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Purpose: The aim of this study was to identify the presence of collagen-binding integrin subunits in human scleral
fibroblasts (HSFs) and investigate their actual functions in maintaining the mechanical creep properties of the HSFs-
seeded collagen matrix.
Methods: Primary HSFs were cultured in vitro. Reverse- transcription PCR was used to detect mRNA expression of
integrin α1, α2, and β1 subunits in HSFs. In addition, western blot analysis and immunofluorescence were used to detect
their protein in HSFs. Monoclonal antibodies were applied directly against the extracellular domains of integrin subunits
in HSFs cultured in the three-dimensional collagen gels to block the interaction between HSFs and the extracellular
collagen matrix. The effects of anti-integrin antibodies on HSFs morphology in collagen gel were observed. The effects
of the added antibodies on fibroblast-mediated collagen gels’ contraction were evaluated. Furthermore, the changes in
mechanical creep properties of collagen gel were measured by a biomechanics test instrument.
Results: The mRNA and protein expressions of collagen-binding integrin α1, α2, and β1 subunits were present in HSFs.
The elongated bipolar cells converted to spherical shapes after 6 h after the addition of integrin α1β1 and α2β1 antibody.
The blocking of integrin α1β1 and α2β1 subunits noticeably decreased the contraction in the collagen gels. In addition,
all samples were subjected to a constantly applied load of 0.03 N for 600 s. The blocking of integrin α1β1 and α2β1
subunits also induced increases in the values of final extension, creep extension, and creep rate, compared to those of the
controls (p<0.01). Furthermore, the creep elements were significantly increased with the augmentation of the integrin
antibody dose (p<0.01). The final extension of the integrin α2β1 antibody (1 μg/ml or 4 μg/ml) group was significantly
higher compared to that of the integrin α1β1 antibody (1 μg/ml or 4 μg/ml) group (p<0.01). However, the creep extension
and creep rate of the integrin α2β1 antibody (1 μg/ml or 4 μg/ml) group were not significantly different from those in the
integrin α1β1 antibody (1 μg/ml or 4 μg/ml) group (p>0.05).
Conclusions: Our findings suggested that HSF integrin α1β1 and α2β1 participated in maintaining the mechanical creep
properties of the HSFs-seeded collagen matrix. Furthermore, integrin α2β1 might play a more crucial role in maintaining
the mechanical creep properties of the collagen matrix than does integrin α1β1.

Myopia is a common ocular problem that affects perhaps
one billion people worldwide [1].Most myopia is produced by
lengthening of the ocular globe [2]. Much study has shown
that the axial eye length can change with intraocular pressure
(IOP). Congenital glaucomatous eyes show an increased axial
eye length, whereas decreased axial eye length with lowered
IOP is seen after trabeculectomy [3-5]. Given the evidence,
progressive myopia is thought to result from an inherited
biomechanical weakness of the sclera that allows it to stretch
(creep) in response to stress [6]. Further evidence suggests that
the biomechanical properties of the sclera may play a
significant regulatory role in the axial elongation of myopic
eyes. Creep describes the slow, time-dependent extension (or
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compression) of a sample of material when a constant load is
applied (i.e., extension versus time). Studies of changes in the
creep properties of sclera in myopic eyes imply that the
posterior sclera from tree shrew eyes with induced myopia has
a higher creep rate than does that from normal eyes. In
contrast, samples from eyes recovering from induced myopia
have decreased creep rates. Moreover, creep rate appears to
be modulated in parallel with increased and decreased rates
of axial elongation, which indicates that the regulation of the
time-dependent mechanical properties of fibrous mammalian
sclera plays a role in controlling the axial elongation rate [7,
8]. Numbers of articles have demonstrated that the sclera is
not a static container of the eye, but rather is a dynamic tissue,
capable of altering the composition of the extracellular matrix
(ECM) and its biomechanical properties to regulate ocular
size and refraction [1,9,10].

Integrins are a large family of heterodimeric membrane
glycoproteins that play important roles in numerous cellular
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processes involving cell-ECM and cell-cell interactions.
Integrins consist of one α and one β subunit forming a
noncovalently bound heterodimer. Integrins have an
additional inserted domain (αI domain) in their α subunit. Four
out of the nine αI containing integrins, namely α1β1, α2β1,
α10β1, and α11β1, are receptors for collagens [11]. Collagen-
binding integrins were reported to play a crucial role in
maintaining the structural and mechanical properties of the
collagen matrix in skin tissues [12]. Previous studies
suggested that collagen-binding integrins might be involved
in the development of myopia [13,14]. However, little
information is available concerning integrin expression in the
sclera, especially in human sclera. Furthermore, it is unclear
how integrins participates in maintaining the ECM’s
mechanical properties. This fact encouraged us to examine the
presence of major collagen-binding integrin subunits in
human scleral fibroblasts (HSFs) and to investigate the
relationship of the interaction between HSFs and the
extracellular collagen matrix with contraction and mechanical
creep properties of HSF-seeded collagen gel.

In the present study, we evaluated the expressions of
collagen-binding integrin subunits in HSFs and their role in
maintaining the creep properties of the collagen matrix, in an
attempt to highlight the actual functions of collagen-binding
integrin subunits in HSF-ECM interactions.

METHODS
Tissue source: This study was approved by the Ethics
Committee of Sun Yat-sen University (Guangzhou, China)
and it complied with the tenets of the Declaration of Helsinki
for biomedical research involving human tissue. Five healthy
human eyes from donors (age range: 18–23 years) were
obtained from the Eye Bank of the Zhongshan Ophthalmic
Center (Sun Yat-sen University). All procedures related to
animal operations in this study followed the Guide for the Care
and Use of Laboratory Animals of the USA National Institutes
of Health.
Human scleral fibroblast isolation, culture, and
identification: As previously described, primary HSFs were
isolated from human donor eyeballs [15]. The cells were
cultured in growth medium consisting of Dulbecco’s modified
Eagle's medium plus Ham’s nutrient mixture F-12(DMEM/
F12; Gibco, Grand Island, NY), 10% (v/v) fetal bovine serum,
100 U/ml penicillin/streptomycin (Invitrogen Corp, Carlsbad,
CA). The cells were incubated at 37 °C in a 5% CO2

humidified incubator and media was changed twice a week.

After reaching near confluence, the cells were subcultured at
a split ratio of 1:3. Fibroblasts from the third passage to the
sixth passage were used in this study.
Reverse transcription-polymerase chain reaction: Reverse-
transcription PCR was used to confirm the presence of specific
mRNAs in human scleral fibroblasts. Total RNA was
extracted from the fibroblasts with Trizol reagent (Invitrogen
Life Technologies, Grand Island, NY) and confirmed using
spectrophotometry and agarose gel electrophoresis. The RT
step was performed at 42 °C for 60 min in a 20 μl solution
containing 2.5 μg RNA, M-MLV 5× reaction buffer, 20 U of
RNase Inhibitor, 0.5 μg oligo (dT) 18 primer, 1 mM dNTP
Mix, and 200 U RNase-free reverse transcriptase according to
the manufacturer’s instructions (Fermentas, Burlington,
Canada). The nucleotide sequences of the primers used in the
experiments and the GenBank accession number of the
underlying sequences were denoted in Table 1. Each PCR was
performed in a 25 μl solution containing 1 μl reverse-
transcription reaction products, 2.5 μl 10× EX Taq buffer,
0.2 mM dNTP Mix, 10 pmol of upstream primer, 10 pmol of
downstream primer and 2.5 U Taq DNA polymerase
according to the manufacturer’s instructions (TaKaRa, Kyoto,
Japan). The PCR program was 3 min at 95 °C, followed by 25
cycles of 30 s at 94 °C, 45 s at 60 °C (α1 and β1) or 55 °C
(α2), and 45 s at 72 °C, followed by a final extension of 10
min at 72 °C in a thermocycler (Whatman Biometra,
Goettingen, Germany). The PCR product was
electrophorezed on 2% agarose gels containing 1 μg/ml
ethidium bromide and then photographed under ultraviolet
illumination (Alpha Innotech Corp, Santa Clara, CA). A
standard DNA ladder was used as a size marker. Furthermore,
the PCR products were sequenced (ABI 3730XL; Applied
Biosystems, Carlsbad, CA).

Indirect immunofluorescence: The HSFs were grown on
slides in six-well plates until 70%–80% confluence occurred.
The slides were fixed in 4% formaldehyde for 30 min at 4 °C
after washed in PBS for three times and air-dried. The slides
were washed with PBS three times again, covered with 10%
normal goat serum diluted in PBS, and incubated for 20 min
at 37 °C. The slides were then incubated at 4 °C overnight
with the primary antibodies (anti-integrin α1, anti-integrin
α2, and anti-integrin β1; Millipore Biotechnology, Billerica,
MA) diluted at 1:100 in PBS. Controls for immunospecificity
were included in all experiments, except PBS replaced the
primary antibody. After washed with PBS, the slides were

TABLE 1. PRIMERS USED FOR REVERSE TRANSCRIPTION-PCR AMPLIFICATION OF HUMAN INTEGRIN SUBTYPES.

Gene product GenBank accession Forward primer (5′-3′) Reverse primer (5′-3′) Product size
(bp)

integrin α1 NM_181501.1 TCAAACGAGGCACAATTCTG AGCAGGATGACCCATAATGG 280
integrin α2 NM_002203.3 GCCTTGCCTTAGGTAATCAG CCAGGAATGCTGCTAAACAT 226
integrin β1 NM_033668.2 GAAAGACACATGCACACAGGAA ACATGAACCATGACCTCGTTGT 180
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exposed to fluorescein isothiocyanate-conjugated (FITC) goat
anti-mouse IgG antibodies diluted at 1:50 in PBS at 37 °C for
30 min. Then hoechst 33358 was added into slides for 5 min
to stain the cell nucleus. Immunofluorescent images were
taken using a confocal microscope (LSM 510 META, Carl
Zeiss, Jena, Germany).
Western blotting analysis: The monoclonal antibodies against
integrin α1, α2, and β1 were obtained from Millipore
Biotechnology (Billerica, MA). The cells were lysed in ice-
cold modified radioimmunoprecipitation (RIPA) buffer at
4 °C for 30 min. Cell lysates were centrifuged at 13,000× g
for 10 min to remove insoluble material. Protein
concentrations were determined using the BCA method. Of
the supernatant, 10 μg and 20 μg of each protein sample were
separated by 12% sodium dodecylsulfate-PAGE (SDS–
PAGE) and subsequently blotted onto polyvinylidene
difluoride (PVDF) membranes (100 V for 1 h; Millipore), and
the membranes were blocked in 5% fat-free milk (Santa Cruz
Biotechnology, Santa Cruz, CA) at room temperature for 2 h
while rocking. Membranes were incubated with anti-integrin
α1, anti-integrin α2, and anti-integrin β1 in an incubation
buffer containing 5% BSA overnight at 4 °C while rocking,
after washing three times with TBST (Tris-base, sodium
chloride, and Tween-20). The binding of the primary
antibodies was revealed by horseradish peroxidase-
conjugated secondary antibodies (Santa Cruz Biotechnology,
Santa Cruz, CA). The proteins of the membranes were
detected using an enhanced chemiluminescence
immunoblotting detection system (Thermo Fisher Scientific,
Rockford, IL) and the film was scanned.
Preparation of collagen gels and contraction assay: Type I
collagen was extracted by stirring adult rat tail tendons (from
Sprague Dawley rats) for 48 h at 4 °C in a sterile 0.1% (vol/
vol) acetic solution (300 ml for 1 g of collagen), and the
resulting solution was centrifuged at 16,000× g for 1 h at 4 °C
and stored at 4 °C [16].

In summary, HSFs were resuspended at 1×105 cells/ml in
DMEM/F12 (5% fetal bovine serum) containing 2 mg/ml
collagen type I neutralized with 1 M NaOH. Monoclonal
antibodies, each of which binds specifically to the
extracellular binding domain of α1, α2, or β1 subunits, were
purchased from Millipore Biotechnology. For the inhibition
studies, anti-integrin monoclonal antibodies (α1+β1, α2+β1)
or mouse anti-human IgG as controls (Invitrogen Life
Technologies, Grand Island, NY) were incubated with the
cells for 15 min at 37 °C, before their addition to the collagen
solution. The anti-integrin monoclonal antibodies were used
in the experiments at final concentrations of 1 μg/ml or 4 μg/
ml and mouse anti-human IgG were used at final
concentrations of 0.1 mg/ml. Mixture samples of 2 ml
including HSFs, antibodies, and collagen solution were cased
in the 12-well plates (Corning, Lowell, MA). These plates
were pre-coated with sterile BSA (2% in PBS) overnight at

4 °C and were washed in sterile PBS before the studies.
Following collagen polymerization for 1 h at 37 °C, the edges
of the HSFs-seeded collagen gels were detached from the
sides of the wells to give a floating gel, and culture medium
that contained the propotional anti-integrin monoclonal
antibodies or mouse anti-human IgG was added. The culture
medium was changed every other day and the gels were
incubated in culture medium at 37 °C for 72 h. The wells were
photographed at 2 h, 4 h, 6 h, 8 h, 12 h, 24 h, 48 h, and 72 h.
The surface area of the gels was determined by quantitative
morphometry with Image-pro plus 5.0 (Media Cybernetics,
Bethesda, MD) from the prints. The contracted surface area
was expressed as a percentage of the initial area.

Mechanical properties measured: To evaluate the mechanical
properties of collagen gels, creep tests were performed at
room temperature in air using dynamic mechanical analysis
of materials and devices (ElectroForce 3200 test instrument;
Bose Corporation, Eden Prairie, MN) on day 3. A double-
bladed knife was used to cut 3 mm-wide by 5 mm-long
collagen gel samples. In creep mode, a constant stress was set
at 0.03 N for 600 s. Dynamic mechanical analysis was used
to apply small, steadily maintained loads to collagen samples
and to monitor the resultant extension over time. The 0.03 N
load was applied gradually (0–0.03 N in 20 s) and held
constant for 600 s while sample length was monitored. After
application of the 0.03 N load, the rate of change of length of
the samples took some time to stabilize. The extension at 600
s was considered as the final extension. The slope of the curve
between 100 s to 600 s was taken as the creep rate. Creep rate
was expressed as the creep extension over 100–600 s (in
percent extension per hour).

Effects of anti-integrin antibodies on human scleral
fibroblasts morphology in collagen gel: Collagen solution
(1 ml) containing HSFs prepared as described above was
added to 24-well plates. After 24 h, a sufficient amount of fetal
bovine serum-containing medium was added, and the collagen
gel was gently detached from the dish to give a floating gel.
The medium was removed, and one or two drops of anti-
human integrin antibody solution (a mixture of anti-integrin
α1 and β1 antibodies or a mixture of anti-integrin α2 and β1
antibodies diluted to 4 µg/ml with serum-free Dulbecco’s
modified Eagle's medium) were added directly onto the
collagen gel and mouse anti-human IgG (0.1 mg/ml) was as
controls. Morphological changes of fibroblasts were
monitored with an inverted microscope (T-B2.5XA; Nikon,
Tokyo, Japan).

Statistical analysis: Every experiment was repeated at least
five times. Data was expressed as mean±standard deviation
(SD). Statistical analysis was performed with software (SPSS
version 13.0; SPSS, Chicago, IL) between two groups using
a two-tailed Students’ t-test for unpaired values, and p<0.05
was considered statistically significant.
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Figure 1. Identification of the collagen-binding integrins subtypes expressed in human scleral fibroblasts (HSFs). A: Amplification products
representing the integrin α1 (280 bp), integrin α2 (226 bp) and integrin β1 (180 bp) subunits were detected in HSFs using reverse-transcription
PCR. Molecular markers were included for product size comparison. B: The products representing the integrin α1 (130 kDa), integrin α2
(129 kDa), and integrin β1 (88 kDa) subunits were detected in HSFs using western blot analysis. C-K: Distribution of integrin α1, α2 and
β1 in HSFs were observed by indirect immunofluorescence. FITC marked the secondary antibody (green; 1) and Hoechst33358 dyed the
nucleus (blue; 2). The first (1) and second images (2) combined to form the third image (3). Integrin α1 (C-E), α2 (F-H), and β1 (I-K) were
localized in the plasmalemma of HSFs.
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RESULTS
The expression of integrin α1, α2, and β1 subtypes in human
scleral fibroblasts: Figure 1A showed that the mRNA
expression of collagen-binding integrin subtypes (α1, α2, and
β1) in HSFs was present. The predicted size of the products
amplified by the PCR primers matched the size of the
individual integrin subtype. Sequencing the amplicons
confirmed that they truly were the intended product. Western
blot analysis showed the presence of collagen-binding
integrin proteins (α1, α2, and β1) in HSFs. Integrin α1 was
detected as a 130 kDa band, integrin α2 as a 129 kDa band,
and integrin β1 as a 88 kDa band (Figure 1B). In the indirect
immunofluorescence, the fibroblasts treated with anti-
primary antibodies showed green, and the nucleus showed
blue (Figure 1C). Results from these tests indicated that the
major collagen-binding integrins subtypes were present in the
plasmalemma of HSFs.
Effects of anti-integrin antibodies on human scleral
fibroblasts morphology in collagen gel: Initially, fibroblasts
incorporated in collagen lattices were spherical in shape. By
6 h, cells in the collagen gel elongated and spread. After 24 h,
all fibroblasts with elongated stellate/bipolar cell shapes were
observed in the collagen gels. The shape changes were
observed within several minutes after the addition of the
antibody (α1β1, α2β1). The elongated bipolar cells converted
to spherical shapes after 6 h (see Figure 2).
Contraction assay: In the control groups, contraction of the
gels became visible 2–6 h after gel casting, being maximal
between 12 h and 48 h, and reached a plateau at 72–80 h. Dose-
dependent anti-integrin monoclonal antibodies inhibition of
the contraction of collagen matrices were shown as a
percentage of the initial gel surface area at day 3 (Figure 3).
Mechanical creep properties of collagen matrix: Figure 4A
showed typical extension-versus-time behavior of the

samples. Samples were subjected to a constantly applied load
of 0.03 N for 600 s. The extension at 600 s was considered as
the final extension. Prior to that was the extension’s nonlinear
phase (i.e., up to approximately 100 s), and the slope of the
later, near-linear phase (approximately 100–600 s).

As shown in Figure 4B, the final extensions of controls,
the integrin α2β1 antibody (1 μg/ml) group, and the integrin
α1β1 antibody (1 μg/ml) group were 1.75±0.12 mm,
3.12±0.17 mm, and 2.66±0.13 mm, respectively. The final
extensions of the integrin α1β1 antibody (1 μg/ml) group and
integrin α2β1 antibody (1 μg/ml) group were significantly
higher than that in controls (p<0.01). Furthermore, the final
extension of the integrin α2β1 antibody (1 μg/ml) group was
significantly greater than that in integrin α1β1 antibody
(1 μg/ml) group (p<0.01). The final extensions of the integrin
α2β1 antibody (4 μg/ml) group and integrin α1β1 antibody
(4 μg/ml) group were 6.99±0.18 mm and 5.66±0.34 mm,
respectively. The final extension was significantly increased
with the augmentation of the integrin antibody dose (p<0.01).
Furthermore, the final extension of the integrin α2β1 antibody
(4 μg/ml) group was significantly higher, compared to that in
the integrin α1β1 antibody (4 μg/ml) group (p<0.01).

In the following analyses, we considered extension
during the near-linear phase (approximately 100–600 s) of the
relationship to be a stable measure of creep extension. To
isolate creep extension from the initial shorter-term changes
in length, the absolute length of each sample was determined
at 100 s after the load was applied. Creep extension (100–600
s) was computed as a percentage of this length. As shown in
Figure 4C, the creep extensions of the controls, the integrin
α2β1 antibody (1 μg/ml) group, and integrin α1β1 antibody
(1 μg/ml) group were 0.06±0.02%, 0.13±0.01%, and
0.15±0.03%, respectively. The creep extensions of the
integrin α2β1 antibody (1 μg/ml) group and the integrin

Figure 2. Morphological changes caused by the addition of anti-human integrin antibodies to human scleral fibroblasts (HSFs) in the collagen
gel lattice. Anti-human integrin antibody (at the concentration 4µg/ml, which was diluted with serum-free DMEM) was added dropping it
onto an HSF-populated collagen gel. Morphological changes of fibroblasts were monitored after 6 h addition using light microscopy (original
magnification 200×). A: mouse anti-human IgG (0.1 mg/ml) was used as a control; B: A mixture of anti-human integrin a1 (4 µg/ml) and
anti-human integrin β1 (4 µg/ml) antibodies were added. C: A mixture of anti-human integrin a2 (4 µg/ml), and anti-human integrin β1 (4
µg/ml) antibodies were added.
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α1β1 antibody (1 μg/ml) group were significantly higher than
that of the controls (p<0.01). The creep extensions of the
integrin α2β1 antibody (4 μg/ml) group and integrin α1β1
antibody (4 μg/ml) group were 0.29±0.02% and 0.26±0.01%,
which was significantly increased with the augmentation of
the integrin antibody dose (p<0.01). However, the creep
extension of the integrin α2β1 antibody group was not

significantly different from that of the integrin α1β1 antibody
group, regardless of low or high doses (p>0.05).

Creep rate was computed as percent extension per hour.
As shown in Figure 4D, the creep rate of controls, the integrin
α2β1 antibody (1 μg/ml) group, and the integrin α1β1
antibody (1 μg/ml) group were 0.44±0.15%/h, 0.91±0.09%/h,
and 1.05±0.18%/h, respectively. The creep rates of the
integrin α2β1 antibody (1 μg/ml) group and integrin α1β1

Figure 3. Gel contraction was dose-dependent inhibited by anti-integrin α1β1 and α2β1 antibody. Human fibroblasts were incubated in the
absence (mouse anti-human IgG as control) or presence of a combination of anti-human integrin α and anti-human integrin β1 antibodies at
final concentrations of 1 µg/ml and 4 µg/ml for 3 days. A: Representative photomicrographs show collagen gel changes. B: Contraction was
indicated as percentage of the initial gel surface area.
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antibody (1 μg/ml) group were significantly higher than that
of the controls (p<0.01). The creep rates of the integrin α2β1
antibody (4 μg/ml) group and the integrin α1β1 antibody
(4 μg/ml) group were 2.08±0.16%/h and 1.90±0.07%/h,
which were significantly increased with the augmentation of
the integrin antibody dose (p<0.01). There was no significant
difference in the creep rate between the integrin α2β1 antibody
and integrin α1β1 antibody groups, regardless of low or high
doses (p>0.05).

DISCUSSION
Previous studies found that fibroblasts can condense a
hydrated collagen lattice to a tissue-like structure, which can
mimic the real environment in vivo, allowing study of the
underlying mechanisms resulting from cell-ECM interaction
[16]. This phenomenon is thought to be related to tissue
remodeling [17]. The sclera tissue contains approximately
90% collagen by weight, consisting predominantly of type I
collagen in mammals. Therefore, HSFs were provided with a
three-dimensional matrix consisting of collagen type I, to

elucidate the underlying mechanisms resulting from HSF and
ECM interaction. Furthermore, by using the monoclonal
antibodies of the major integrin to block the interaction
between the ECM and HSFs, we evaluated, for the first time,
the quantitative changes in the creep properties of collagen
gels with HSFs seeded in.

Integrins could have a pivotal effect on the interaction of
HSFs and ECM, which regulate the mechanical properties of
HSFs-seeded collagen matrix. Integrins α10β1 and α11β1
have been discovered quite recently, and seem to be involved
in bone and cartilage. Their functions are not quite clear
[11]. The role of the α1β1 and α2β1 integrins as the major
cellular collagen receptors in fibroblasts has been well
documented [11,18,19]. Thus, the present study was
undertaken to elucidate the expression of integrin α1, α2, and
β1 in HSFs. In previous animal studies, the α1, α2, and β1
subunit expression decreased during the development of
myopia, which showing that they may have positive regulator
roles in the biomechanical remodeling that accompanies
myopic eye growth [13]. By blocking interactions between

Figure 4. Anti-integrin a2β1 and anti-integrin a1β1 affect on mechanical creep properties of collagen matrix. A: Typical extension-versus-
time behavior of the samples was shown, respectively. A constantly applied load of 0.03 N for 600 s was subjected to each sample. B: Anti-
integrin a2β1 and anti-integrin a1β1 acted on the final extension of the HSF-populated collagen gel. C: Anti-integrin a2β1 and anti-integrin
a1β1 acted on creep extension of the HSF-populated collagen gel. D: Anti-integrin a2β1 and anti-integrin a1β1 acted on the creep rate of the
HSF-populated collagen gel. Results were expressed as mean±SEM *p<0.01 versus CON; #p<0.01 versus α2β1 (1 μg/ml) or α1β1 (1 μg/ml);
†p<0.01 versus α1β1 (1 μg/ml) or α1β1 (4 μg/ml).
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collagen and HSFs with anti-integrin α1β1 and α2β1
antibodies, we focused on the changes in the contraction and
the mechanical creep properties of the collagen, which are
involved in the sclera remodeling related to myopia [7,8]. In
all cases, the inhibition of gel contraction was correlated
directly with integrin antibody concentration, suggesting that
inhibition of collagen contraction is a specific effect caused
by these integrin antibodies. The blocking of integrin α1β1
and α2β1 subunits induced increases in the values of final
extension, creep extension, and creep rate, which reflected the
creep elements of the collagen matrix. This was similar to an
investigation that enhanced contraction result in the higher-
strength collagen gels [17]. These changes in collagen
contraction and mechanical properties suggested that the
interactions between HSFs and collagen via integrins α1β1
and α2β1 regulated the mechanical properties of HSFs-seeded
collagen matrix in vivo.

Similar differences between the functions of integrin
α1β1 and α2β1 heterodimers in vitro have also been described.
Integrin α1β1 was reported to regulate collagen synthesis and
promote cell growth [20], whereas integrin α2β1 was a
functional cellular receptor for type I collagen fibrils,
mediating collagen gel contraction and regulating MMP-1
expression [21-23]. In our study, the inhibitions of the
collagen gels’ contraction were more obvious from blocking
interactions between collagen and HSFs with anti-integrin
α2β1 antibodies than doing so with anti-integrin α1β1
antibodies. Furthermore, the blocking of integrin α2β1
subunits induced more significant increases in the values of
final extensions, compared to the blocking of integrin α1β1
subunits. Our data suggested that α2β1 integrins in HSFs
might be the major receptors responsible for regulating ECM
remodeling.

Several studies have shown that antibodies against
integrin inhibit cells from attaching to collagen type I [13,
14,24-26]. In our study, the elongated bipolar cells converted
to spherical shapes after the addition of the antibodies (α1β1
and α2β1). The morphological changes in HSFs indicated that
the blocking of integrin subunits resulted in the detachment
of fibroblasts from collagen, and that then the changes in
mechanical properties might occur in vivo.

Based on the results of the present study, we consider
human collagen matrix remodeling might be regulated
through cell attachment to matrix molecules by integrin. The
HSFs were inhibited from attaching to the collagen by
blocking the collagen-binding integrins, so that the
contraction of collagen matrices was inhibited, then collagen
matrices lost their network structure and the mechanical
proprieties changed. The present results might serve to explain
the important observations that the integrin α1, α2, β1 subunits
expression in sclera decreased during the development of
myopia. That is, the sclera might become more extensible,
resulting in its inability to resist the mechanical forces exerted

by IOP. The eye thereby became longer, resulting in an axial
myopia.

In summary, our present work provides evidence that the
interactions between fibroblasts and collagen via integrins
α1β1 and α2β1 regulate the mechanical creep properties of
collagen matrix. Our data also underscore the possibility that
α2β1 integrins in HSFs might be the major subunit responsible
for regulating ECM remodeling. Further studies are needed to
elucidate the exact role of collagen-binding integrins in
myopia.
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