epidermidis, and Propionibacterium acnes [32]. Using next-
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generation 454 pyrosequencing of the 16S rRNA gene, Jetté et al. found that Streptococcus,
Prevotella, Veillonella, and Haemophilus were the most common microbiota in the throats of
97 adults [33]. The common microbiota in CRS patients vary with geographical location.
According to data reported, Cyanobacteria are the dominant phylum in CRS in Missouri,
USA, and that the change in microbiota composition between the control group and CRS
group is minor [34]; in contrast, other data show that the abundance of Verrucomicrobia and
Bacteroides is low and that of Actinobacteria is high in Colorado, USA [35]. A Korean study
compared a CRS group with a control group and found that the abundance of Bacteroides
in the CRS group was low and that of Fusobacteria was high [36].
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2.2. Type 2 CRS and Microbiota

Relationships between CRS and various microbiota cultured in the nasal system
have been studied for many years [37]. Microbiotal dysbiosis is considered an important
biomarker of CRS [38,39]. Recent advances in new detection methods aroused interest
in the role of microbiota in long-term diseases, which can be used to identify previously
unrecognizable, unculturable microbiota. Quantitative polymerase chain reaction (qPCR),
fluorescence in situ hybridization (FISH), mass spectrometry, and DNA microarrays were
used to identify microbiota and to visualize biofilms in clinical samples of patients with
CRS [40]. The development of next-generation sequencing (NGS) provides a non-targeted
molecular method. Specifically, 16S amplicon DNA sequencing is a NGS technique in
which universal primers for the 16S rRNA gene are used; this suggests that bacterial
organisms participate in the pathogenesis of CRS, and may indicate that disordering of
normal microbiota community structures in the nasal sinus mucosa is one of the causes of
CRS [41,42]. Metabolic exchange plays an important role in maintaining the interdepen-
dence between microbiota [43]. An outstanding study pointed out that Corynebacterium, one
of the common nasal bacteria, inhibits the growth of Streptococcus pneumoniae by releasing
triacylglycerol on the skin surface of the host [44]. Some studies also found that in CRS, the
growth of S. aureus is often closely related to Staphylococcus epidermidis and Propionibacterium
acnes [45]. A most recent study in South Korea obtained interesting data [46]. They found
that the use of antibiotics can cause differences in secretory proteome according to the
condition of the disease. Their data suggest that the use of antibiotics should be considered
as a confounding factor in proteomics research.

There are various microbiota, such as Staphylococcus, Streptococcus, Propionibacterium,
and Corynebacterium, (Figure 2A) in normal nasal mucosa [47]. However, the type and quan-
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tity of microbiota change significantly in the mucosa of patients with CRS (Figure 2B,C).
Changes in microbiota are related to various factors. In addition to significant differences
between subjects, age and smoking influence the composition and distribution of micro-
biotal species [48,49]. The frequent use of antibiotics may also induce instability in the
microbiota. A previous study compared the microbiota of paranasal sinuses of patients with
CRS before and after drug treatment and found that the diversity and uniformity of bacteria
decreased significantly after high-dose antibiotic treatments [50]. In a cross-sectional study,
surgery was shown to affect the microbiotal ecology of the sinuses, leading to a reduction
in microbiota abundance [35]. Sinus surgery has a similar effect on fungal populations.
The abundance and diversity of fungi in the sinus cavity of patients after endoscopic sinus
surgery are significantly decreased [51,52]. The results of a meta-analysis [53] revealed that
bacterial richness and diversity in CRS decreased, which supports the keystone-pathogen
hypothesis; that is, certain pathogenic microbiota that usually exist in low abundance may
form a microbiome under disease conditions [54]. Disruption of the microbial community
leads to the loss of key symbiotic species. Under normal circumstances, these symbiotic
species may prevent the excessive growth of pathogens, and the loss of variety and di-
versity of CRS microbiota seems to be the products of tissue eosinophilia and mucosal
inflammation; whether this disorder is a cause or a consequence of an impaired epithelial
integrity disease remains a subject for further research [55].
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Figure 2. (A) Different kinds of microbiota colonize healthy nasal mucosa such as Staphylococcus, Streptococcus, Propioni-
bacterium, and Corynebacterium. (B) With the loss of epithelial integrity, pattern recognition molecules decrease, which
provides an environment for bacteria to enter through the mucosal barrier in type 2 CRS. Mucosal ulceration is associated
with increased abundance of Bacteroides, while squamous metaplasia is associated with increased Streptococcus abundance;
enterotoxins produced by S. aureus can act as superantigens and promote Th-2 inflammation, thereby leading to the
production of cytokines, such as IL-13, IL-4, and IL-5, in Type 2 CRS. At the same time, Prevotella is related to the release
of proinflammatory cytokines, and fungal proteases can induce the production of TSLP, which leads to the activation of
ILC2s producing IL-5 and IL-13. (C) In non-type 2 CRS, an increase in the abundance of Haemophilus or Streptococcus may be
related to elevated IL-8 levels and neutrophil counts. Rhinovirus may increase the levels of IL-1B1, IL-6, and TNF-α; induce
dendritic cell differentiation; and boost IL-22. At the same time, increased abundance of Clostridiales also elevates IL-22
levels. (Figure created with Biorender.com).
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S. aureus is a common type of microbiota in the nasal mucosa [56], but many studies
have shown that compared with that in the normal nasal mucosa, the number of S. aureus
in the patients with type 2 CRS is greatly increased (Figure 2B) [57]. S. aureus produces
enterotoxins, and it can be recognized as superantigens and by Th-2 inflammation that is
promoted by it; S. aureus also leads to the secretion of cytokines such as IL-13, IL-4, and
IL-5 in type 2 CRS [58]. Mucosal ulceration is associated with an increased abundance
of Bacteroides [59], squamous metaplasia associated with high Streptococcus levels [60];
Prevotella is related to the release of proinflammatory cytokines [61], and the production of
thymic stromal lymphopoietin(TSLP) is related to the induction of fungal protease, which
leads to the activation of type 2 innate lymphoid cells (ILC2s) producing IL-5 and IL-13 [62].

2.3. Non-Type 2 CRS and Microbiota

Non-type 2 CRS is a heterogeneous disease; additional definitions are needed to guide
its correct diagnosis and treatment, as most CRS studies focus on type 2 CRS, and there
is not enough information regarding the internal classification of non-type 2 CRS [63].
Diseases that can easily induce non-type 2 CRS include acute rhinosinusitis, which is
usually caused by a viral respiratory tract infection, asthma, tonsillitis, bronchitis, allergic
and non-allergic rhinitis, pneumonia, and gastroesophageal reflux disease [64]; however,
potential susceptibility conditions, such as primary and secondary immunodeficiency,
including HIV infection, cystic fibrosis, and cilia dyskinesia, should also be considered [65].

The number of eosinophils and plasma cells in the mucosa of non-type 2 CRS is
less than that in type 2 CRS, but the number of neutrophils in the mucosa of non-type
2 CRS is higher than that in type 2 CRS (Figure 2C). Neutrophil inflammation of nasal
mucosa is a characteristic of non-type 2 CRS, which is caused by infection or external
stimuli; type 1 inflammation, which is based on the Th1 cell, and type 3 inflammation,
which is based on the Th17 cell, are present in an equal proportion in non-type 2 CRS [66].
Invasion by external pathogens induces the secretion of IL-6, IL-8, and TNF-α in the nasal
epithelium (Figure 2C), which could be caused by a rhinovirus [67] that activates dendritic
cells (DCs). IL-8 secreted by epithelial cells recruits neutrophils, which cause goblet cells to
proliferate and destroy tight junctions [68]. In 28 patients with asthma, terminal restriction
fragment length polymorphism (T-RFLP) analysis showed that Moraxella, Haemophilus, and
Streptococcus were the dominant species in the respiratory tract bacterial community, and
the total abundance of these microbiota was significantly and positively correlated with
the concentration of IL-8 and neutrophil count in sputum [69]. Lal et al. [47] conducted an
inter-subject microbiotal analysis of 65 subjects. They found that the diversity of microbiota
in patients with non-type 2 CRS was lower than that in the control group (healthy and
AR subjects) or in patients with type 2 CRS. Fusobacterium, Propionibacterium, Haemophilus,
and Streptococcus were the main bacteria in non-type 2 CRS patients. Therefore, it can be
speculated that Haemophilus and Streptococcus may be involved in the secretion of IL-8
and recruitment of neutrophils in non-type 2 CRS (Figure 2). The reported data show that
levels of IL-22 receptors are increased in non-type 2 CRS [70], and studies showed that
IL-22 production in the gut is induced by Clostridium [71]. A combination of data from 51
patients with CRS suggested that the increase in IL-22 receptor levels in non-type 2 CRS
may be a result of the predominance of Clostridium in nasal microbiota and IL-22 cytokine
production [60].

3. AR and Microbiota
3.1. AR and Type 1 Hypersensitivity

AR is a common symptom of type 1 hypersensitivity and Th2-mediated inflammatory
disease [72]. Epidemiological studies show that nearly a quarter of adults and almost half
of children are affected [73]. AR was previously considered to be a disease confined to the
nasal cavity; however, it is now considered to be a manifestation of systemic airway disease,
which is usually comorbid with asthma [74]. As an IgE mediated type 1 hypersensitivity
process, AR symptoms are caused by allergens, and when the nasal mucosa is directly or
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indirectly exposed to allergens such as mold, pollen, dust, and mite feces, innate immune
cells and adaptive immune cells participate in the pathophysiological mechanisms involved
in AR, inducing IgE production, eosinophil activation, mast cell recruitment, and basophils
degranulation, and then present a variety of clinical symptoms of AR [75]. Therefore,
minimizing allergen exposure should be an important part of any treatment plan [76]. In
addition to avoiding known allergens, intranasal corticosteroids, which are one of the most
effective therapeutics, should be used as the first-line treatment; however, when there
is no response to intranasal corticosteroids, second-line treatment should be considered,
including antihistamines, decongestants, leukotriene receptor antagonists, and non-drug
treatments, such as nasal irrigation. Subcutaneous or sublingual immunotherapy should
be considered if a patient’s AR symptoms cannot be fully controlled by conventional
treatment modalities [77].

As time goes by, more and more achievements were made in elucidating the occur-
rence and mechanisms underlying anaphylaxis. The key processes involved in anaphylaxis
include the activation and maturation of DCs after exposure to allergens; subsequently, the
initial signals provided by mucosal epithelial cells and DCs lead to the cloning and expan-
sion of allergen-specific Th2 cells, which are important driving factors in AR pathology [78];
it was shown that Th2 cells are related to the sensitization and staging of AR [79]. ILC2s
are also activated by cytokines such as IL-25, IL-33, and TSLP. Th2 cells and ILC2s produce
type 2 cells, including IL-4, IL-5, IL-13, IL-25, IL-33, and TSLP. IL-4 and IL-13 drive B cells
to produce allergen-specific IgE, which can combine with mast cells. IL-5 contributes to
eosinophil recruitment of eosinophils [80]. Some studies reported that serum IL-17 level
is correlated with allergic severity during high pollen-level seasons, which is considered
to be a marker of the severity of the allergy in patients with AR. Additionally, myeloid
DCs isolated from patients with pollen allergy increase the tendency of inducing T cells to
secrete IL-17 in vitro [81]. Viral infection may lead to the occurrence and aggravation of
AR. During the common cold, mast cells congregate, leading to deterioration in allergic
conditions; the key factors influencing such allergic reactions are stage, genetic background,
gender, and age at viral infection [82].

3.2. AR and Microbiota

The incidence rate of allergic diseases is closely related to interactions between the
host system and resident microbiota [83]. Some studies showed that symbiotic microbiota
regulate susceptibility to allergic diseases, and the absence of symbiotic bacteria can
enhance the proliferation of basophils, increase the number of infiltrating lymphocytes
and eosinophils, aggravate Th2 cell reactions and allergic inflammation, and reduce the
number of regulatory T (Treg) and Th17 cells [84,85].

This situation is similar to that encountered in normal sinus mucosa; S. aureus, Pro-
pionibacterium, Prevotella, Corynebacterium, Bacteroidetes, and Streptococcus are common in
normal nasal mucosa (Figure 3A); however, the abundance of S. aureus, Propionibacterium,
Corynebacterium, and peptoniphilus in the nasal mucosa of patients with AR is considerably
increased compared with that of the common bacteria in nasal mucosa of normal individu-
als (Figure 3B), while the number of Prevotella and Streptococcus is decreased [47]. In a study
of 20 patients with AR and 12 normal controls, the researchers used 454 pyrosequencing
based on the 16S rRNA gene to describe and compare the inferior turbinate mucosal mi-
crobiota of normal controls and patients with AR, and found that the inferior turbinate
microbiota imbalance in patients with AR was related to the total IgE level; their results
emphasized the relationship between inferior turbinate microbiota imbalance and the onset
of AR [86].

In the upper respiratory tract, microbiota play an important role in driving type
2 immune responses, according to the data of a study published in 2016; after binding
with toll like receptor (TLR) 2, S. aureus induces the production of type 2 cytokines, such
as IL-5 and IL-13, via IL-33 released from human airway epithelial cells and TSLP [87].
Furthermore, staphylococcal enterotoxin B (SEB) induces IL-5 and IL13 release by affecting
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Th2 cells [88]. Rhinovirus, one of the most common viruses in the human respiratory tract,
is closely related to the occurrence and development of allergic asthma and plays a key role
in the propagation of the type 2 immune response. IL-25 and IL-33 are produced by human
respiratory epithelial cells stimulated by rhinovirus, which then drive the production
of IL-5 and IL-13 by binding to the receptors on Th2 cells, ILC2s, and basophils [89,90].
These released type 2 cytokines are actively involved in the type 2 immune response. IL-5
participates in the recruitment of eosinophils and is related to their development and
activation [91]. IL-13 upregulates class II expression in B cells and promotes IgE class
conversion, and then IgE binds to mast cell receptors [92].
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Although there are relatively few studies regarding co-infection involving viruses and
bacteria, they may involve some special reactions. Some studies reported that co-infection
with viruses and bacteria increases the risk of rehospitalization in patients with asthma [93].
Exposure of human epithelial cells to Haemophilus influenzae significantly enhances the
combination of epithelial cells and rhinovirus [94]. Children are more likely to experience
severe airway inflammation when infected with a combination of Mycoplasma pneumoniae
and a virus than when infected with a virus alone [95]. These observations suggest that a
host’s defense ability may be decreased to varying degrees after combined infection with a

Biorender.com
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variety of viruses or bacteria. It is imperative to understand the composition of microbiota
in allergic diseases and the changes in immune status after infection further.

4. Conclusions

Microbiota play a complex role in immunity against CRS, non-type 2 CRS, and AR.
Superantigens secreted by S. aureus and fungal proteases can lead to the release of a variety
of interleukins in type 2 CRS, and Prevotella can induce the release of proinflammatory
factors. Although the mechanism is not clear, the involvement of rhinovirus, Haemophilus,
and Streptococcus in the immune process of non-type 2 CRS can be predicted. Similarly to
that in type 2 CRS, S. aureus can induce the differentiation of dendritic cells and release
interleukin in AR, while rhinovirus may participate in immune responses by basophils and
Th2 cells.

In conclusion, it can be assumed that changes in microbiota play a role in the induction
of upper airway diseases; however, further research is needed to clarify the roles of various
microbiota in the immune processes involved.
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Abbreviations

ENS enteric nervous system
CRS chronic rhinosinusitis
AR allergic rhinitis
CRSwNP chronic rhinosinusitis with nasal polyps
CRSsNP chronic rhinosinusitis without nasal polyps
IL interleukin
IgE immunoglobulin E
TNF-α tumor necrosis factor-α
IFN-γ interferon-γ
qPCR quantitative polymerase chain reaction
S. aureus Staphylococcus aureus
FISH fluorescence in situ hybridization
NGS next-generation sequencing
TSLP thymic stromal lymphopoietin
ILC2s type 2 innate lymphoid cells
DCs dendritic cells
T-RFLP terminal restriction fragment length polymorphism
Treg regulatory T
SEB staphylococcal enterotoxin B
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Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR
antagonist. Cell Metab. 2013, 17, 225–235. [CrossRef]

8. Hooper, L.V.; Littman, D.R.; Macpherson, A.J. Interactions between the microbiota and the immune system. Science 2012, 336,
1268–1273. [CrossRef]

9. Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. CMLS 2019, 76, 473–493. [CrossRef]
10. Nishida, A.; Inoue, R.; Inatomi, O.; Bamba, S.; Naito, Y.; Andoh, A. Gut microbiota in the pathogenesis of inflammatory bowel

disease. Clin. J. Gastroenterol. 2018, 11, 1–10. [CrossRef] [PubMed]
11. Torres, J.; Mehandru, S.; Colombel, J.F.; Peyrin-Biroulet, L. Crohn’s disease. Lancet 2017, 389, 1741–1755. [CrossRef]
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