organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

8-Chloro-4-cyclohexyl-2*H*-1,4benzoxazin-3(4*H*)-one

Zhu-Bo Li,^a* Xiao-Yan He,^a Wen-Liang Dong^b and Dan-Dan Liao^a

^aCollege of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China, and ^bSchool of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China

Correspondence e-mail: lizhubo2007@163.com

Received 5 March 2009; accepted 7 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.094; data-to-parameter ratio = 14.0.

In the crystal structure of title compound, $C_{14}H_{16}ClNO_2$, the cyclohexyl ring is in a chair conformation. The molecules are connected into centrosymmetric dimers *via* weak $C-H\cdots O$ hydrogen bonds.

Related literature

For related structures, see: Li et al. (2008); Zuo et al. (2008).

Experimental

Crystal data $C_{14}H_{16}CINO_2$ $M_r = 265.73$

Monoclinic, $P2_1/n$ a = 9.0570 (8) Å b = 5.7026 (5) Å Mo Kα radiation c = 25.289 (2) Å $\mu = 0.29 \text{ mm}^{-1}$ β = 98.776 (1)° T = 293 K V = 1290.8 (2) Å³ 0.12 × 0.10 × 0.06 mm Z = 4

Data collection

Bruker SMART CCD area-detector	6491 measured reflections
diffractometer	2284 independent reflections
Absorption correction: multi-scan	1865 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.018$
$T_{\min} = 0.967, \ T_{\max} = 0.985$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ 163 parameters $wR(F^2) = 0.094$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 0.15$ e Å $^{-3}$ 2284 reflections $\Delta \rho_{min} = -0.25$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C8-H8A\cdots O2^{i}$	0.97	2.44	3.407 (3)	174
Symmetry code: (i) -	r - v + 1 - z			

Symmetry code: (i) -x, -y + 1, -z.

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This study was supported by the Key Program Projects of the Municipal Natural Science Foundation of Chongqing, China (grant No. CSTC, 2007AC1042)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2137).

References

Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, Z.-B., Luo, Y.-H., Dong, W.-L., Li, J. & Zuo, H. (2008). Acta Cryst. E64, 01610.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zuo, H., Meng, L., Ghate, M., Hwang, K. H., Cho, Y. K., Chandrasekhar, S., Reddy, C. R. & Shin, D. S. (2008). *Tetrahedron Lett.* **49**, 3827–3830. supplementary materials

Acta Cryst. (2009). E65, 0762 [doi:10.1107/S1600536809008423]

8-Chloro-4-cyclohexyl-2H-1,4-benzoxazin-3(4H)-one

Z.-B. Li, X.-Y. He, W.-L. Dong and D.-D. Liao

Comment

As part of our project on the study of the interactions between small molecules and proteins (Li *et al.*; 2008 and Zuo *et al.*; 2008), we report here the synthesis and crystal structure of the title compound.

In the crystal structure of title compound, $C_{14}H_{16}CINO_2$, the cyclohexyl ring is in a chair conformation. The molecules are connected via two weak C-H···O hydrogen bonds into dimers which are located on centres of inversion.

Experimental

To a solution of *N*-cyclohexyl-2-(2,3-dichlorophenoxy)acetamide(0.604 g, 2.0 mmol) in DMF (20 ml), caesium carbonate (0.787 g, 2.4 mmol) was added. The mixture was refluxed for 2 h. After completion of the reaction (by TLC monitoring), the DMF was removed under vacuum. Water (20 ml) was added into to obtain a turbid solution and it was extracted by ethyl acetate (20 ml *x* 4). The combined organic layer was washed by 1 mol/*L* of hydrochloric acid (10 ml *x* 3) and saturated sodium chloride solution (10 ml *x* 3), dried over MgSO~4~. And then the mixture was filtered and the filtrate obtained was concentrated under reduced pressure to obtain the corresponding crude product. The product was purified by column chromatography on silica gel using ethyl/acetate = 1/5 as eluent (yield 72%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid dissolved in ethyl acetate/hexane at room temperature for 10 days.

Refinement

All H atoms were palced in calculated positions and refined as riding, with C—H = 0.93-0.97Å and with $U_{iso}(H)=1.2$ Ueq(C).

Figures

Fig. 1. The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.

8-Chloro-4-cyclohexyl-2H-1,4-benzoxazin-3(4H)-one

Crystal data	
C ₁₄ H ₁₆ ClNO ₂	$F_{000} = 560$
$M_r = 265.73$	$D_{\rm x} = 1.367 {\rm Mg m}^{-1}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

supplementary materials

Hall symbol: -P 2yn *a* = 9.0570 (8) Å b = 5.7026 (5) Åc = 25.289 (2) Å $\beta = 98.7760 \ (10)^{\circ}$ V = 1290.8 (2) Å³ Z = 4

D d

Data collection	
Bruker SMART CCD area-detector diffractometer	2284 independent reflections
Radiation source: fine-focus sealed tube	1865 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.018$
T = 293 K	$\theta_{\text{max}} = 25.1^{\circ}$
φ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -10 \rightarrow 10$
$T_{\min} = 0.967, \ T_{\max} = 0.985$	$k = -3 \rightarrow 6$
6491 measured reflections	$l = -30 \rightarrow 29$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.094$	$w = 1/[\sigma^2(F_o^2) + (0.0412P)^2 + 0.4617P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
2284 reflections	$\Delta \rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$
163 parameters	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Cell parameters from 2520 reflections

 $\theta = 2.3 - 26.2^{\circ}$

 $\mu = 0.29 \text{ mm}^{-1}$

Block, colorless

 $0.12 \times 0.10 \times 0.06 \text{ mm}$

T = 293 K

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	-0.15312 (6)	0.41531 (10)	0.22217 (2)	0.06310 (19)
01	-0.02832 (15)	0.3875 (2)	0.12160 (5)	0.0532 (3)
O2	0.13476 (15)	0.2157 (3)	0.01039 (5)	0.0598 (4)
N1	0.18465 (15)	0.0827 (3)	0.09632 (5)	0.0423 (4)
C1	-0.02699 (18)	0.2077 (3)	0.20691 (7)	0.0440 (4)
C2	0.02332 (18)	0.2168 (3)	0.15761 (6)	0.0409 (4)
C3	0.12797 (18)	0.0547 (3)	0.14560 (6)	0.0389 (4)
C4	0.17380 (19)	-0.1228 (3)	0.18194 (7)	0.0447 (4)
H4	0.2398	-0.2371	0.1736	0.054*
C5	0.1216 (2)	-0.1303 (4)	0.23061 (7)	0.0500 (5)
H5	0.1542	-0.2486	0.2550	0.060*
C6	0.0224 (2)	0.0345 (4)	0.24338 (7)	0.0486 (5)
H6	-0.0112	0.0294	0.2763	0.058*
C7	0.0994 (2)	0.1974 (3)	0.05491 (7)	0.0459 (4)
C8	-0.0428 (2)	0.3028 (4)	0.06762 (7)	0.0556 (5)
H8A	-0.0722	0.4315	0.0432	0.067*
H8B	-0.1213	0.1855	0.0621	0.067*
C9	0.33367 (19)	-0.0012 (3)	0.08766 (7)	0.0408 (4)
Н9	0.3555	0.0833	0.0560	0.049*
C10	0.3391 (3)	-0.2597 (4)	0.07334 (8)	0.0605 (6)
H10A	0.2618	-0.2945	0.0434	0.073*
H10B	0.3211	-0.3547	0.1035	0.073*
C11	0.4918 (3)	-0.3181 (4)	0.05863 (9)	0.0836 (8)
H11A	0.4973	-0.4852	0.0521	0.100*
H11B	0.5037	-0.2370	0.0258	0.100*
C12	0.6170 (3)	-0.2494 (5)	0.10186 (10)	0.0847 (8)
H12A	0.7118	-0.2796	0.0898	0.102*
H12B	0.6126	-0.3447	0.1333	0.102*
C13	0.6084 (2)	0.0065 (5)	0.11650 (10)	0.0701 (6)
H13A	0.6247	0.1024	0.0862	0.084*
H13B	0.6868	0.0420	0.1460	0.084*
C14	0.45753 (19)	0.0669 (3)	0.13235 (7)	0.0482 (5)
H14A	0.4451	-0.0164	0.1648	0.058*
H14B	0.4527	0.2337	0.1393	0.058*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters ($Å^2$	²)	
--	----------------	--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0551 (3)	0.0751 (4)	0.0607 (3)	0.0114 (3)	0.0140 (2)	-0.0067 (3)
01	0.0570 (8)	0.0561 (8)	0.0459 (7)	0.0134 (6)	0.0059 (6)	0.0113 (6)
02	0.0662 (9)	0.0766 (10)	0.0368 (7)	0.0075 (7)	0.0084 (6)	0.0158 (7)
N1	0.0397 (8)	0.0521 (9)	0.0352 (7)	0.0022 (7)	0.0059 (6)	0.0101 (6)
C1	0.0338 (9)	0.0557 (11)	0.0421 (9)	-0.0043 (8)	0.0048 (7)	-0.0025 (8)
C2	0.0360 (9)	0.0455 (10)	0.0396 (9)	-0.0031 (8)	0.0008 (7)	0.0052 (8)

supplementary materials

C3	0.0348 (8)	0.0466 (10)	0.0344 (8)	-0.0051 (7)	0.0026 (7)	0.0053 (7)
C4	0.0419 (9)	0.0481 (11)	0.0445 (9)	0.0028 (8)	0.0075 (8)	0.0084 (8)
C5	0.0482 (10)	0.0590 (12)	0.0426 (10)	-0.0023 (9)	0.0070 (8)	0.0165 (9)
C6	0.0434 (10)	0.0650 (13)	0.0385 (9)	-0.0073 (9)	0.0094 (8)	0.0047 (9)
C7	0.0465 (10)	0.0502 (11)	0.0392 (10)	-0.0027 (8)	0.0005 (8)	0.0090 (8)
C8	0.0501 (11)	0.0736 (14)	0.0413 (10)	0.0074 (10)	0.0009 (8)	0.0161 (10)
C9	0.0457 (10)	0.0435 (10)	0.0344 (8)	0.0037 (8)	0.0097 (7)	0.0025 (7)
C10	0.0896 (16)	0.0463 (12)	0.0438 (10)	0.0013 (11)	0.0047 (10)	-0.0079 (9)
C11	0.143 (2)	0.0577 (14)	0.0608 (14)	0.0345 (15)	0.0488 (16)	0.0026 (11)
C12	0.0815 (17)	0.102 (2)	0.0784 (16)	0.0455 (16)	0.0383 (14)	0.0203 (15)
C13	0.0440 (11)	0.0946 (18)	0.0733 (14)	0.0063 (12)	0.0146 (10)	0.0075 (13)
C14	0.0447 (10)	0.0530 (12)	0.0472 (10)	-0.0001 (9)	0.0082 (8)	-0.0058 (9)

Geometric parameters (Å, °)

Cl1—C1	1.7292 (19)	C8—H8B	0.9700
O1—C2	1.366 (2)	C9—C14	1.516 (2)
O1—C8	1.435 (2)	C9—C10	1.521 (3)
O2—C7	1.221 (2)	С9—Н9	0.9800
N1—C7	1.369 (2)	C10-C11	1.523 (3)
N1—C3	1.427 (2)	C10—H10A	0.9700
N1—C9	1.479 (2)	C10—H10B	0.9700
C1—C6	1.378 (3)	C11—C12	1.502 (4)
C1—C2	1.392 (2)	C11—H11A	0.9700
C2—C3	1.390 (2)	C11—H11B	0.9700
C3—C4	1.388 (2)	C12—C13	1.510 (4)
C4—C5	1.385 (2)	C12—H12A	0.9700
C4—H4	0.9300	C12—H12B	0.9700
C5—C6	1.372 (3)	C13—C14	1.521 (3)
С5—Н5	0.9300	C13—H13A	0.9700
С6—Н6	0.9300	С13—Н13В	0.9700
С7—С8	1.500 (3)	C14—H14A	0.9700
C8—H8A	0.9700	C14—H14B	0.9700
C8—H8A C2—O1—C8	0.9700 111.50 (15)	C14—H14B N1—C9—H9	0.9700 105.3
C8—H8A C2—O1—C8 C7—N1—C3	0.9700 111.50 (15) 119.02 (14)	C14—H14B N1—C9—H9 C14—C9—H9	0.9700 105.3 105.3
C8—H8A C2—O1—C8 C7—N1—C3 C7—N1—C9	0.9700 111.50 (15) 119.02 (14) 117.53 (14)	C14—H14B N1—C9—H9 C14—C9—H9 C10—C9—H9	0.9700 105.3 105.3 105.3
C8—H8A C2—O1—C8 C7—N1—C3 C7—N1—C9 C3—N1—C9	0.9700 111.50 (15) 119.02 (14) 117.53 (14) 123.43 (13)	C14—H14B N1—C9—H9 C14—C9—H9 C10—C9—H9 C9—C10—C11	0.9700 105.3 105.3 105.3 109.46 (18)
C8—H8A C2—O1—C8 C7—N1—C3 C7—N1—C9 C3—N1—C9 C6—C1—C2	0.9700 111.50 (15) 119.02 (14) 117.53 (14) 123.43 (13) 120.58 (17)	C14—H14B N1—C9—H9 C14—C9—H9 C10—C9—H9 C9—C10—C11 C9—C10—H10A	0.9700 105.3 105.3 105.3 109.46 (18) 109.8
C8—H8A C2—O1—C8 C7—N1—C3 C7—N1—C9 C3—N1—C9 C6—C1—C2 C6—C1—C1	0.9700 111.50 (15) 119.02 (14) 117.53 (14) 123.43 (13) 120.58 (17) 119.96 (14)	C14—H14B N1—C9—H9 C14—C9—H9 C10—C9—H9 C9—C10—C11 C9—C10—H10A C11—C10—H10A	0.9700 105.3 105.3 105.3 109.46 (18) 109.8 109.8
C8—H8A C2—O1—C8 C7—N1—C3 C7—N1—C9 C3—N1—C9 C6—C1—C2 C6—C1—C11 C2—C1—C11	0.9700 111.50 (15) 119.02 (14) 117.53 (14) 123.43 (13) 120.58 (17) 119.96 (14) 119.46 (14)	C14—H14B N1—C9—H9 C14—C9—H9 C10—C9—H9 C9—C10—C11 C9—C10—H10A C11—C10—H10A C9—C10—H10B	0.9700 105.3 105.3 109.46 (18) 109.8 109.8 109.8
C8—H8A C2—O1—C8 C7—N1—C3 C7—N1—C9 C3—N1—C9 C6—C1—C2 C6—C1—C11 C2—C1—C11 O1—C2—C3	0.9700 111.50 (15) 119.02 (14) 117.53 (14) 123.43 (13) 120.58 (17) 119.96 (14) 119.46 (14) 120.24 (15)	C14—H14B N1—C9—H9 C14—C9—H9 C10—C9—H9 C9—C10—C11 C9—C10—H10A C11—C10—H10A C9—C10—H10B C11—C10—H10B	0.9700 105.3 105.3 109.46 (18) 109.8 109.8 109.8 109.8
C8—H8A C2—O1—C8 C7—N1—C3 C7—N1—C9 C3—N1—C9 C6—C1—C2 C6—C1—C1 C2—C1—C11 O1—C2—C3 O1—C2—C1	0.9700 111.50 (15) 119.02 (14) 117.53 (14) 123.43 (13) 120.58 (17) 119.96 (14) 119.46 (14) 120.24 (15) 119.88 (16)	C14—H14B N1—C9—H9 C14—C9—H9 C10—C9—H9 C9—C10—C11 C9—C10—H10A C11—C10—H10A C9—C10—H10B C11—C10—H10B H10A—C10—H10B	0.9700 105.3 105.3 109.46 (18) 109.8 109.8 109.8 109.8 109.8 109.8 109.8
C8—H8A C2—O1—C8 C7—N1—C3 C7—N1—C9 C3—N1—C9 C6—C1—C2 C6—C1—C1 C2—C1—C11 O1—C2—C3 O1—C2—C1 C3—C2—C1	0.9700 111.50 (15) 119.02 (14) 117.53 (14) 123.43 (13) 120.58 (17) 119.96 (14) 119.46 (14) 120.24 (15) 119.88 (16) 119.87 (16)	C14—H14B N1—C9—H9 C14—C9—H9 C10—C9—H9 C9—C10—C11 C9—C10—H10A C11—C10—H10A C9—C10—H10B C11—C10—H10B H10A—C10—H10B C12—C11—C10	0.9700 105.3 105.3 109.46 (18) 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.2 112.22 (17)
C8—H8A C2—O1—C8 C7—N1—C3 C7—N1—C9 C6—C1—C2 C6—C1—C11 C2—C1—C11 O1—C2—C3 O1—C2—C1 C3—C2—C1 C4—C3—C2	0.9700 111.50 (15) 119.02 (14) 117.53 (14) 123.43 (13) 120.58 (17) 119.96 (14) 119.96 (14) 119.46 (14) 120.24 (15) 119.88 (16) 119.87 (16) 119.04 (15)	C14—H14B N1—C9—H9 C14—C9—H9 C10—C9—H9 C9—C10—C11 C9—C10—H10A C11—C10—H10A C9—C10—H10B C11—C10—H10B H10A—C10—H10B C12—C11—C10 C12—C11—C10 C12—C11—H11A	0.9700 105.3 105.3 109.46 (18) 109.8 109.8 109.8 109.8 109.8 108.2 112.22 (17) 109.2
C8—H8A C2—O1—C8 C7—N1—C3 C7—N1—C9 C3—N1—C9 C6—C1—C2 C6—C1—C11 C2—C1—C11 O1—C2—C3 O1—C2—C1 C3—C2—C1 C4—C3—C2 C4—C3—N1	0.9700 111.50 (15) 119.02 (14) 117.53 (14) 123.43 (13) 120.58 (17) 119.96 (14) 119.46 (14) 120.24 (15) 119.88 (16) 119.87 (16) 119.04 (15) 123.27 (16)	C14—H14B N1—C9—H9 C14—C9—H9 C10—C9—H9 C9—C10—C11 C9—C10—H10A C11—C10—H10A C9—C10—H10B C11—C10—H10B H10A—C10—H10B C12—C11—C10 C12—C11—H11A C10—C11—H11A	0.9700 105.3 105.3 109.46 (18) 109.8 109.8 109.8 109.8 109.8 109.8 109.8 108.2 112.22 (17) 109.2
C8—H8A C2—O1—C8 C7—N1—C3 C7—N1—C9 C3—N1—C9 C6—C1—C2 C6—C1—C1 C2—C1—C11 O1—C2—C3 O1—C2—C1 C3—C2—C1 C4—C3—C2 C4—C3—N1 C2—C3—N1	0.9700 111.50 (15) 119.02 (14) 117.53 (14) 123.43 (13) 120.58 (17) 119.96 (14) 119.46 (14) 120.24 (15) 119.88 (16) 119.87 (16) 119.04 (15) 123.27 (16) 117.69 (14)	C14—H14B N1—C9—H9 C14—C9—H9 C10—C9—H9 C9—C10—C11 C9—C10—H10A C11—C10—H10A C9—C10—H10B C11—C10—H10B H10A—C10—H10B C12—C11—H10B C12—C11—H11A C10—C11—H11A C12—C11—H11B	0.9700 105.3 105.3 109.46 (18) 109.8 109.8 109.8 109.8 109.8 109.8 108.2 112.22 (17) 109.2 109.2
C8 - H8A $C2 - O1 - C8$ $C7 - N1 - C3$ $C7 - N1 - C9$ $C3 - N1 - C9$ $C6 - C1 - C2$ $C6 - C1 - C11$ $C2 - C1 - C11$ $O1 - C2 - C3$ $O1 - C2 - C1$ $C3 - C2 - C1$ $C4 - C3 - C2$ $C4 - C3 - N1$ $C5 - C4 - C3$	0.9700 111.50 (15) 119.02 (14) 117.53 (14) 123.43 (13) 120.58 (17) 119.96 (14) 119.46 (14) 120.24 (15) 119.88 (16) 119.87 (16) 119.04 (15) 123.27 (16) 117.69 (14) 120.20 (17)	C14—H14B N1—C9—H9 C14—C9—H9 C10—C9—H9 C9—C10—C11 C9—C10—H10A C11—C10—H10A C9—C10—H10B C11—C10—H10B H10A—C10—H10B C12—C11—H10B C12—C11—H11A C10—C11—H11A C12—C11—H11B C10—C11—H11B	0.9700 105.3 105.3 105.3 109.46 (18) 109.8 109.8 109.8 109.8 109.8 109.8 108.2 112.22 (17) 109.2 109.2 109.2
$\begin{array}{c} C8 \\ C8 \\ -H8A \\ C2 \\ -O1 \\ -C8 \\ C7 \\ -N1 \\ -C9 \\ C3 \\ -N1 \\ -C9 \\ C6 \\ -C1 \\ -C2 \\ C6 \\ -C1 \\ -C2 \\ C6 \\ -C1 \\ -C1 \\ -C1 \\ -C2 \\ -C1 \\ -C1 \\ -C1 \\ -C3 \\ -C2 \\ -C1 \\ -C3 \\ -C1 \\ -C3 \\ -C4 \\ -C3 \\ -C4 \\ -C3 \\ -C4 \\ -C3 \\ -C4 \\ -H4 \end{array}$	0.9700 111.50 (15) 119.02 (14) 117.53 (14) 123.43 (13) 120.58 (17) 119.96 (14) 119.46 (14) 120.24 (15) 119.88 (16) 119.87 (16) 119.04 (15) 123.27 (16) 117.69 (14) 120.20 (17) 119.9	C14—H14B N1—C9—H9 C14—C9—H9 C10—C9—H9 C9—C10—C11 C9—C10—H10A C11—C10—H10A C9—C10—H10B C11—C10—H10B H10A—C10—H10B C12—C11—C10 C12—C11—H10B C12—C11—H11A C10—C11—H11B C10—C11—H11B H11A—C11—H11B	0.9700 105.3 105.3 109.46 (18) 109.8 109.8 109.8 109.8 109.8 109.8 108.2 112.22 (17) 109.2 109.2 109.2 109.2 109.2 109.2

C6—C5—C4	120.82 (17)	C11—C12—H12A		109.3
С6—С5—Н5	119.6	C13—C12—H12A		109.3
С4—С5—Н5	119.6	C11—C12—H12B		109.3
C5—C6—C1	119.38 (16)	C13—C12—H12B		109.3
С5—С6—Н6	120.3	H12A—C12—H12B		108.0
С1—С6—Н6	120.3	C12—C13—C14		111.4 (2)
O2—C7—N1	123.31 (17)	C12—C13—H13A		109.3
O2—C7—C8	121.21 (16)	C14—C13—H13A		109.3
N1—C7—C8	115.47 (15)	C12—C13—H13B		109.3
O1—C8—C7	112.45 (14)	C14—C13—H13B		109.3
O1—C8—H8A	109.1	H13A—C13—H13B		108.0
С7—С8—Н8А	109.1	C9—C14—C13		109.76 (16)
O1—C8—H8B	109.1	C9—C14—H14A		109.7
С7—С8—Н8В	109.1	C13—C14—H14A		109.7
H8A—C8—H8B	107.8	C9—C14—H14B		109.7
N1—C9—C14	113.26 (14)	C13—C14—H14B		109.7
N1—C9—C10	114.32 (16)	H14A—C14—H14B		108.2
C14—C9—C10	112.25 (15)			
C8—O1—C2—C3	36.1 (2)	C3—N1—C7—O2		-175.04 (17)
C8—O1—C2—C1	-145.10 (16)	C9—N1—C7—O2		6.4 (3)
C6—C1—C2—O1	179.06 (16)	C3—N1—C7—C8		5.2 (2)
Cl1—C1—C2—O1	-0.7 (2)	C9—N1—C7—C8		-173.32 (16)
C6—C1—C2—C3	-2.1 (3)	C2—O1—C8—C7		-54.4 (2)
Cl1—C1—C2—C3	178.15 (13)	O2—C7—C8—O1		-145.51 (18)
O1—C2—C3—C4	-177.29 (15)	N1-C7-C8-01		34.2 (2)
C1—C2—C3—C4	3.9 (2)	C7—N1—C9—C14		130.77 (17)
O1—C2—C3—N1	3.6 (2)	C3—N1—C9—C14		-47.7 (2)
C1-C2-C3-N1	-175.20 (15)	C7—N1—C9—C10		-98.95 (19)
C7—N1—C3—C4	155.62 (17)	C3—N1—C9—C10		82.6 (2)
C9—N1—C3—C4	-25.9 (3)	N1-C9-C10-C11		172.94 (15)
C7—N1—C3—C2	-25.3 (2)	C14—C9—C10—C11		-56.3 (2)
C9—N1—C3—C2	153.11 (16)	C9-C10-C11-C12		54.7 (2)
C2—C3—C4—C5	-3.4 (3)	C10-C11-C12-C13		-55.0 (3)
N1—C3—C4—C5	175.67 (16)	C11—C12—C13—C14		55.3 (3)
C3—C4—C5—C6	1.0 (3)	N1-C9-C14-C13		-171.56 (16)
C4—C5—C6—C1	0.8 (3)	C10-C9-C14-C13		57.1 (2)
C2-C1-C6-C5	-0.3 (3)	C12-C13-C14-C9		-55.7 (2)
Cl1—C1—C6—C5	179.49 (14)			
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C8—H8A···O2 ⁱ	0.97	2.44	3.407 (3)	174

Symmetry codes: (i) -x, -y+1, -z.

