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In vivo gene knockout studies in mice have revealed essential roles of the mitogen-activated protein kinases (MAPKs) in
embryogenesis, but due to early lethality of the knockout embryos, the underlying mechanisms and specific
developmental programs regulated by the MAPK pathways have remained largely unknown. In vitro differentiation of
mouse embryonic stem cells (ESCs) have opened new possibilities for understanding lineage segregation and gene
function in the developmental stages that are not normally accessible in vivo. Building on this technology, in
combination with gene knockout cells, we investigated the roles of MKK4 and MKK7, two upstream kinases of the MAPKs,
in early lineage specification. Our results show that MKK4 and MKK7 differentially regulate the JNK and p38 MAPKs and
make distinct contributions to differentiation programs. In vitro ESC differentiation is a valuable system to investigate the
molecular and signaling mechanisms of early embryogenesis.

The MKK4 and MKK7 are Upstream Kinases
of the MAPKs

The MAPKs are intracellular enzymes activated by extracellular
cues and in turn phosphorylate effector proteins to modulate
cellular activity and function. In mammalian system, there are
three major MAPK subgroups, including the Jun N-terminal
kinase (JNK), the p38s and the extracellular signal regulated
kinases (ERK).1 The MAPKs are activated through phosphoryla-
tion on Thr and Tyr residues within the activation loop of the
kinase domain. There are six major MAP2Ks responsible for
MAPK phosphorylation, but each has selective substrate
specificities.2 In principle, the MEK1 and MEK2 are MAP2Ks
upstream of the ERKs, the MKK3 and MKK6 are responsible for
p38 activation, while the MKK4 and MKK7 preferentially
activate the JNKs, and MKK4 has also been shown to activate the
p38s (Fig. 1).3,4 Extracellular and intracellular stimuli, including
peptide growth factors, cytokines, hormones, and various cellular
stressors such as oxidative stress and endoplasmic reticulum stress,
can activate the MAP2K-MAPK cascades, which in turn affect
diverse cellular activities, such as proliferation, differentiation,
survival and death.5

The Roles of MKK4 and MKK7
in Mouse Embryonic Development

Signal transduction pathways are integral components of the
developmental network that guides differentiation and cell fate
determination. In vivo studies show that MKK4 and MKK7 have
essential roles in embryonic development. Genetic ablation of

Mkk4 in mice leads to lethality between embryonic day 10.5
(E10.5) and E12.5, and the knockout embryos display severe
anemia, abnormal hepatogenesis and liver cell apoptosis.6-8

Genetic ablation of Mkk7 also leads to embryonic lethality, but
in this case, the knockout embryos die between E11.5 and E13.5
due to disorganized liver and decreased hepatocyte proliferation.9

Hence, MKK4 and MKK7 are both essential for embryonic
survival, but they make different contributions to the develop-
mental programs, so that MKK4 cannot compensate for loss of
MKK7, and vice versa.

At an earlier developmental stage, however, MKK4 and MKK7
display some degree of redundancy for embryonic survival. While
neither the Mkk4(-/-) nor the Mkk7(-/-) embryos die before E9.5,
the Mkk4(-/-)Mkk7(-/-) double mutant mice do not survive
beyond this point.10 Based on the time of death, it is proposed
that MKK4 and MKK7 are required for mammalian body plan
organization. Toward this function, MKK4 makes a greater
contribution than MKK7, because the Mkk7(+/+) and Mkk7(+/-)
fetuses lacking MKK4 die earlier with more severe defects than
the Mkk4(+/+) and Mkk4(+/-) fetuses lacking MKK7. The in vivo
data together suggest that MKK4 and MKK7 have distinct and
redundant roles in development, but the underlying mechanisms
have remained largely unknown.

The Mechanisms of MKK4 and MKK7
in Embryogenesis

The distinct roles of MKK4 and MKK7 in embryogenesis may be
attributed in part to their unique tissue distribution.11 The MKK7
is ubiquitously expressed in the developing and adult tissues, with
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a gradual increased expression in selective sites, such as hair
follicle, skin and brain at a later stage of embryogenesis.12 The
MKK4, on the other hand, displays a dynamic temporal spatial
expression in embryogenesis. Specifically, strong MKK4 expres-
sion is detected in the central nervous system, liver and thymus at
early stages of development. While expression in fetal liver and
thymus gradually decreases as embryogenesis proceeds, expression
in nervous system increases over time throughout postnatal
development and remains at a stable level in adult brain.13 The
expression pattern provides anatomical basis for specific roles of
MKK4 in hepatogenesis and neurogenesis during development
and in adult brain. Specific Mkk4 gene ablation in the neuronal
lineage, for example, causes severe neurological defects and
premature death due to misalignment of the Purkinje cells in the
cerebellum and radial migration in the cerebral cortex.14

The biological activities of MKK4 and MKK7 are likely
mediated by their downstream MAPKs, specifically, JNK and
p382,15-20 MKK4 and MKK7 share 55% amino acid identity
within the kinase domains, but they have quite different
properties in JNK and p38 phosphorylation. First, MKK4
phosphorylates and activates the p38 MAPKs, but MKK7 does
not. Second, while MKK4 and MKK7 both phosphorylate JNK,
MKK4 preferentially phosphorylates the Tyr, whereas, MKK7
phosphorylates the Thr at the Thr-X-Tyr site. As the con-
sequence, MKK4 and MKK7 each makes distinct contribution,
while both are required for optimal JNK activity.21 Hence, MKK4
and MKK7 may exert distinct effects on embryogenesis through
differential activation of JNK and p38.

The mammalian systems have three Jnk genes, of which Jnk1 and
Jnk2 are expressed ubiquitously, whereas, Jnk3 is expressed
specifically in cells of the neuronal lineages.5,22-24 Neither Jnk1 nor
Jnk2 knockout perturbs fetal development; however, knocking out
both results in death of the embryos at E11 due to defective neural
tube formation and regional reduced apoptosis.25,26 The p38 family
has four members, namely, p38a, p38β, p38c and p38d. Among
these members, only p38a.has displayed an essential role in

embryogenesis.27-29 Knockout p38a in mice causes embryonic
lethality at E10.5 due to abnormal placenta development and
erythropoiesis.30-33 Since none of the MAPK knockout phenotypes
resembles that of Mkk4(-/-) or Mkk7(-/-), MKK4 and MKK7 must
regulate embryogenesis through complex signaling mechanisms, not
simply due to activation of JNK or p38.

In Vitro Embryonic Stem Cells (ESCs) as Surrogates
to Understand the Mechanisms of Development

Embryonic development starts with the fertilization of the ovum,
followed by rapid mitotic division and differentiation of
embryonic stem cells (ESCs) in the inner cell mass. The ESCs
first commit to ectoderm, mesoderm and endoderm lineages,
followed by more restricted differentiation toward specific fate.34

Ultimately, these processes lead to the generation of over 200
different mammalian cell types that are organized into tissues to
provide all the functions required for viability and reproduction.

The ESCs captured from the inner cell mass of pre-
implantation embryos can be expanded in vitro for extended
periods of time.35 These cells are able to self-renewal and maintain
pluripotency in the presence of leukemia inhibitory factors (LIF),
but will differentiate in the absence of LIF, giving rise to a broad
spectrum of lineages.36,37 The most common in vitro differentia-
tion protocol uses the “hanging drop,” in which the ESCs are
forced to aggregate to form embryoid bodies (EBs), mimicking
the inner cell mass of the developing embryos (Fig. 2).38-40 The
EBs can continue to grow and differentiate spontaneously over

Figure 1. Schematic diagram of the MAPK signaling pathways.

Figure 2. Schematic diagrams of embryonic stem cell differentiation.
(A) Diagrammatic illustration of the early stage of fetal development and
the in vivo origin of embryonic stem cells. (B) In vitro ESC differentiation
using the “hanging drop” protocol. Differentiation is initiated when
the cells are grown in the absence of anti-differentiation factors, such as
LIF and fibroblast feeder cells. Approximately 500 cells/20 ml were
applied to the lids of tissue culture plate, as hanging drops, to force
the cells aggregate to form embryoid bodies (EBs). The EBs can further
differentiate in vitro, leading to the generation of cell types of ectoderm,
endoderm and mesoderm lineages.
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time to generate a wide variety of cell types. By tracing lineage-
and cell type-specific gene expression, we found that despite the
potential of ESCs to produce all cell types, the EB culture
produced most abundantly cells of mesodermal lineages, with
limited commitment to endodermal and ectodermal lineages
(Fig. 3). To extend the application of this system, a number of
modified protocols have been developed to direct ESC differentia-
tion along the endodermal and ectodermal lineages, so that the in
vitro system can be used to generate a wide range of cell types,
such as neuron, epithelium and endothelium.41-47

Although the spatial and temporal orchestration of early
embryogenesis is missing in cell culture systems, many of the
regulatory machineries affecting embryonic development also
regulate ESC differentiation in vitro. In contrast to the in vivo
studies limited in their ability to attain clear mechanistic insight
into the effects of exogenous factors, the in vitro differentiation

affords more controlled methods to present morphogens and
environmental cues and directly assess differentiated cell pheno-
types. An additional advantage is that the in vitro system can be
coupled with genetic knockout to study gene functions in early
developmental stages that are otherwise not accessible in vivo. For
these reasons, the ESCs have emerged as a unique in vitro
experimental system for the investigation of basic principles of
mammalian cell differentiation and development.

Investigation of the Developmental Roles of MAPKs
and MAP2Ks In Vitro

In vitro studies lead to the findings that the MAPKs are important
for survival and apoptosis of ESCs in response to various
extracellular signals, similar to their well-established functions in
stress responses in other cells.48-54 It is also shown that each

Figure 3. The differentiation profiles of EB. Wild type mouse ESCs were subjected to in vitro differentiation, following the “hanging drop” protocol and
the EBs were transferred to a 10 cm2 bacterial plate at approximately 100 EBs per plate. Under this condition, the ESCs spontaneously differentiate into
mesoderm, ectoderm and endoderm lineages. RNA was isolated at day 13 of differentiation and lineage specific markers were examined by real time
RT-PCR. The most abundantly expressed genes in the EB culture were those for the mesodermal lineage, including genes specific for primitive
mesoderm, Fibroblast growth factor 5 (Fgf5), Brachyury and Nodal, for chondrocytes, Collagen 2a2 (Col2a2) and Metalloproteinases 2 (Mmp2), and for
myocytes, Myosin light chain (Mlc) and Myosin heavy chain a (Mhca) and Mhcb. Less abundantly expressed were genes for the endodermal lineage,
including markers for definitive endoderm Cytokeratin 19 (Ck19) and liver endoderm, such as Forkhead box A2 (Foxa2) and GATA binding protein 4 (Gata4).
The least expressed were genes for the ectodermal lineage, including markers for epidermis, such as Fillagrin, Loricrin and Involucrin, for neuronal
lineages, such as Notch-1, Tubulin b 3 (Tubb3) and Vimentin. The sequences of forward primers used in PCR are: Gapdh, 5’-AACGACCCCTTC ATTGACC-3’, Ck19,
5’-TCAATGATCGTCTCGCCTCCTACT-3’, Foxa2, 5’-AAGTATGCTGG GAGCCGGAAGAT-3’, Gata4, 5’-CTG TCA TCT CAC TAT GGG CAC-3’, Filaggrin, 5’-GAAACG-
ATATACCTG GAGATGC3’, Loricrin, 5’TGAGGAGACACTAGAATTGGG3’, Involucrin, 5’-GAGAAGCAGCATCAGAAGCC-3’, Notch-1, 5’-TCTGCTTATGCCTCAAGG-
GAACCA-3’, Tubb3, 5’-TTCTGGTGGACTTGGAACCTG GAA-3’, Vimentin, 5’-CTTTACTCAACTTTCCAGAGCC-3’, Fgf5, 5’-AGAGTGGGCATCGGTTTC-3’, Brachyury,
5’-TGCTGCAGTCCCATGATAACTGGT-3’, Nodal 5’-CCAACCATGCCTACATCCAG-3’, Col2a1, 5’-ATCTGCACTGAATGGCTGACCTGA-3’, Mmp2, 5’- AACCAGCCTTCT-
CCTTCAC-3’, Mlc, 5’- CTCCAAGAACAAGGACACTG-3’, Mhca, 5’-CTGCTGGAGAGGTTATTCCTC G-3’, Mhcb, 5’-TGCAAAGGCTCCAGGTCTGAGGGC-3’
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MAPK plays unique roles in differentiation and lineage
specification. The JNKs, for example, are most important for
mesodermal differentiation and less important for ectodermal and
endodermal differentiation.55 In addition, while JNK is required
for induction of neuronal lineage, but inhibition of epithelial
lineage by retinoic acid, a function likely mediated through
suppression of the Wnt-4/Wnt-6 and BMP signaling path-
ways,56-58 it can also be activated by Wnt, leading to accelerated
cardiac myocyte differentiation.59 The p38, on the other hand, is
essential for commitment of mouse ESCs into mesodermal
lineages that lead to cardiac, endothelial, smooth muscle, and
skeletal muscle differentiation, but inhibits early neural differen-
tiation.60-65 In contrast to p38, which is dispensable for epithelial
differentiation,66 the ERKs are crucial for epithelial differentia-
tion, in addition to neuronal differentiation.67,68

Relatively little is known about the roles MKK4 and MKK7
play in ESC differentiation. Available in vitro data suggest that
neither MKK4 nor MKK7 is essential for differentiation of ESC
to mast cells69 and that MKK4 is not required for hepatic
maturation at the late stage of liver development.70 We have
recently investigated the signaling and functional properties of
MKK4 and MKK7 in differentiation using single or combined
gene knockout ESCs (Fig. 4).71 Our results show that although
MKK4 and MKK7 are dispensable for embryonic stem cell self-

renewal and maintenance of pluripotency; they have comple-
mentary roles in supporting the survival of differentiated cells,
likely through synergistic activation of the JNK-c-Jun cascades.
We also show that MKK4, but not MKK7, is essential for
activation of p38, leading to ATF2 activation and cardiomyocyte
differentiation. This set of in vitro data has illustrated a MKK4-
p38 cascade in cardiogenesis and a MKK4/MKK7-JNK cascade in
cell survival during differentiation. Hence, MKK4 and MKK7 can
differentially regulate the downstream MAPKs and make distinct
contributions to the differentiation programs.

Conclusion and Perspectives

The in vitro ESC culture system, originally developed as a
potential technique for cell replacement therapy, has become a
powerful tool to understand the basic principles of development.
This system offers a relatively inexpensive and easily manipula-
table platform to identify extrinsic signals and intracellular factors
that control the differentiation programs. Over the past few years,
in vitro studies have considerably advanced our understanding of
the MAPK signaling mechanisms in lineage specification;
however, different experimental settings sometimes lead to
opposite conclusions, partly due to variable effects of the
MAPK inhibitors used in each given system.72 One approach to
overcome this problem is to take advantage of gene knockout
mouse ESCs. Using this approach, we are able to obtain a clearer
view of the signaling mechanisms and functions of MKK4 and
MKK7 in lineage commitment. A major challenge of the in vitro
system is the heterogeneity of the differentiated cell populations
that not only complicate directed differentiation and propagation,
but also make it difficult to assess the differentiation outcomes.
Genetically manipulate ESCs have recently been developed to
express green fluorescence protein (GFP) and/or selection markers
under the control of a lineage-specific gene promoter. This will
allow the specific cell types to be traced and purified during
differentiation.73 Incorporation of emerging new technologies
holds great promises to extend the application of the in vitro
system. For example, a recent study shows that chromatin
immunoprecipitation and sequencing (ChiP-seq) technique has
been applied to the in vitro ESC system, leading to discovery of a
novel chromatin-modifying function of JNK in histone H3 Ser10
(H3S10) phosphorylation during neuronal differentiation.74

While the in vitro findings still need to be validated in vivo,
the rapid evolution of the in vitro system will undoubtedly make
it extremely useful to illuminate the complex gene-gene and gene-
environmental interaction mechanisms underlying development
and diseases.
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Figure 4. The roles of MKK4 and MKK7 in differentiation. A Schematic
diagram summarizes the roles of MKK4 and MKK7 in vitro ESC
differentiation. The MKK4 and MKK7 have complementary roles in
activation of the JNK-c-Jun cascades that may be required for
differentiated cell survival. Hence, loss of both MKK4 and MKK7 leads to
senescence of the differentiated cells. On the other hand, MKK4 is
essential for activation of the p38-ATF2/MEF2C cascades, while MKK7
may attenuate p38 activation. Consequently, the Mkk4(-/-) ESCs are
defective in myosin heavy chain (MHC) induction and cardiomyocyte
differentiation, but Mkk7(-/-) ESCs have enhanced MHC expression and
cardiogenesis.
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