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Abstract: Accurate kinematic modelling is pivotal in the safe and reliable execution of both contact
and non-contact robotic applications. The kinematic models provided by robot manufacturers
are valid only under ideal conditions and it is necessary to account for the manufacturing errors,
particularly the joint offsets introduced during the assembling stages, which is identified as the
underlying problem for position inaccuracy in more than 90% of the situations. This work was
motivated by a very practical need, namely the discrepancy in terms of end-effector kinematics as
computed by factory-calibrated internal controller and the nominal kinematic model as per robot
datasheet. Even though the problem of robot calibration is not new, the focus is generally on the
deployment of external measurement devices (for open loop calibration) or mechanical fixtures (for
closed loop calibration). On the other hand, we use the factory-calibrated controller as an ‘oracle’
for our fast-recalibration approach. This allows extracting calibrated intrinsic parameters (e.g., link
lengths) otherwise not directly available from the ‘oracle’, for use in ad-hoc control strategies. In this
process, we minimize the kinematic mismatch between the ideal and the factory-calibrated robot
models for a Kinova Gen3 ultra-lightweight robot by compensating for the joint zero position error
and the possible variations in the link lengths. Experimental analysis has been presented to validate
the proposed method, followed by the error comparison between the calibrated and un-calibrated
models over training and test sets.

Keywords: robot calibration; kinematic re-calibration; positional accuracy; kinematic modelling;
linear regression; parameter identification; industrial robots

1. Introduction

Robots are being widely adopted on the industrial floor nowadays, with the aim to
automate more and more manufacturing processes for increased efficiency and production.
In addition, in industrial robotic applications, position accuracy and repeatability are the
most fundamental attributes for automating flexible manufacturing/assembly tasks [1].
When operating robots in position control mode to trace a mathematically described
trajectory, repeatability alone is not sufficient for it to trace that path. There arises a need to
measure how accurately the robot moves along the generated path [2].

Positional accuracy can be defined as the difference between the position of a com-
manded pose and the barycentre of the attained position [3]. Most manufacturing processes
involve low tolerances between various components, thereby requiring high positional
accuracy. Errors higher than a couple of millimetres may result in wear or damage to the
parts/objects involved. In such scenarios, accuracy can be seen as an important indicator of
performance. Other examples of robotic applications that require high absolute positioning
accuracy include offline programming, visual servoing and laser cutting [4].

Inaccuracies in robots are caused by several factors and in particular, these sources
of error can be divided into geometric and non-geometric factors. The most common
sources are geometric in nature such as minor axis misalignments from the model which
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arise during production, errors in joint positions and joint angles [5]. Robots are usually
manufactured to their specifications at a minimum tolerance to ensure highly precise geo-
metric configuration of the joint axes and transmission mechanisms for actuating the joints.
However, oftentimes after assembly of all the parts, it becomes challenging to accurately
measure these specifications and this can result in some deviations from the model. Apart
from the manufacturing errors, robots operating in flexible industrial assembly systems
also have abrasive wearing of transmission parts due to very low tolerances [6]. These may
even require repairs to be conducted at times which can further result in errors with respect
to the actual model and in order to compensate for these errors, a re-calibration of the robot
may be needed [7].

The non-geometric factors contributing to accuracy errors consist of structural de-
formations such as backlash [8] and clearance in the transmission system as well as link
flexibility, joint flexibility, slip-stick phenomena and thermal expansion [5]. However, these
errors are considered to be much smaller compared to those originating from geometric
factors [7,9]. Therefore, having a reliable method for calibrating robots is essential to ensure
position accuracy at all times.

The kinematic calibration technique presented in this paper was motivated by a very
practical need, namely the discrepancy in terms of end-effector kinematics as computed
by factory-calibrated internal controller and the nominal kinematic model as per robot
datasheet. The proposed approach focuses on the static open-loop re-calibration of the
Kinova Gen3 robot arm; however, the procedure is generic enough to be applied to other
serial manipulators.

Even though the problem of robot calibration is not something new, most of the
existing methodologies require external measuring instruments, such as laser trackers
or some kind of mechanical fixtures. This not only makes the calibration a laborious
procedure in terms of the experimental setup and establishing data synchronization across
multiples devices but also introduces challenges under limited robotic workspace (such as
factory floor).

While many of the methods address the calibration problem by introducing corrections
in the final end-effector pose, our approach focuses on correcting the kinematic model itself
(i.e., in terms of the joint and the link offsets). As a result, the differentials (and hence the
Jacobian) are easily obtained, which otherwise is not available from the factory calibrated
feedback. Calibrated models are essential in the dynamic control of robots, where the
computation of both forward and inverse dynamics of the robot depends heavily on the
underlying model.

Hence, the contribution of our work can be summarized as (i) a fast calibration
approach without the use of external measuring devices or mechanical fixtures but simply
utilizing the factory calibrated kinematics as the ground truth and (ii) a way to calibrate the
kinematic robot model itself rather than just the corrected end-effector pose.

The rest of the paper is organized as follows. In Section 2, we discuss the relevant
robot calibration approaches followed by Section 3, where the kinematic modelling for the
robot is reviewed. In Section 4, the methodology for calibration is discussed. Section 5
outlines the experimental validation of the proposed approach followed by the discussion
and conclusion in Sections 7 and 8 respectively.

2. Existing Methodologies for Kinematic Calibration

Robot calibration is performed to improve the positional accuracy of the end-effector
by accurately calibrating the kinematic parameters, which are proven to be major contrib-
utors of the positioning error [6,10]. Kinematic calibration of robots can be done in two
different ways namely: model-based and model-less. The model-based methods are more
commonly used for robot calibration [6]. However, some studies have also implemented
model-less calibration techniques such as [11–14]. Such techniques involve building relation
between the position errors of robots and workspace or joint space [6].
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The model-based calibration procedure in general involves developing a model
whose parameters accurately represent those of the actual robot then accurately mea-
suring specific features of the real robot followed by the computation of the parameter
values for which the model reflects the measurements made [7]. Kinematic or Level 2
calibration is known to improve the robot accuracy across the entire volume of its con-
figuration space. In the model-based approach of kinematic calibration, the geometric
factors are applied to identify model parameters. Non-geometrical error sources can be
minimized through Level 3 calibration. However, since these non-geometrical errors
account for a rather small percentage of the total error, consideration of geometrical
errors alone is usually sufficient for a simplified calibration model as they account for
a considerable proportion of the end-effector pose error [7,15]. Therefore, in this study
we propose a quick re-calibration (Level 2) procedure for serial robot arms by using the
geometric factors for parameter identification. Non-geometric calibration is out of the
scope of the current work.

Kinematic calibration is usually carried out in following four steps [4,6,16]: (i) Model-
ing, (ii) Measurement, (iii) Identification and (iv) Compensation/Correction. Before the
measurements can be made, the kinematic error model for the robot must be transformed
into an identification model. The identification model is a representation of the mapping
from pose errors of the end-effector to the unknown geometric errors. The actual values of
pose errors are then measured for different configurations using measurement devices and
then input to the identification model wherein the geometric errors are computed using
numerical methods before being compensated for using hardware/software [17].

Several studies have been conducted so far on the kinematic calibration of industrial
robots. Denavit–Hartenberg (DH) modelling is the most popular kinematic modelling
technique for serial robot arms; however, it is unable to address the singularity issue of
two adjacent parallel joints. Ref. [10] presents a modified DH model (MDH) by introduc-
ing a new rotation parameter to overcome this difficulty. Many other works have dealt
with the singularity problem through the use of Product-of-Exponentials (POE) based
modelling [18–20].

Most calibration methods compare the taught point positions of a robot with mea-
surements relating the end-effector to an external 3D measuring device such as a laser
tracker [21–26], theodolite measurement devices [27] or coordinate measuring machines
(CMM) [28,29]. These are known as open-loop calibration techniques [30]. Based on
the measurements made, the kinematic parameters of the mathematical model of the
robot are then corrected to minimize the difference between the positions where the robot
thinks it is and its actual position in the workspace [1]. Ref. [28] performed online pose
measurement with an optical CMM and used that as a feedback to steer the end-effector
of the robot accurately, to the desired pose. Their approach increased positional accuracy
of a robot independent of its kinematic parameters. Ref. [31] presented a method for
calibration using distance and sphere constraints to improve robot accuracy in a specific
workspace. Spheres with precisely known distances from each other were probed by the
robot end-effector multiple times and the measured pose values were then compared with
the poses calculated from the kinematic model in an iterative process until the root mean
square (RMS) error between the iterations dropped below the specified threshold. Ref. [32]
calibrated the robot parameters by controlling six-axis industrial robot arms to get to the
same location in different poses. Different identification and compensation methods were
proposed that could be mixed and matched to obtain optimal solutions depending on the
operational environment.

Table 1 reviews model-based calibration techniques implemented in some of the recent
works conducted on kinematic calibration as well as the proposed method for comparison.
It can be observed that most of these techniques cater to the experimental environment,
requiring external measuring instruments such as laser trackers. This makes it a very
time consuming procedure which is only suitable for laboratory environments and not for
industrial settings such as automated assembly lines [16]. Thus, to address the research gap
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on fast calibration methods, this work focuses on fast open-loop re-calibration. The ground
truth for measurement of the end-effector pose was not an external measuring device but
instead the kinematic feedback provided by the robot controller into which the calibration
parameters are implicitly modelled. This calibrated forward kinematics (FK) model was
not explicitly available to us; however, the feedback was considered accurate and further
used to validate our experiments. A robot kinematic model is characterized by a non-linear
function that relates link geometric parameters and joint variables to the robot end-effector
pose [5]. To fit this model to experimental data, it needs to be linearized and solved. For
parameter identification, different authors have so far implemented different methods of
linearizing the kinematic models of their robots. Ref. [33] used least-square minimization
(LSM) and single value deposition (SVD) to calibrate parameter errors. Ref. [34] also
performed the parameter identification procedure by solving a linearized least square
problem for which a ballbar measurement device was used. Linear least square algorithms
are usually applied owing to their quick convergence rates [7].

Even though the problem of robot calibration is widely explored, the focus is generally
on the deployment of external measurement devices (for open loop calibration [9,28]) or
mechanical fixtures (for closed loop calibration [35,36]). In the approach presented in
this paper, a model-based fast-kinematic re-calibration is devised whereby we use the
factory-calibrated controller as an ‘oracle’ for our fast-recalibration approach.This allows
for the extraction of calibrated intrinsic parameters (e.g., link lengths) otherwise not directly
available from the ‘oracle’, for use in ad-hoc control strategies. Here, we account for the
small variations in both the zero joint offset and the link offsets by minimizing the mismatch
between the nominal kinematic model as per robot datasheet and the ‘oracle’. While the
problem can be formulated mathematically as a non-linear regression problem, by making
the assumption that the end-effector orientation is unaffected by the variations in the link
dimensions, it is possible to solve for the above offsets by solving two separate linear
regression problems, which simplifies the computation. Concretely, we proceed by first
solving for the zero joint offsets and then identifying the link offsets.
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Table 1. Brief comparison of kinematic calibration techniques.

Paper Type of
Calibration

FK
Measurement
Technique (for
Ground Truth)

Calibration Method Type of
Regression

Application
Scenarios

Final
Position Error

Error
Reduction %

Li et al., 2019 [37] Open-loop Leica Geosystems
Absolute Tracker (AT960)

Dual quaternion-based
calibration (DQBC) algorithm
based on FK obtained from DH
notation and; modified DQBC

Least-squares

An error model for serial robot
kinematic calibration based on
dual quaternions. Used to
calibrate dual arm 7-DoF
SDA5F robot.

Arm1: 0.4523 mm

Arm2: 0.7109 mm

86.56

81.25

Wang et al., 2014 [6] Open-loop FARO arm to measure
ball target position.

Product of Exponential (POE)
and adjoint transformation
based FK

Least-squares

Analytical approach to
determine and eliminate the
redundant model parameters in
serial-robot kinematic
calibration based on the
POE formula

Max. error
2.2 mm -

Li et al., 2016 [18] Open-loop FARO Laser Tracker ION

Product of Exponential (POE)
for FK. Algorithm based on the
ACS (axis configuration space)
and adjoint error mode

Least-squares

Novel kinematic calibration
algorithm based on the ACS and
Adjoint error model. It is
computationally efficient and
can easily handle additional
assumptions on joint
axes relations.

Mean error
SCARA: 0.07 mm
Kawasaki:
0.063 mm

Max. error
SCARA:
0.16
Kawasaki:
1.23 mm

-

Liu et al., 2018 [19] Open-loop Leica Laser Tracker Product of Exponential (POE) Least-squares

Calibration of serial robot based
on local POE formula for
fastener hole drilling in
aircraft assembly.

Mean error
0.144 mm

Max. error
0.301 mm

-

97.30
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Table 1. Cont.

Paper Type of
Calibration

FK
Measurement
Technique (for
Ground Truth)

Calibration Method Type of
Regression

Application
Scenarios

Final
Position Error

Error
Reduction %

Gharaaty et al.,
2018 [28] Open-loop C-Track 780 from

Creaform
Dynamic pose correction with
PID controller

Root Mean
Square (RMS)

Online pose correction of 6 DoF
industrial robots, FANUC LR
Mate 200iC and FANUC M20iA,
using an optical CMM system
for high accuracy applications
such as riveting, drilling and
spot welding.

Max. error
0.05 mm 79.17

Motta et al., 2016 [5] Open-loop ITG ROMER
Levenberg–Marquardt
algorithm to solve non-linear
least squares problem

Non-linear
least-squares

Calibration optimization of
a 5-DoF robot for repairing the
surface profiles of hydraulic
turbine blades.

Max. error
0.15 mm -

Joubair et al.,
2015 [31] Closed-loop

Two-in datum spheres
separated by precisely
known distances
measured on a CMM

Mathematical optimization RMS error
minimization

Geometric Calibration of
a six-axis serial industrial robot,
FANUC LR Mate 200iC in a
specific target workspace using
distance and sphere constraints.

Mean error
0.086 mm

Max. error
0.127 mm

87.68

90.39

Lattanzi et al.,
2020 [9] Open-loop FARO Vantage

laser tracker
Levenberg-Marquardt
mathematical optimization

Non-linear
least
squares solver

Geometric calibration of 6-axis,
DENSO VS-087 and 7-DoF
TIAGo robotic arms for high
accuracy manufacturing task.

Mean error
DENSO VS-087:
0.06 mm
TIAGo: 1.08 mm

Max. error
DENSO VS-087:
0.1 mm
TIAGo: 2.83 mm

-

TIAG0: 91.91

Proposed Method:
Fast kinematic
re-calibration

Open-loop

Factory calibrated
feedback from the
robot controller (No
additional
equipment required)

Compensating for the joint and
link length offsets to calibrate
the ideal robot model

Least-squares

Quick kinematic re-calibration
of Kinova Gen3
Ultralightweight 7-DoF robot
arm by compensating for joint
and link length offsets.

Mean error
1.47 mm

Max. error
2.87 mm

87.15

78.77
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3. Kinematic Modelling

The first step towards a typical robot calibration is the modelling of the end-effector/tool
pose (i.e., the forward kinematics) with respect to a reference frame, which in general is
the robot base frame itself. This can be done in several ways, of which the 4-parameter
DH (Denavit–Hatenberg) convention is most widely employed. In this paper, the robot
platform used for experimental validation is the Kinova Gen3 ultra-lightweight robot arm
and hence we employ the DH representation in order to adhere to the convention followed
by the datasheet in building the ideal forward kinematic model.

For a robot manipulator with its N joints assuming the configuration q ∈ RN , the
forward kinematics can be expressed as a homogeneous transformation between the end-
effector and base coordinate systems of the robot as [38]

FK(q) = TB
1 (q1) T1

2(q2) . . . T N
E (qn) =

[
R(q) P(q)

0 1

]
,

where R(q) ∈ R3×3 and P(q) ∈ R3×1 represent the end-effector orientation and position
with respect to the robot base frame,

and Tn−1
n =

[
R(qn) pn

0 1

]
Here, B, E respectively represent the robot base frame and the end-effector frame.

R(qn) and pn represent the rotation and the translation between the (n − 1)th and the
nth frame respectively. Note that for the nth joint, the homogeneous transformation Tn−1

n
depends only on the joint angle qn.

We can now define the body Jacobian matrix for the manipulator as [38,39]

Jbody = [Ad−1
T1

E
ξb1, Ad−1

T2
E

ξb2, . . . , Ad−1
T7

E
ξb7],

where ξbn = (Tn−1
n )−1 · ∂qn Tn−1

n and AdTn
E

represent the adjoint matrix (The adjoint of

a homogeneous transformation matrix T =

[
R p
0 1

]
is obtained as AdT =

[
R 0

p̂R R

]
,

where .̂ is used to denote the matrix representation) for the homogenous transformation
of the end-effector frame to the nth joint frame.

The body Jacobian can be re-written as

Jbody =

[
Jpos
Jrot

]
,

where Jpos and Jrot ∈ R3×N are , respectively, the top and bottom submatrices.

With reference to Figure 1, the homogeneous transformation matrices between the
joint frames for a Kinova Gen3 ultra-lightweight robot at zero configuration are as shown
in Table 2.

Table 2. Homogeneous transformation matrices for Kinova Gen3 7DoF robot (provided by manufacturer).

Transformation (Frame n to n − 1) R(qn)
n−1
n pn−1

n (m)

Frame 1 to Base frame

[
cq1 −sq1 0
−sq1 −cq1 0

0 0 −1

] [
0
0

0.1564

]

Frame 2 to Frame 1

[
cq2 −sq2 0
0 0 −1

sq2 cq2 0

] [
0

0.0054
−0.1284

]

Frame 3 to Frame 2

[
cq3 −sq3 0
0 0 1
−sq3 −cq3 0

] [
0

−0.2104
−0.0064

]
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Table 2. Cont.

Transformation (Frame n to n − 1) R(qn)
n−1
n pn−1

n (m)

Frame 4 to Frame 3

[
cq4 −sq4 0
0 0 −1

sq4 cq4 0

] [
0

−0.0064
−0.2104

]

Frame 5 to Frame 4

[
cq5 −sq5 0
0 0 −1
−sq5 −cq5 0

] [
0

−0.2084
−0.0064

]

Frame 6 to Frame 5

[
cq6 −sq6 0
0 0 −1

sq6 cq6 0

] [
0
0

−0.1059

]

Frame 7 to Frame 6

[
cq7 −sq7 0
0 0 1
−sq7 −cq7 0

] [
0

−0.1059
0

]

Frame 7 to end-effector frame

[
1 0 0
0 −1 0
0 0 −1

] [
0
0

−0.0615

]

Figure 1. Kinova Gen3 joint frames at zero configuration.

4. Parameter Identification and Compensation

The kinematic model available from the manufacturer (for example, the one shown
in Table 2) is ideal and does not represent the actual kinematics of the robot after the
manufacturing and the assembling stages. In this section, we perform a fast kinematic
calibration to account for this discrepancy.

To perform the calibration, we consider a Kinova Gen3 ultra-lightweight robot with
7 degrees of freedom, with no end-effector mounting. However, the methodology is
general enough to be adapted for other industrial robots with arbitrary number of degrees
of freedom.

Our approach is based on the assumption that the actual forwards kinematics mea-
surements are known. While in some cases, the calibrated parameters are incorporated
implicitly in the robot controller (e.g., Kinova Gen3) to provide an accurate feedback of the
tool pose, in other instances, one can always make use of external measurement systems
calibrated to the robot base frame to identify the actual forward kinematics. In our approach
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to facilitate a fast kinematic calibration, instead of using an external measuring device to
set a ground truth for the tool pose, we consider the feedback tool pose from the robot
controller (which is factory calibrated) itself as the ground truth.

For a N-joint serial manipulator, consider the forward kinematics as given by the
uncorrected (i.e., the ideal) model from Equation (3)

FKp(q) =
[

R(q) Pp(q)
0 1

]
(1)

(Note: The subscript p is to show that the forward kinematics is defined for nominal
geometric (link) lengths, possibly from CAD models).

However, as discussed in the previous section, the specified transformations hold
true only under ideal conditions as variations are introduced during manufacturing and
assembling stages. In this paper, we compensate for the zero joint offsets (which henceforth
are called angular offsets (δq = [q1, . . . , qN ]) generated in the assembly stage and also for
possible deviations of the link dimensions (linear offsets (δp = [δp1, . . . , δpN+1], where
δpn ∈ R3×1)) from their CAD models due to the manufacturing errors. To account for these
variations, the transformation between two joint frames can be re-defined as

Tn−1
n =

[
R(qn + δqn) pn + δpn

0 1

]
, (2)

where pn ∈ R3×1 is the position vector (say, given by the CAD model) of joint frame n with
respect to joint frame (n− 1) and δpn ∈ R3×1 is the vector of linear offsets for the (n− 1)th
link.

Equation (2) on substituting in Equation (3) gives us the corrected forward kinematics
which can be denoted as

FKp+δp(q + δq) =
[

R(q + δq) Pp+δp(q + δq)
0 1

]
(3)

Assuming that the factory calibrated tool pose available as a feedback from the con-
troller is a sufficiently accurate representation of the actual forward kinematics, the ground
truth can be established as

F̃K(q) =
[

R̃(q) P̃(q)
0 1

]
Hence, our goal is to identify the small angular (δq∗) and linear (δp∗) adjustments to

minimize, in some sense, the difference between F̃K(q) and FKp+δp(q + δq).

4.1. Identification of Angular Offsets (δq∗)

The problem of calibration require us to compensate for both the linear and angular
offset which results in a non-linear regression problem. However, for small enough angular
offsets, under the assumption that the task-space orientation of the robot is dependent only
on the angular offsets, the non-linear regression problem can be turned into two separate
linear regression problems for determining the linear and the angular offsets as outlined
as follows.

Let R(q+ δq) be the rotation matrix with joint offset correction and R̃(q) be the known
rotation matrix.

At a first order, the vicinity of R(q + δq) and R̃(q) can be expressed as

R(q + δq) ≈ R̃(q)

R(q) +
∂R(q)

∂q
δq ≈ R̃(q)
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I3 + RT ∂R
∂q

δq ≈ RT R̃

RT ∂R
∂q

δq ≈ RT R̃− I3 (4)

Recall that the Cartesian angular velocity ω = Jrotq̇ and that ω̂ = RT∂qR q̇, therefore

Jrotq̇ = (RT∂qRq̇)∨ (5)

Hence Equation (4) can be re-written as

Jrotδq ≈ (RT R̃− I3)
∨,

where the (·)∨ operator turns 3× 3 skew-symmetric matrices into corresponding 3D vectors.

Given a number of M robot joint configurations qm ∈ RN , m = 1, . . . , M, we determine
an optimal estimate δq∗ ∈ RN , via linear regression for the following system Jrot(q1)

...
Jrot(qm)

δq =

 (RT
1 R̃1 − I3)

∨

...
(RT

MR̃M − I3)
∨

, (6)

where Rm ≡ R(qm) and R̃m ≡ R̃(qm)

4.2. Identification of Linear Offsets (δp∗)

Once the calibration for the joint offset is done, the angular adjustments can be taken
into account by rewriting

q′ := q + δq∗

Now, the linear offsets δp are accommodated into the robot kinematics by re-writing
the homogeneous transformation between the joint frames as

FK(p+δp)(q
′) =

[
R(q′) P(p+δp)(q′)

0 1

]
(7)

For the same number of M measurements, we find the linear offsets δp that minimize
the difference

Pp+δp(q′m)− P̃(qm), (8)

where Pp+δp is the corrected end-effector position and P̃(qi) is the known robot position.
The first order approximation of the error can be written as

Pp+δp(q′m)− P̃(qm) ≈ Pp(q′m)− P̃(qm) +∇pP δp (9)

Therefore, the optimal optimal estimate δp∗ can be computed as a linear regression of
the following (linear) system∇pP(q′1)

...
∇pP(q′M)

δp =

 P̃(q1)− Pp(q′1)
...

P̃(qM)− Pp(q′M)

 (10)

The solution to the above equation gives us the linear adjustments to be made, which
an be taken into account as

p′ := p + δp∗

Hence, for a given joint configuration q ∈ RN , the calibrated forward kinematic model
can be represented as
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FKp′(q
′) =

[
R(q′) Pp′(q′)

0 1

]
(11)

5. Experimental Validation
5.1. Parameter Identification from the Training Dataset

To validate the proposed approach, we collected a set of training data samples by exe-
cuting the robot motion in the following manner. Joints with odd indices were commanded
to move from 0 to +π rad followed by a motion from 0 to −π rad and the joints with
even indices were moved from 0 to π

2 rad followed by a motion from 0 to −π
2 rad (due to

self-collision constraints). Each joint was moved independently while the rest of the joints
were set at the respective zero positions, i.e., for the ith joint, qj = 0 ∀j : j 6= i (See Figure 2).
The end-effector positions and orientations (i.e., the feedback from the controller) along
with the joint configurations were logged during the robot motion. Once the samples were
collected, the linear and the angular offsets were identified (Table 3) respectively with the
help of Equations (6) and (10) to obtain the corrected kinematic model, which we denote as
Model 1.

(a) (b)

(c) (d)

Figure 2. Cont.
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(e) (f)

(g)

Figure 2. Commanded robot joint motion to generate the training dataset. (a) Joint 1. (b) Joint 2. (c)
Joint 3. (d) Joint 4. (e) Joint 5. (f) Joint 6. (g) Joint 7.

Table 3. Calibration parameters for Model 1.

Joint Frame (n) δqn (rad) δpn (m)

Base frame NA NA
frame 1 0.0044 [0.0085, 0.0003, −0.0083]
frame 2 0.0088 [−0.0068, 0, 0]
frame 3 −0.0035 [−0.0001, −0.0041, 0.0028]
frame 4 −0.0043 [−0.0003, 0.0015, 0]
frame 5 0.0068 [0.0001, 0, 0]
frame 6 0.0026 [−0.0003, −0.0001, −0.0024]
frame 7 −0.0084 [0.0009, 0, 0]
End-effector frame NA [0.0009, −0.0003, 0]

5.2. Validation on the Training Dataset

To assess the performance of the calibrated model on the training dataset, both the posi-
tion and orientation errors have been computed before (Equation (1)) and after (Equation (11))
the calibration. Figure 3 depicts the plots for the absolute position error without calibration
(P̃(q)− Pp(q)), with angular offset calibration (P̃(q)− Pp(q′)) and with both linear and
angular calibration (P̃(q)− Pp′(q′)) for the end-effector. For better insight, the robot joint
angle profile during the training data collection is also added. From the figure, a qualitative
observation can be made that the calibration improves the resultant position accuracy.
From Table 4, it can be observed that our calibrated model managed to bring down the
maximum error by 69.59 % and the mean error by 91.29%. The orientation error (RT R̃− I)∨

is computed and plotted in Figure 4. With reference to Table 5, by compensating for both
the angular and linear offsets, the maximum error for each of the x, y and z dimensions
(|εx|, |εy| and |εz| respectively) are brought down by 32.75%, 25.77% and 73.15% whereas
the mean errors came down by 31.37%, 44.29% and 53.3% respectively. It is evident that the



Sensors 2022, 22, 2295 13 of 25

orientation error does not change by introducing the linear offsets, which is in line with
our assumption that the link length does not affect the orientation of the robot.

Table 4. Resultant position error before and after calibration.

Error Before Calibra-
tion (mm)

With Angular
Offsets (mm)

% Reduction in
Error with
Angular Offsets

With Linear and
Angular
Offsets (mm)

% Reduction in Error with
Angular Linear and
Angular Offsets

Max error 19.4 14.5 25.26 5.9 69.59
Mean error 9.1 ± 2.7 5.3 ± 3.3 41.76 0.8 ± 1.1 91.29

Figure 3. The plot for the resultant end-effector position error for the training set before and after
calibration (top) and the motion of each of the robot joints during the training set generation (bottom).
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Table 5. Resultant orientation error before and after calibration.

Error Before Calibration
(×10−2 rad)

With Angular Offsets
(×10−2 rad)

With Linear and Angular
Offsets (×10−2 rad)

% Reduction
in Error

|εx| Max error 1.71 1.15 1.15 32.75
Mean error 0.51 ± 0.39 0.35 ± 0.28 0.35 ± 0.28 31.37

|εy| Max error 1.94 1.44 1.44 25.77
Mean error 0.70 ± 0.43 0.39 ± 0.4 0.39 ± 0.4 44.29

|εz| Max error 1.08 0.29 0.29 73.15
Mean error 0.15 ± 0.17 0.074 ± 0.075 0.07 ± 0.075 53.33
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Figure 4. Error in end-effector orientation (RT R̃ − I)∨ for the training dataset before and after
calibration (where R and R̃ are the end-effector rotation matrices obtained using the kinematic model
and the feedback respectively).

5.3. Validation on the Test Dataset

To validate the proposed approach against a test set, we generated a set of spatial
locations spanning the first two quadrants of the robot base frame (Figure 5). The robot
was commanded to move to these location resulting in a raster motion in position control
mode, starting from the left to the right while the end-effector position and orientation
were logged.

We computed the trajectory with the un-calibrated and the calibrated models, which
are superimposed on the commanded trajectory for comparison in Figure 6.

The position and orientation error plots before and after the calibration are shown
in Figures 7 and 8 respectively. Despite the fact that the test data was generated mostly
from a different subspace of the workspace compared to the training dataset, the calibrated
model managed to bring down the resultant position error as can be observed in Figure 7.
By compensating for the angular offsets alone, the maximum and the mean position errors
were brought down by 44.97% and 48.8% respectively. With reference to Table 6, by
accommodating both the angular and the linear offsets, the maximum position error is
reduced by 38.93% whereas the mean error came down by 53.6% . Table 7 shows that, by
compensating for both the angular and linear offsets, the maximum orientation error for
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each of the x, y and z dimensions is brought down by 59.17%, 39.47% and 68.70% whereas
the mean errors are lowered by 70.30%, 45.60% and 61.40% respectively.

(a)

(b)

Figure 5. Spatial data points are generated to collect test dataset. While the robot moves to each of
the locations with a raster motion, the position and the orientation of the end-effector along with the
joint angle are logged. (a) Top view. (b) Perspective view.

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

X
 (

m
)

-0.3-0.2-0.100.10.20.3

Y (m)

feedback

before calibration

after calibration

(a)

Figure 6. Cont.
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Figure 6. Estimated end-effector position before and after calibration (down-sampled by 5) plotted
along with the feedback positions. (a) Top view (X-Y plane). (b) side view (X-Z plane).
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Figure 7. Resultant end-effector position error for the test set before and after calibration.
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Figure 8. Error in end-effector orientation error (RTR̃− I)∨ for the test dataset before and after calibration.
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Table 6. Resultant position error before and after calibration.

Error Before Calibra-
tion (mm)

With Angular
Offsets (mm)

% Error
Reduction with
Angular Offsets

With Linear and
Angular
Offsets (mm)

% Error Reduction with
Linear and
Angular Offsets

Max error 14.9 8.2 44.97 9.1 38.93
Mean error 12.5 ± 1.5 6.4 ± 0.9 48.8 5.8 ± 1.5 53.6

Table 7. Resultant orientation error before and after calibration.

Error Before Calibration
(×10−2 rad)

With Angular Offset
(×10−2 rad)

With Linear and Angular
Offsets (×10−2rad)

% Reduction in the
Calibration Error

|εx| Max error 1.69 0.69 0.69 59.17
Mean error 1.35 ± 0.11 0.40 ± 0.93 0.40 ± 0.93 70.30

|εy| Max error 0.76 0.46 0.46 39.47
Mean error 0.31 ± 0.2 0.17 ± 0.09 0.17 ± 0.09 45.60

|εz| Max error 1.31 0.41 0.41 68.70
Mean error 0.57 ± 0.35 0.22 ± 0.11 0.22 ± 0.11 61.40

During the validation on the test set, while our approach was successful in bringing
down the resultant kinematic error, the corrected model did not perform well in the X and
Y axes individually (See Figure 9). However, often the X-Y accuracy is highly desirable in
the context of planar tasks where the task space is simply the X-Y plane. We hypothesise
the error in the X-Y plane is because of the fact that very few training data samples were
collected from the desired subspace of the robot configuration space during the training
set generation (See Figure 2). To validate the hypothesis, we devised a second experiment
where we collected more training data samples from the desired subspace of the task space
so that the calibrated model is more meaningful to the task to be performed by the robot.
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Figure 9. Test set position error along individual axes.

6. Operation Space Targeted Calibration

In this section, we perform the calibration by collecting additional training data sam-
ples from the pre-defined operating space of the robot. To that end, we first defined a
work volume for the robot within which we assume the robot performs a given task (See
Figure 10). We also generated a total of 58 spatial locations within the work-volume (includ-
ing the vertices) as the goal positions for the robot. In order to populate the training dataset
we commanded the robot (in position control mode) to move to each of the generated
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goal positions while logging the position and the orientation of the end-effector along
with the joint configuration. The robot was commanded to maintain a constant orientation
throughout the motion. The additional training data samples together with the original
data samples (See Figure 3) generate the final training dataset for calibration. Here, almost
25% of the training set is composed of the additional data samples.

The calibration preformed on the test dataset yielded a set of calibration parameters
as tabulated in Table 8 and the corrected kinematic model is considered to be Model 2.

Table 8. Calibration parameters for Model 2.

Joint Frame (n) δqn (rad) δpn (m)

Base frame NA NA
frame 1 0.0048 [0.0082, 0.0003, −0.0078]
frame 2 0.0080 [−0.0063, −0.0029, 0]
frame 3 −0.0076 [−0.0000, 0, 0]
frame 4 −0.0034 [ 0.0000, 0, −0.0043]
frame 5 0.0110 [0.0001, −0.0020, −0.0017]
frame 6 0.0025 [−0.0023, −0.0000, 0]
frame 7 −0.0090 [0.0026, 0.0004, 0]
End-effector frame NA [ 0.0007, −0.0006, 0]

Figure 10. For localized calibration a work volume is defined (formed by the blue lines), within
which 58 spatial points (red circles) were generated. The robot moves to each of the 3D points, and
the simultaneous logging of the robot position and the orientation populate the training set.

6.1. Validation on the Training Set

To evaluate the performance of Model 2 on the training set, both the position and the
orientation errors have been computed and plotted in Figures 11 and 12 respectively. The
statistical analysis for the error data is carried out and outlined in Tables 9 and 10.

Table 9. Resultant position error before and after calibration.

Error Before Calibra-
tion (mm)

With Angular
Offsets (mm)

% Reduction in
Error with
Angular Offsets

With Linear
and Angular
Offsets (mm)

% Reduction in Error with
Angular Linear and
Angular Offsets

Max error 19.43 14.27 26.56 6.04 68.91
Mean error 9.66 ± 2.61 5.80 ± 2.88 39.95 1.26 ± 1.08 86.96
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Figure 11. Resultant end-effector position error for the training set before and after calibration. The
error corresponding to the additional training data starts at sample number 1940.
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Figure 12. Error in end-effector orientation error (RT R̃ − I)∨ for the training dataset before and
after calibration.

Table 10. Resultant orientation error before and after calibration.

Error Before Calibration
(×10−2 rad)

With Angular Offsets
(×10−2 rad)

With Linear and Angular
Offsets (×10−2 rad) % Reduction in Error

|εx| Max error 1.71 1.16 1.16 32.16
Mean error 0.63 ± 0.41 0.31 ± 0.28 0.31 ± 0.28 50.79

|εy| Max error 1.94 1.45 1.45 25.26
Mean error 0.81 ± 0.45 0.35 ± 0.37 0.35 ± 0.37 56.79

|εz| Max error 2.16 0.58 0.58 73.15
Mean error 0.38 ± 0.46 0.09 ± 0.10 0.09 ± 0.10 76.32
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6.2. Validation on the Test Set

To populate the test dataset, we generated 20 spatial points in the pre-defined work
volume as shown in Figure 13. The robot (in position control mode) was commanded
to move to each of these locations by performing a raster motion maintaining a constant
orientation as illustrated in Figure 13. The Cartesian position and the orientation of the
end-effector were logged together with the robot joint configuration.

Figure 13. Spatial data points are created within the pre-defined work volume and the test data
samples are collected as the robot moves to each of the locations.

To evaluate the accuracy along individual axes, the commanded trajectory for the
robot, the factory calibrated feedback from the controller, the forward kinematics given by
the calibrated and the un-calibrated models are plotted on the X-Y and the X-Z planes as
shown in Figure 14 (The data points representing the position before and after calibration
are down-sampled by 10 for clarity of illustration). Qualitatively, it can be observed that
the end-effector position computed by the calibrated model outperforms the one computed
by the un-calibrated model along all three axes.

The performance of the calibrated model on the test data is evaluated and both the
position and the orientation error are plotted in Figures 15 and 16 respectively. In addition,
the statistical analysis was performed and tabulated in Tables 11 and 12.
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Figure 14. Estimated end-effector position before and after calibration (down-sampled by 10) plotted
along with the feedback positions. (a) Top view (X-Y plane). (b) side view (X-Z plane).
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Figure 15. Resultant end-effector position error for the training set before and after calibration.
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Figure 16. Resultant error in end-effector orientation error (RT R̃− I)∨ for the training dataset before
and after calibration.
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Table 11. Resultant position error before and after calibration.

Error Before Calibra-
tion (mm)

With Angular
Offsets (mm)

% Reduction in
Error with
Angular Offsets

With Linear
and Angular
Offsets (mm)

% Reduction in Error with
Angular Linear and
Angular Offsets

Max error 13.52 8.52 36.98 2.87 78.77
Mean error 11.44 ± 1.21 7.08 ± 0.80 38.11 1.47 ± 0.66 87.15

Table 12. Resultant orientation error before and after calibration.

Error Before Calibration
(×10−2 rad)

With Angular Offsets
(×10−2 rad)

With Linear and Angular
Offsets (×10−2 rad) % Reduction in Error

|εx| Max error 1.22 0.56 0.56 54.10
Mean error 0.83 ± 0.17 0.22 ± 0.13 0.22 ± 0.13 73.49

|εy| Max error 1.70 0.31 0.31 81.76
Mean error 1.34 ± 0.28 0.26 ± 0.15 0.26 ± 0.15 80.60

|εz| Max error 1.34 0.41 0.41 69.40
Mean error 0.83 ± 0.30 0.12 ± 0.10 0.12 ± 0.10 85.54

To perform a quantitative analysis, the error values for each of the axes are plotted in
Figure 17. From the plot, it can be noticed that the calibrated model performs significantly
better in comparison to its un-calibrated counterpart.
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Figure 17. Test set position error along individual axes.

Now to validate our hypothesis regarding the error in the X-Y plane for Model 1, in
Figure 18 we compare the error measurements along the X, Y and Z axes both for Model 1
and Model 2. It can be observed that for the same test dataset, Model 2 (i.e., obtained
by collecting for training samples from the operating space of the robot) exhibits a better
performance in comparison to Model 1. This aligns with our hypothesis that the increase in
the X-Y errors in Section 5.3 (Figure 9) is due to the fact that very few training data samples
were collected from the desired subspace of the robot configuration space.
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Figure 18. Comparison of the error along the coordinates axes for Model 1 and Model 2.

7. Discussion

The work presented in this paper focuses on compensating for the linear and the
angular offsets that adversely affect the position accuracy of the robot. However, we do not
account for factors such as the compliance in the link or the joint transmission systems. The
influence of these components comes into play significantly under the presence of a payload
or even simply gravity itself, particularly under configurations which impose relatively
higher torques on the links and joints. We observed that during the logging of the training
dataset, the robot passes through a total of six such configurations (Figure 2b,d,f) at which
higher gravitational torques are imposed due to the extension of the distal bodies. We can
observe that corresponding to these configurations there are three pairs of identical peaks
in the resulting error plots (see Figure 3) which diminish in magnitude as the robot motion
progresses to the distal joints (also lower gravitational loading). Hence, we infer that the
peaks with relatively larger values of errors are generated due to the link deflection under
the increased gravitational loading, which was unaccounted for during the calibration.

8. Conclusions

Robot calibration is a necessity in planning and executing both contact and non-contact
tasks alike, reliably and safely. This paper presents a fast re-calibration method to improve
the robot position and orientation accuracy by compensating for the joint offset error as well
as for the discrepancies in the link dimensions. Our approach is based on the assumption
that the actual forward kinematics is known with sufficient accuracy, possibly through the
factory calibrated feedback from the controller. A set of parameters to account for the linear
and angular discrepancies are identified by minimising the mismatch between feedback
and the computed forward kinematics. The proposed calibration approach brought about
a significant improvement in the forward kinematics in comparison with an un-calibrated
model, which is backed up by experimental analysis.
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