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Abstract
A crucial step in understanding visual input is its organization into meaningful components, in particular object
contours and partially occluded background structures. This requires that all contours are assigned to either the
foreground or the background (border ownership assignment). While earlier studies showed that neurons in
primate extrastriate cortex signal border ownership for simple geometric shapes, recent studies show consistent
border ownership coding also for complex natural scenes. In order to understand how the brain performs this
task, we developed a biologically plausible recurrent neural network that is fully image computable. Our model
uses local edge detector (B) cells and grouping (G) cells whose activity represents proto-objects based on the
integration of local feature information. G cells send modulatory feedback connections to those B cells that
caused their activation, making the B cells border ownership selective. We found close agreement between our
model and neurophysiological results in terms of the timing of border ownership signals (BOSs) as well as the
consistency of BOSs across scenes. We also benchmarked our model on the Berkeley Segmentation Dataset and
achieved performance comparable to recent state-of-the-art computer vision approaches. Our proposed model
provides insight into the cortical mechanisms of figure-ground organization.
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Introduction
Figure-ground organization is critical for understanding

the visual world around us. This process requires image
segmentation, i.e., dividing the input image into regions

corresponding to objects and background. Determining
the correct assignment of each region border to its cor-
responding object is difficult due to clutter, occlusion, and
the wide variety of features present in natural scenes. This
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Significance Statement

Figure-ground organization is the process of segmenting an image into regions corresponding to objects
and background. This process is reflected in the activity of cells in extrastriate cortex that show border
ownership selectivity, encoding the location of an object relative to their receptive fields (RFs). We propose
a model that can explain border ownership coding in natural scenes. Recurrent connections allow for
integration of local and global object information, resulting in fast scene segmentation.
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problem has long fascinated researchers from psychol-
ogy (Wertheimer, 1923; Koffka, 1935; Nakayama et al.,
1995), neuroscience (Zhou et al., 2000; Craft et al., 2007),
and computer vision (Sajda and Finkel, 1995; Ren et al.,
2006; Teo et al., 2015; Wang and Yuille, 2016). Despite
this long line of research, our understanding of the neural
basis of figure-ground organization remains surprisingly
limited.

Zhou et al. (2000) first demonstrated that border own-
ership is implemented in the firing rates of individual
neurons in extrastriate cortex. When the edge of an object
is presented in the receptive field (RF) of one of these
neurons, the cell responds with different firing rates de-
pending on which side of its RF the object is located. A
neuron’s difference in firing rates for when the object is
located on the neuron’s preferred side versus when it is
located on its non-preferred side is called the border
ownership signal (BOS). Border ownership coding has
been studied using a wide variety of artificial stimuli,
including those in which the difference between fore-
ground and background is defined by luminance (Zhou
et al., 2000), motion (Von der Heydt et al., 2003), disparity
(Qiu and von der Heydt, 2005), and transparency (Qiu and
von der Heydt, 2007), as well as, more recently, by using
natural stimuli such as faces (Hesse and Tsao, 2016; Ko
and von der Heydt, 2018) and complex natural scenes
(Williford and von der Heydt, 2016). A substantial fraction

of neurons show consistent border ownership coding
across natural scenes that matches their preference on
artificial stimuli (Fig. 1A), with the timing of BOSs being
similar for both types of stimuli (Fig. 1B).

How can cortical neurons modulate their activity based
on visual input from locations at distances many times the
size of their classical RFs? Proposed mechanisms based
on asymmetric surround processing or lateral connec-
tions have difficulties explaining the relative timing of
neuronal responses (see Comparison to other models).
One class of models that does not suffer from this prob-
lem involves populations of grouping (G) cells which ex-
plicitly represent (in their firing rates) the perceptual
organization of the visual scene (Craft et al., 2007; Mihalas
et al., 2011; Layton et al., 2012). These cells are recipro-
cally connected to border ownership selective (B) cells
through feedforward and feedback connections. The
combined activation of grouping cells and cells signaling
local features represents the presence of a “proto-
object,” a term borrowed from the perception literature
(Rensink, 2000). The use of proto-objects results in a
structured perceptual organization of the scene. This
proto-object-based approach, which we adopt here, is
consistent with the results of psychophysical and neuro-
physiological studies (Duncan, 1984; Egly et al., 1994;
Scholl, 2001; Kimchi et al., 2007; Qiu et al., 2007; Ho and
Yeh, 2009; Poort et al., 2012).

However, with the exception of some computer-vision
studies (Sakai et al., 2012; Teo et al., 2015), we are not
aware of any models that have quantitatively tested bor-
der ownership selectivity on natural scenes. Russell et al.
(2014) developed a model that is related to ours and that
includes a class of border ownership selective cells, but
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Figure 1. Consistency of border ownership coding. A, Border ownership coding for an example cell. Upper panels, Red circles
indicate the size and location of the cell’s RF. Visual stimulation within the RF is identical in the two presentations for the abstract
figure (“square”), and nearly so for the natural scenes. This is achieved by rotating the object 180° about the RF and inverting color
and luminance contrast of the image (Williford and von der Heydt, 2016). Stimuli with objects to the upper right of the cell’s RF (its
“preferred” side) are outlined in red, while stimuli with objects to the lower left of the cell’s RF (“non-preferred” side) are outlined in
blue. Lower panels, The cell’s peristimulus time histogram (PSTH) for the preferred side is shown by the red traces, while the PSTH
for the non-preferred side is shown by the blue traces. The cell has a preference for objects located to the upper right of its RF on
both the square and natural scene stimuli, as indicated by higher firing rates. Shading indicates 95% confidence intervals (note that
shading is very narrow for the natural scenes data). B, Population BOS. Across the entire population of recorded cells, the mean BOS
(difference in firing rate between preferred and non-preferred sides) is similar for natural scenes (red trace) and for squares (black
trace), suggesting a common, robust cortical grouping mechanism. Panels A, B are modified from Figures 2 and 6, respectively, of
Williford and von der Heydt (2016).
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that model is focused on the computation of saliency
rather than the responses of BOS cells. Here, we propose
a model based on recurrent connectivity that is able to
explain border ownership coding in natural scenes. We
compare our model results with experimental data and
find good agreement both in the timing of the BOSs and
in the consistency of border ownership coding across
scenes. We also benchmarked our model on a standard
contour detection and figure-ground assignment dataset,
BSDS-500 (Martin et al., 2001) and achieve performance
comparable to state-of-the-art computer vision ap-
proaches. Importantly, these machine learning techniques
achieve their performance through extensive training us-
ing thousands of labeled images and very large numbers
of free parameters, e.g., �108 for VGGNet, a standard
deep neural net model (Simonyan and Zisserman, 2014).
In contrast, our model has less than ten free parameters
and it requires no training whatsoever.

Materials and Methods
Model structure

Our approach is inspired by the proto-object-based
model of saliency proposed by Russell et al. (2014), and it
includes recurrent connections for figure-ground assign-
ment, akin to the model from Craft et al. (2007). At the
core of our model is a grouping mechanism which esti-
mates figure-ground assignment in the input image using
proto-objects of varying spatial scales and feature types
(submodalities). These proto-objects provide a coarse
organization of the image into regions corresponding to
objects and background.

To achieve scale invariance, the algorithm successively
downsamples the input image in steps of �2 to form an
image pyramid spanning five octaves (Fig. 2). This is
functionally equivalent to having similar RFs/operators at
different spatial scales. The k–th level of the pyramid is
denoted by using the superscript k. Unless explicitly
stated, any operation applied to the pyramid is applied
independently to each level and each feature type. Each
layer of the network represents neural activity, which can
be propagated from one layer to another via feedforward
or feedback connections. We use a filter-based approach,
where the RFs of neurons are described by filter kernels
and the correlation operation (Eq. 3 below), is used to

determine neuronal responses in a given layer from those
in the previous layer. The model was implemented using
MATLAB (MathWorks).

The first stage of the model extracts edges from the
input image based on either luminance or color informa-
tion (Fig. 2). We use the combination of RFs (CORF)
operator, which is a model of V1 simple cells with push-
pull inhibition (Azzopardi et al., 2014). We chose this
operator due to its texture suppression properties, which
can be beneficial when applied to natural images and
because it is more biologically realistic than other com-
puter vision algorithms. Our model does not require a
specific edge detection method and could be modified to
use other front-end edge detectors (e.g., Gabor filters). In
the following, we only describe model computations on
the luminance channel, but the exact same computations
are also performed on the two-color channels (red-green
and blue-yellow). As in Russell et al. (2014), the color
channels were computed according to the methods out-
lined in the Itti et al. (1998) visual saliency model.

For a given scale k, the output of the edge detection
stage of the model consists of simple (S) cells of eight
different orientations � and two contrast polarities, S�, L

k

�x, y� for light-dark edges L and S�, D
k �x, y� dark-light edges

D. For the two-color channels, the edge polarities are
determined by color-opponent responses (e.g., red-green
edges and green-red edges). Only the signal strength at
the optimal orientation at each spatial location is used as
input to the network. This simplification significantly re-
duces computation time by eliminating the calculation of
responses for non-optimal orientations.

In contrast to previous approaches which combine sim-
ple cell responses into a contrast-invariant complex cell
response (Russell et al., 2014), we keep the contrast-
sensitive S cell responses available since they provide an
informative cue for grouping along object edges. Objects
tend to maintain similar contrast polarity along their
boundaries, which may be useful for accurately determin-
ing figure-ground relationships. As a result, we have two
sets of responses at each layer of our network corre-
sponding to the two different types of contrast polarity,
light/dark on the foreground/background border, and its
opposite.

Figure 2. Overview of model computations. The image is edge filtered and then successively downsampled in half-octaves to create
a pyramid of edge signal images (only three scales are shown). The same set of feedforward and feedback grouping operations is then
applied at each level of the pyramid to achieve scale invariance. Feedback from grouping cells is combined across scales so that
global context information can influence figure-ground segmentation. The model is run for a total of 10 iterations (one iteration
includes one feedforward and one feedback pass through the model), and our final results are based on neural activity from the
highest resolution scale of the image pyramid.
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Next, for a given angle �, each S cell feeds into an
opposing pair of border ownership (B) cells. As a result, B
cells are also sensitive to contrast polarity, as is the case
for many experimentally observed border ownership re-
ceptive cells (Zhou et al., 2000). For each contrast polar-
ity, we used one-to-one connections between S cells of
one orientation and the corresponding pair of B cells. The
two members of the pair have the same preferred orien-
tation but opposing side-of-figure preferences.

To infer whether the edges in B�, L
k �x, y� and B�, D

k �x, y�
belong to figure or ground, knowledge of proto-objects in
the scene is required. This context information is retrieved
from a grouping mechanism (Fig. 3). Grouping cells (G)
integrate information from B cells, and a given G cell
responds to either light objects on dark backgrounds,
GL

k�x, y�, or dark objects on light backgrounds, GD
k �x, y�.

This computation is similar to the use of center-surround
cells in the Russell et al. (2014) model. In contrast to their
approach, our model does not require an additional class
of center-surround cells, but instead allows G cells to
directly integrate local feature information from B cells
and then bias the activity of these same cells using recip-
rocal feedback connections. Our model runs in an itera-
tive manner, with one iteration corresponding to one
feedforward and one feedback pass through the model. G
cell activity is combined across scales before each feed-
back pass, which allows the model to more accurately
determine figure-ground assignment in a scale-invariant
manner (Fig. 2).

A more detailed view of the structure of our model is
shown in Figure 3. G cells integrate the B cell activity in a
roughly annular fashion. This allows G cells to show pref-
erence for objects whose borders exhibit the Gestalt prin-
ciples of continuity and proximity. G cell activity is defined
by

GL
k(x, y) � <��

[B�,L
k (x, y) � B���,L

k (x, y)] � v�(x, y)= (1)

GD
k (x, y) � <��

[B�,D
k (x, y) � B���,D

k (x, y)] � v�(x, y)= (2)

where � runs over all angles taken into account in the
model (eight directed orientations, each with two side-of-
figure preferences), <·= is half-wave rectification, and � is
the correlation operator defined as

f(x, y) � g(x, y) � �
m���

�

�
n���

�

f(m, n)g(x � m, y � n) (3)

The spatial structure of the G cell RFs is written in terms
of the functions v��x, y�, defined as

v�(x, y) �

exp �(�x2 � y2 � R0)cos (tan �1(
y
x

) � � �
�

2
)�

2�I0(�x2 � y2 � R0)
(4)

where � is the desired angle of the mask and the radius of
the grouping cell RF R0 in this equation is set to two

Figure 3. Structure of the recurrent neural network. Each circle represents a population of neurons with similar RFs and response
properties. Red and blue lines represent excitatory and inhibitory projections, respectively. Solid and dashed lines represent purely
feedforward and reciprocal feedforward/feedback connections, respectively. Edges and other local features of a figure (black square
outline) activate simple cells (S) whose RFs are shown by green ellipses. S cells project to border ownership cells (B) that have the
same preferred orientation and retinotopic position as the S cells they receive input from. For each location and preferred orientation,
there are two B cell populations with opposite side-of-figure preferences. In the example shown, these are B�, whose neurons
respond preferentially when the foreground object is to the left of their RFs, and B0, whose members prefer the foreground to the right
side of their RFs. B cells have reciprocal, feedforward excitatory and feedback modulatory connections with grouping cells, G, which
integrate global context information about objects. The RF of a G cell is shown by the gray annulus. It is also the projective field of
this neuron for the modulatory feedback connections to B cells. Opposing B cells compete indirectly via feedback inhibition from G
cells, which bias their activity and thus generate the BOS used to determine figure-ground assignment. The structure shown exists
for both light objects on dark background [cell types B�, L

k �x, y� and GL
k�x, y�] and dark objects on light background [cell types B�, D

k

�x, y� and GD
k �x, y�]. Grayed-out G cells represent proto-objects left and right of the one which is represented by the G cell in the center.
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pixels. Because we rescale the input image at each level
k of the image pyramid, the effective radius of each G cell
RF Gk�x, y� grows with the level of the pyramid, providing
approximate scale invariance. The factor � / 2 rotates the
mask to ensure it is correctly aligned with the edge cells.
I0 is the modified Bessel function of the first kind. We
normalize each v��x, y� by dividing by the maximum value
over all positions (x, y). Conceptually, the G cell RF is a
“donut” whose size is determined by the radius R0. We
split this donut up into separate pieces according to the
preferred orientations of the B cell neurons that project to
the G cell.

Input to G cells is based on differences in preferred and
non-preferred B cell activity (Eqs. 1, 2). This feedforward
inhibition is not necessary for model convergence, but
provides a means by which G cells can compete with
each other via inhibition from B cells to G cells. In our
simulation, the activity at the time of stimulus onset of
each cell in a pair of B cells is numerically identical since
both cells receive the same initial bottom-up input. As the
difference in B cell activity is zero on the first iteration, we
omit inhibition from non-preferred B cells and compute
the activity of G cells based only on the preferred B cells
on the first iteration. We also implement a simple form of
local inhibition between the two complementary grouping
pyramids, GL

k�x, y� and GD
k �x, y�. The reason is that many

objects are either dark on a lighter background or the
inverse. Therefore, at each spatial location, only one type
of G cell should be active, representing either a light or a
dark object at that location. For each level of the pyramid
k, we perform a winner-take-all value assignment,

GL
k(x, y) ¢ �GL

k(x, y) if GL
k(x, y) � GD

k (x, y)
0 otherwise

(5)

GD
k (x, y) ¢ �GD

k (x, y) if GD
k (x, y) � GL

k(x, y)
0 otherwise

(6)

Feedback from G cells to B cells is used to bias the
responses of the B cells to correctly signal figure-ground
assignment. The feedback depends on the contrast po-
larity of the G cell and the B cell. B�, L

k , the border owner-
ship activity for a light object on a dark background is
given by

B�,L
k (x, y) � 2S�,L

k (x, y)

	
1

1 � exp (� (�
j
k

1
2j�k

v���(x, y) � GL
j (x, y) � �

j
k

1
2j�k

v�(x, y) � GD
j (x, y)))

(7)

and B�, D
k , the border ownership activity for a dark object

on a light background is given by

B�,D
k (x, y) � 2S�,D

k (x, y)

	
1

1 � exp (� (�
j
k

1
2j�k

v���(x, y) � GD
j (x, y) � �

j
k

1
2j�k

v�(x, y) � GL
j (x, y)))

(8)

where v��x, y� is the kernel responsible for mapping object
activity in the grouping pyramids back to the object edges

(which is just the reciprocal kernel for the feedforward
connections; Eq. 4), and the factor 2j-k normalizes the
v�(x,y) operator across scales. Scales j greater than k in
the equations above represent more global information.
The model pools information across different spatial
scales in a coarse-to-fine manner, with information from
coarser scales first being upsampled to the resolution of
the finer scale before being combined additively. The
logistic function in the equations above enforces compe-
tition between B cells such that their total activity is
always conserved, and each B cell has activity between
zero and two times its bottom-up input activity, S�

k�x, y�.
In the equations above, B cell activity is facilitated by G

cell activity on its preferred side and suppressed by G cell
activity on its non-preferred side. In other words, B cells
receive (modulatory) facilitating feedback from G cells of
the same contrast polarity on their preferred side and
(modulatory) suppressive feedback from G cells of the
opposite contrast polarity on their non-preferred side.
This is motivated by neurophysiological results which
show that image fragments placed within the extra-
classical RF of a border ownership neuron can cause
enhancement of the neuron’s activity when placed on its
preferred side, and suppression if placed on the non-
preferred side (Zhang and von der Heydt, 2010). Further-
more, modulating the scale-specific bottom-up S cell
responses with G cell activity summed across spatial
scales ensures that the B cell responses are scale-
invariant. Neurophysiological results show border owner-
ship coding for stimuli of varying sizes, with the latency of
the BOS being essentially independent of the size of the
figure (Zhou et al., 2000; Sugihara et al., 2011).

As discussed, figure-ground assignment occurs for
both light objects on dark backgrounds and dark objects
on light backgrounds. In our model, this is achieved by
computing B cell activity independently for each contrast
polarity and then summing the final steady-state activities
for both the light and dark cell responses to give a final
border ownership response independent of figure-ground
contrast polarity. The B cell responses for light and dark
objects can be combined giving a contrast polarity invari-
ant result,

B�
k(x, y) � B�,L

k (x, y) � B�,D
k (x, y) (9)

While neurons with contrast-invariant border ownership
responses are observed physiologically (Zhou et al.,
2000), we do not implement them explicitly in our model
for the sake of simplicity and computational efficiency.
Their difference

B�
k(x, y) � B���

k (x, y) (10)

is called the BOS by Zhou et al. (2000), a notation that we
adopt. Its sign determines the direction of border owner-
ship at pixel (x, y) and orientation �, and its magnitude
gives a confidence measure for the strength of border
ownership.

Similarly, the G cell responses for light and dark objects
are combined to a contrast polarity invariant result repre-
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senting the presence of a proto-object of either polarity at
location (x, y) and scale k:

Gk(x, y) � GL
k(x, y) � GD

k (x, y) (11)

The output of the model is the G pyramid activity
summed over all spatial scales and the differences in B
cell activity at the highest spatial resolution, which pro-
vides a perceptual organization of the visual scene.

Objects can be perceptually segregated from each
other or from the background because of differences in
relative color or luminance. There are many other features
underlying figure-ground segmentation, e.g., differences
in texture, motion, etc. As mentioned previously, we use
both luminance and color information from the image to
perform the grouping operation. The same exact opera-
tions that were performed on the luminance channel are
also performed on the two-color channels. We combine
the final outputs of the B and G cells with an 80% weight-
ing for the luminance channel and a 10% weighting each
for the red-green and the blue-yellow color channels.
Modifying the exact relative weighting does not qualita-
tively change our results.

Code accessibility
The code/software described in this paper is freely

available online at https://github.com/brianhhu/FG_RNN.
The code is also available as Extended Data.

Model implementation
All simulations were performed on a 300-core CPU

cluster running Rocks 6.2 (Sidewinder), a Linux distribu-
tion intended for high-performance computing. This al-
lowed us to simultaneously run our model on multiple
images, speeding up our testing time. We ran the model
for a total of 10 iterations, with each iteration being one
feedforward pass of B cell to G cell activity, followed by
one feedback pass of G cell to B cell activity (Fig. 2). We
generally found that the model converged after only a few
iterations.

After convergence, the result is the self-consistent so-
lution (fixed point) of the feedforward-feedback loop
equation. Contour detection and figure-ground assign-
ment results are computed from the population of B cells
at the highest resolution level of the image pyramid, which
has the same resolution as the input image. B cell activity
is converted into a population vector code by summing
the final activity across orientations, where the magnitude
of the resulting vector at each pixel location represents
the BOS (which we use as a measure of strength of
contour detection, Model performance for contour detec-
tion and figure-ground assignment: comparison with
standard benchmarks), and the direction of the vector
provides a continuous figure-ground orientation label. For
a given image, we normalize the BOS at each pixel (x, y)
by its maximum value across the entire image, such that
the BOS is bounded between –1 and 1. Negative BOS
values indicate a predicted figure-ground orientation label
which is opposite that of the ground-truth label.

Comparison between model behavior and cell
responses

To compare our model results with experimental re-
sults, we used a publicly available dataset of border own-
ership cell responses recorded during viewing of natural
scenes by Williford and von der Heydt (2017), see the
documentation of that dataset for more details about the
stimuli, experimental design, and data analysis. Briefly,
the dataset includes BOSs for each scene that was
viewed by each recorded cell. Adopting the terminology
of Williford and von der Heydt (2017), a “scene point” is a
specific location in a specific image that is projected onto
the RF of a cell. Scene points are selected such that they
always lie on an object boundary. Note that an image can
contain more than one scene point. In the following, we
define consistency for the model or a given cell as the
ratio of scene points with the same sign of BOS divided by
the total number of tested scene points. For our analyses,
we first selected a subset of cells (N � 13) from the
population of recorded cells (N � 140) which had highly
consistent border ownership responses, defined as hav-
ing the same sign of border ownership on �80% of their
tested scene points. To perform our analyses, we calcu-
lated the model’s BOS for the same set of scene points
shown to the cells. We used a combination of different
metrics to compare the BOS responses of one cell to that
of another cell, or of one cell to the model, on the set of all
common scene points viewed by both. Metrics used were
cosine similarity, bootstrap and equivalence testing, and
goodness of fit, which are explained below. The use of
multiple metrics provides slightly different views of the
model’s performance that is not biased by any one single
metric. We found that the model’s performance was over-
all consistent across all measures that we used.

Cosine similarity
We characterize the behavior of a cell or the model by

its BOS responses. When considering the correlation be-
tween responses of two cells, or a cell with the model, we
first note that the Pearson correlation coefficient between
the response vectors across scene points is not a suitable
metric because it requires mean-centering the BOS re-
sponses. We therefore use an alternative measure of
correlation between vector-valued functions that avoids
this problem, the cosine similarity, which is commonly
used in the field of natural language processing (Mihalcea
et al., 2006), with some applications to neuroscience
(Bruffaerts et al., 2013; Komorowski et al., 2013). For this
method, all BOS responses of a given cell are described
in terms of a single vector in a high-dimensional vector
space where each (orthogonal) axis is the BOS re-
sponse to one specific scene point. The component of
the vector for one cell is the observed BOS for this
dimension. The same applies for the comparison of a
cell and the model.

For two arbitrary vectors A and B of equal dimensions,
cosine similarity is defined as the scalar product of the
two vectors normalized by the product of their lengths:
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cos (�) �
A·B

�A�2�B�2
�

�
i�1

n

AiBi

	�
i�1

n

Ai
2	�

i�1

n

Bi
2

(12)

where Ai and Bi are the Cartesian components of the
vectors A and B, respectively.

We can then compute the cosine similarity between any
two vectors (e.g., between one cell and another cell or
between a cell and the model) from Equation 12. It is
bounded between –1 and 1, with the geometric interpre-
tation that it measures the cosine of the angle between
two vectors. Two vectors which are exactly the same will
have a cosine similarity of 1, two vectors that are exactly
opposite will have a cosine similarity of –1, and a cosine
similarity of 0 indicates two vectors that are orthogonal or
decorrelated.

To test the hypothesis that the model performs similarly
to the most consistent cells from the experiment, we used
bootstrap testing on the cell-cell and cell-model cosine
similarities computed above. To perform the bootstrap
test, means of the cell-cell and cell-model cosine similar-
ities were calculated using resampling with replacement
under the null hypothesis that the cell-cell and cell-model
cosine similarities come from the same distribution. When
computing means of cosine similarities, we used the
Fisher z-transformation, which is a variance-stabilizing
transformation for correlation coefficients. We calculated
the bootstrap estimate of the difference in the means
using a total of N � 10,000 samples.

Equivalence testing
Equivalence testing is a technique frequently used, for

example, in the bioequivalence setting to determine
whether the efficacy of a new drug or treatment is similar
to that of an existing drug or treatment (Walker and
Nowacki, 2011; Lakens, 2017). In standard hypothesis
testing, the null hypothesis is that the means of two
distributions are not different in a statistically significant
manner. However, failure to reject the null hypothesis is
not sufficient proof to conclude that the two distributions
are actually similar, as the test may also fail due to not
having enough statistical power (“absence of evidence is
not evidence of absence”). In equivalence testing, the null
hypothesis is, instead, that the means of the two distribu-
tions lie outside a pre-determined “zone of scientific in-
difference,” i.e., that they differ by more than the bounds
of an interval within which two results are considered
essentially equivalent. The alternative hypothesis (where
the burden of proof lies) is that the means of the two
distributions fall within this zone and can thus be consid-
ered equivalent. We consider the cell-cell and cell-model

BOS values to be equivalent if the difference in their
means falls with the interval [–0.25, 0.25], which is our
zone of indifference. The equivalence test is performed by
using two one-sided t tests from the Python statsmodels
package.

Goodness of fit
We expressed goodness of fit by the coefficient of

determination, which is defined as the fraction of total
variance explained by the model (Holdgraf et al., 2017).
Because neural BOS and model BOS have different
scales, we added a scale factor to the model that was
determined for each cell by a least-squares fit.

Each cell’s response contains a repeatable component
�response

2 which is the same in response to the same stim-
ulus and which we attempt to capture with our model in
the variable �predicted

2 , and a noise component, �noise
2 . The

latter is random and its contribution can be estimated
from the responses to repeated presentations of the same
stimuli. Because our model is deterministic, it is unable to
capture the noise component present in the cell re-
sponses. We only care about the explainable variance,
which is the total response variance minus the noise
variance. As a result, we define our goodness of fit mea-
sure by computing the fraction of explainable variance
that is actually explained by the model,

R2 �
[�predicted

2 � (1/Ns)�noise
2 ]

[�response
2 � �noise

2 ]
(13)

where we apply a correction term in the numerator for the
fraction of the noise variance captured by fitting a scale
factor. This is determined by the ratio of the degrees of
freedom in the least-squares fit (1 for the scale factor) and
the degrees of freedom in the data (the number of scene
points, Ns; see DiCarlo et al., 1998; Wu et al., 2006).
Because the noise variance is estimated from the data,
the computed model goodness of fit may contain small
errors. Therefore, we also report average values over the
population of cells. Our statistical analyses are summa-
rized in Table 1.

Results
Model performance for contour detection and figure-
ground assignment: comparison with standard
benchmarks

We benchmarked our model on the publicly available
Berkeley Segmentation Dataset, BSDS-500 (Martin et al.,
2001). We did this in the context of two tasks: contour
detection and figure-ground assignment. For the contour
detection results, we report F-scores, the harmonic
means of precision and recall, averaged over all test
images. Precision is the fraction of boundary pixels de-
tected by the model that are true boundary pixels (i.e.,

Table 1. Statistical analysis

Line Data structure Type of test Power
a Approximately normal Bootstrap p � 0.11
b Approximately normal Equivalence test p � 0.03
c Normal Significance of correlation coefficient p � 0.5
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those marked by humans). Recall is the fraction of true
boundary pixels detected by the model. The F-score pro-

vides a summary score that captures the trade-off be-
tween the accuracy and noise of contour detection. For
the figure-ground assignment results, we report mean
accuracy (percentage of correctly labeled figure-ground
edges) averaged over all test images. We used publicly
accessible benchmarking code made available by the
authors of the original papers for contour detection (Ar-
beláez et al., 2011) and figure-ground assignment (http://
users.umiacs.umd.edu/~cteo/BOWN_SRF/) to do our
analysis and comparisons with other approaches. We
report our results on the contour detection and figure-
ground assignment tasks in Tables 2, 3, respectively.

Importantly, parameters were not tuned separately for
the two tasks: our model uses the same set of parameters
for both contour detection and figure-ground assignment.
Examples of our model output are shown in Figure 4. We
show the original input image, the edge maps, the BOSs,
and the final grouping maps. Although we did not specif-
ically design our model to achieve good performance on
the contour detection task, we hypothesized that BOS is
a good correlate of the perceptual saliency of object
contours. As such, we use the strength of the BOS (ab-
solute value, independent of figure-ground orientation) as
the model output for the contour detection task.

We compare our model to three state-of-the art ap-
proaches from the computer vision field: ultrametric con-
tour maps (gPb-owt-ucm; Arbeláez et al., 2011),

Table 2. Contour-detection results on the BSDS-500 dataset

Contour
ODS OIS AP

Human 0.80 0.80 -
Our approach 0.64 0.65 0.51
gPb-owt-ucm 0.73 0.76 0.73
SE 0.73 0.75 0.77
SRF 0.73 0.74 0.76

Numbers shown are the F scores when choosing the optimal scale for the
entire dataset (ODS) or per image (OIS), as well as the AP. Average agree-
ment between human subjects is captured by the “human” scores, which
provides an upper bound on model performance. In this table and in
Table 3, an absolute performance maximum by an algorithm is indicated by
boldface numbers.

Table 3. Figure-ground assignment results

Figure-ground
Mean accuracy

Human 83.9%
Our approach 71.5%
SRF 74.7%
Global-CRF 68.9%
2.1D-CRF 69.1%

Numbers shown are the mean accuracy across all matched scene points.

Figure 4. Example results of our model on images from the Berkeley Segmentation Dataset. Columns from left to right are the original
images, the edge activity, the border ownership cell activity (representing figure-ground assignment), and grouping cell activity. For
the figure-ground assignment, each edge is represented by a hue and a saturation value (see color wheel inset). The hue of the edge
represents the figure-ground orientation label with the arrow convention shown in the color wheel (e.g., red represents an object
located to the right) and the saturation of the edge represents the strength of the BOS. Grouping cell activity is color coded and
normalized, with warmer colors representing higher activity (see color bar at right).
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structured edges (SE; Dollár and Zitnick, 2015), and struc-
tured random forests (SRFs; Teo et al., 2015). We quantify
performance for the contour detection task using three
different measures: the best F-score on the dataset for a
fixed scale (ODS), the average F-score on the dataset
using the best scale for each image (OIS), and the average
precision (AP), which is the area under the precision-recall
curve. We refer the reader to Arbeláez et al. (2011) for a
more in-depth discussion of these metrics. Overall, we
achieved an F-score of 0.64 on the contour-detection task
when evaluating using the optimal dataset scale. Our
F-score improves slightly (to 0.65) when evaluating using
the optimal image scale. We achieve lower AP (0.51)
compared to the other models due to the lower recall
range of our model, which may be the result of limitations
in the initial edge detection method we used. All three
cited models achieve F-scores of 0.73 using the optimal
dataset scale (Table 2). Again, we emphasize that we did
not design our model for the contour detection task, but
we were nevertheless able to use computed BOSs from
the model as a measure of contour detection strength.

For the figure-ground assignment task, we quantify our
results using the mean accuracy of figure-ground assign-
ment across all labeled contours in the test images. The
model’s figure-ground label for a given scene point in the
image is considered correct if it falls within �90° of the
true (i.e., human-defined) figure-ground label. We com-
pared our model to SRFs (Teo et al., 2015) and two
conditional random field approaches, Global-CRF (Ren
et al., 2006) and 2.1D-CRF (Leichter and Lindenbaum,
2009). SRFs achieved a mean accuracy of 74.7%, ex-
ceeding that of the two other conditional random fields
approaches (Ren et al., 2006; Leichter and Lindenbaum,
2009) which were below 70%. Surprisingly, despite the
lack of training, our model outperforms these latter mod-
els with a mean accuracy of 71.5% (Table 3). There is also
a recent deep learning approach to the same problem
(Wang and Yuille, 2016), but since the results of this
method were not benchmarked using the standard tests
employed by the other methods, we did not include them
in our comparison.

In summary, we find that some current computer
vision approaches are able to achieve better perfor-
mance than our model based on the evaluation metrics
described above, but they require extensive training,
i.e., tuning of a large number of parameters using large
sets of training data. In contrast, our model is built based
on first principles and does not require any specific form
of training. Although our model is outperformed by some
state-of-the-art methods, it does represent an alternative
approach based on biologically plausible neural compu-
tations that require very little training or tuning of param-
eters. It therefore may add substantial insight into the
underlying mechanisms involved in solving these tasks
which is not readily available through solutions that rely on
extensive training.

Timing of the BOS
We tested our model on the standard square stimuli

used to determine border ownership preference in exper-

iments (Zhou et al., 2000), as well as a wide array of
natural scenes from the Berkeley Segmentation Dataset.
We found that our model converges within a few itera-
tions, typically two to three, demonstrating that only a few
feedforward and feedback passes are needed to deter-
mine figure-ground assignment for a given image (Fig. 5).
Given that white-matter projections in the brain are quite
fast, we assume that a single feedforward and feedback
pass in our model takes �10 ms. As the model converges
within two to three iterations, the BOS will reach its peak
within 20–30 ms of the initial visual response. A similar
time course has been observed in the experimental data,
with the BOS appearing �30 ms after visual response
onset (Zhou et al., 2000; Williford and von der Heydt,
2016). The similar time course of BOS tuning on both
artificial and natural stimuli suggests a common cortical
mechanism for grouping, which is also supported by pre-
vious experimental results demonstrating consistent bor-
der ownership coding across these different types of
stimuli. Our model is able to reproduce this result, show-
ing a similar time course for border ownership coding on
both the square and natural scene stimuli.

Model performance on border ownership coding:
comparison with experimental results

The model exhibits consistent border ownership coding
across a large number of natural scenes, similar to the
most consistent cells (consistency being defined in Com-
parison between model behavior and cell responses) from
the experiment. Figure 6 compares the BOSs sorted in
descending order by scene point for an example cell (Fig.
6B) and for the model (Fig. 6C). We chose this cell be-
cause it was tested with 177 scene points, the largest
number for any single cell in the dataset. It showed a
consistency of 74.0%. A large number of cells in the
dataset were highly consistent, even more so than the cell
illustrated in Figure 6, including 13 cells with �80% con-
sistency. Within this subset of cells, three cells exceeded
90% consistency. In comparison, the model showed an
overall consistency of 69.0% across 2205 tested scene
points (the full set of scene points viewed collectively by
any of the highly consistent cells). Although the model
was tested with more than an order of magnitude more
scene points than the example cell in Figure 6, it still
remained highly consistent. This level of consistency is
similar to the �70% accuracy the model achieved on the
figure-ground assignment benchmark.

We also used the cosine similarity metric (see Cosine
similarity) to quantify similarity in BOS responses between
cells and similarity between cells and the model on a
shared set of scene points. Despite the large diversity in
cells and their responses, we found that our model was
able to largely explain the border ownership coding of
highly consistent cells on natural scenes. Figure 7 shows
the comparison of cosine similarities between model and
cells on a per-cell basis for all 13 highly consistent cells.
The model-cell cosine similarities were all positive, rang-
ing from 0.21 to 0.69, with a mean similarity of 0.44. Given
biological noise and inter-cell differences, it is impossible
that the model-cell cosine similarities reach unity. To
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characterize an upper bound on the cosine similarity val-
ues, we also calculated the cosine similarities between all
pairs of highly consistent cells (13 cells, N � 58 pairs). For
the cell-cell comparisons, the cosine similarities ranged
from 0.14 to 0.91, with a mean similarity of 0.54. Boot-
strap testing revealed no significant statistical difference
between the means of the cell-cell and cell-model cosine
similarities (p � 0.11).

Since the absence of statistically significant difference
between two distributions by itself is not evidence that
they are the same, we used equivalence testing (see
Equivalence testing) on the means of the cell-cell cosine
similarities and model-cell cosine similarities. In contrast
to standard hypothesis testing, in equivalence testing the
null hypothesis is that a significant difference between the
two population means does exist. Our results revealed no
significant difference between the cell-cell and model-cell
cosine similarity values based on a zone of scientific
indifference of [–0.25, 0.25], leading us to reject the null
hypothesis (p � 0.03). We conclude that the performance
of our model is indistinguishable from that of the set of
highly consistent cells in the dataset.

We also computed linear regression fits between the
cell BOS responses and the model BOS responses on a
per-cell basis. Each regression results in an R2 goodness
of fit value (Eq. 13), which gives a measure of the percent-
age of variance that the model is able to explain. The
noise variance for each cell was estimated from the re-
sponses of the cell to separate presentations of the iden-
tical scene point and averaged over all scene points
presented. The R2 goodness of fit values for the highly
consistent cells ranged from 0.05 to 0.55, with a mean
value of 0.24. For two of the 13 highly consistent cells, the

R2 values exceeded 0.3, indicating that the model was
able to capture �30% of the explainable variance. When
we computed the R2 goodness of fit values over all cells,
the mean value was 0.14. Figure 8 shows a histogram of
the goodness of fit values over the entire dataset. This
shows that the model was better able to predict the
responses of the highly consistent cells. The fact that the
fraction of the variance explained by the model is low
when cells with low consistency are included is not sur-
prising because low consistency across scene points
indicates that these cells are not primarily concerned with
computing figure-ground relationships. Single-cell re-
cording studies like the one by Williford and von der Heydt
essentially pick cells at random, and the visual cortex
contains different populations of cells performing a variety
of computations in parallel.

Discussion
Understanding the cortical mechanisms of figure-
ground organization

We propose that a simple grouping mechanism can
explain figure-ground organization in natural scenes.
Grouping cells in our model have annular RFs, which
implement Gestalt principles like convexity, continuity,
and proximity. Importantly, the design of these RFs was
based on first principles, and not due to any training or
parameter tuning on natural scenes, as is common in
machine learning approaches. We show that this RF
structure is useful for assigning figure-ground relation-
ships on both artificial and natural stimuli. These RFs
capture the convex shape of objects, which has been
shown to be an important cue from the analysis of natural

Figure 5. Time course of border ownership coding in the computational model, which achieves correct border ownership assignment
within two to three iterations. The RF of one model border ownership cell is shown by the red circle. The input image and time course
of this BOS cell are shown for both standard square stimuli commonly used in experiments (A) and an example scene from the
Berkeley Segmentation Dataset (B).
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scene statistics (Sigman et al., 2001). Our model does not
use higher-level object identity information, which may
influence segmentation based on object familiarity. While
such information likely is used in certain situations, the
fast time course of border ownership assignment in ex-
trastriate cortex makes it unlikely that these signals are
informed by cortical object recognition modules, like
those found in inferotemporal cortex where response la-
tencies are considerably longer. Instead, we propose that
the grouping mechanisms in our model operate at inter-
mediate levels of the visual hierarchy to structure the
visual scene into proto-objects useful for further visual
processing.

Our model border ownership responses show close
agreement with the responses of highly consistent cells
from the Williford and von der Heydt (2016) experiments.
This is surprising given the diversity of cell responses to
different natural scenes, even highly consistent cells
themselves are not entirely consistent with each other,
perhaps indicating that a population of neurons is needed
to accurately encode figure-ground relationships (Hesse
and Tsao, 2016). However, our model, which is based on

the simple principle of an annular grouping cell RF, is able
to capture the responses of many of these neurons.

The model relies on feedforward and feedback connec-
tions via fast white-matter projections between visual ar-
eas. This is consistent with the rapid appearance of BOSs
after visual stimulus onset. This is a clear difference be-
tween our model and others which rely either on feedfor-
ward or on lateral connections. Our model makes testable
predictions about the role of feedback in figure-ground
segmentation. One experimental prediction is that dis-
rupting feedback from higher visual areas (specifically, the
feedback from grouping cells) would impair the figure-
ground assignment process, and potentially result in poor
border ownership assignment and segmentation of ob-
jects in the scene. Models based purely on feedforward
processing do not make this prediction. We also predict
the existence of contrast-sensitive and color-sensitive
grouping cells, which send reciprocal feedback connec-
tions to similarly-tuned border ownership cells. This is a
prediction awaiting experimental testing.

We also use a variety of grouping cells of different
scales, which allows our model to achieve relative scale

Figure 6. Cell and model consistency across scene points. A, Examples of scene points that were used to test border ownership
selectivity during the experiments. Red circles represent scene points within the images, which were centered on the RFs of border
ownership selective neurons during the experiments and during our testing of the model. A single image could contain multiple scene
points, as shown by the example in the bottom row. B, The normalized BOS for example cell 27lj2d is shown according to each scene
point, with scene points sorted in decreasing order by strength of BOS for this cell. The cell achieved a consistency of 74.0% across
all tested scene points (N � 177). C, The normalized BOS for the model is shown with the same convention as in B, with scene points
sorted by strength of model BOS. The model achieved an overall consistency of 69.0% across all tested scene points (N � 2205).
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invariance across the range of object sizes present in
natural scenes. The main contribution of our present work
is the development of a fully-image computable model of
figure-ground organization that can be applied to natural
scenes. Our model provides a quantitative means to study
the potential cortical mechanisms of this process, includ-
ing the relative contribution of feedforward and feedback
processing.

Comparison to other models
A number of computational models have been devel-

oped to explain border ownership selectivity. One model

class assumes that border ownership coding is achieved
purely by feedforward mechanisms, such as the asym-
metric organization of surrounds (Nishimura and Sakai,
2004, 2005; Sakai et al., 2012) or global surround inhibi-
tion (Supèr et al., 2010). Pure feedforward models predict
similar latencies of the BOS regardless of the stimulus,
but recent results show that border ownership assign-
ment of stimuli with illusory contours is delayed by ~30 ms
compared to full stimuli (Hesse and Tsao, 2016).

Other models propose propagation of neural activity
along horizontal connections within early visual areas us-
ing a diffusion-like process (Grossberg, 1994; Sajda and

Figure 7. BOSs of each of the highly consistent cells (N � 13) plotted against BOS of the model. Each subplot shows a scatter plot
of one cell’s normalized BOS against the model’s normalized BOS on the common set of scene points viewed by both. Each dot
corresponds to one scene point. Note that all data points in the upper-right and lower-left quadrants indicate agreement of model and
cell behavior while data points in the other two quadrants indicate disagreement. The cosine similarity metric along with the
associated p values (test whether the cosine similarity metric is different from zero) are shown above each scatter plot. Cosine
similarities for the cell-model comparisons ranged from 0.21 to 0.69, with 7/13 cells having cosine similarities that were significantly
different from zero.

Figure 8. Model goodness of fit to the BOSs across images of all cells in the dataset (red) and to only the highly consistent cells in
the dataset (blue). There was a total of 140 cells and 13 highly consistent cells. The model is able to better predict the BOSs of highly
consistent cells, with a mean goodness of fit value of 0.21 compared to 0.08 for all cells in the dataset.
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Finkel, 1995; Pao et al., 1999; Kikuchi and Akashi, 2001;
Baek and Sajda, 2005; Zhaoping, 2005; Zucker, 2012).
Like the feedforward paradigms, these models have dif-
ficulties explaining the exact timing of neuronal signals.
Zhou et al. (2000) showed that the BOS appears as soon
as �25 ms after the first response to the stimulus. Prop-
agation along horizontal fibers over the distances used in
the experiments would imply a delay of at least �70 ms
(based on the conduction velocity of horizontal fibers in
primate V1 cortex from Girard et al. (2001), we are not
aware of corresponding data for V2). Such models are
also difficult to reconcile with the observation that the time
course of border ownership coding is largely independent
of figure size (Sugihara et al., 2011). Furthermore, these
models (as well as others, Layton et al., 2012) are largely
untested on natural stimuli, and it remains to be seen if
previous results on artificial stimuli will generalize to more
difficult real-world conditions.

The only other models that we are aware of that have
been tested on natural stimuli either used locally com-
puted cues (Fowlkes et al., 2007) or feedforward process-
ing to determine figure-ground assignment (Nishimura
and Sakai, 2005; Sakai et al., 2012; Russell et al., 2014).
The Fowlkes et al. (2007) model required human-labeled
image contours as input, and operated only on local
boundary information from image patches but did not
incorporate luminance or color information. The Russell
et al. (2014) model is conceptually similar to ours, involv-
ing similar classes of grouping and border ownership
neurons. However, their model is purely feedforward and
involves an additional class of center-surround neurons
which are needed to generate a coarse segmentation of
the image. Furthermore, Russell et al. (2014) did not quan-
titatively study border ownership in their model, instead
focusing on applications to visual saliency. The Sakai
et al. (2012) model is also a purely feedforward model
which determines figure-ground relationships based on
asymmetric surround contrast. Different from our model,
their approach was not fully image-computable. Instead,
Sakai et al. (2012) tested model performance on human-
labeled contours from the Berkeley Segmentation Data-
set. In addition, their model was only applied to luminance
information and ignored color information, so all input
images were first converted to grayscale. Our model is
fully image-computable, which means that it can be ap-
plied to any image, including those without human-
labeled contours. Our model is also able to incorporate
both luminance and color information from images, which
will allow for future study of the relative contributions of
these two cues on grouping.

Our model is a member of a broad class of theoretical
models that achieve image understanding through
bottom-up and top-down recurrent processing (Ullman,
1984; Hochstein and Ahissar, 2002; Roelfsema, 2006;
Epshtein et al., 2008). Our model is explicit in that feed-
back connections from higher visual areas modulate the
responses of early feature-selective neurons involved in
the related processes of contour detection and figure-
ground segmentation. Despite requiring feedforward and
feedback passes of information through the model, our

model converges quickly, consistent with the fast estab-
lishment of figure-ground assignment in the visual cortex.

Experimental results also suggest that feedback from
higher visual areas may be useful for tasks such as con-
tour tracing (Roelfsema et al., 1998) and segmentation of
texture-defined figures (Lamme, 1995). As in our ap-
proach, computational models of these processes involve
a hierarchy of visual areas that are recurrently connected
(Poort et al., 2012). While our model deals primarily with
the segmentation of contour-defined objects, grouping of
the surfaces that belong to objects and the filling-in of
these surfaces from contour information remains an ac-
tive area of research.

As mentioned above in Model structure, where we de-
fined the structure of the model, the purpose of our study
is to demonstrate how neuronal circuitry can integrate
information from different classes of features to achieve
perceptual organization. For this reason, we combined a
small number of different features (contrast in intensity
and two-color opposites). Nevertheless, there are obvi-
ously many other cues used by the visual system to set
apart objects from each other and from the background,
e.g., texture contrast, stereo/disparity, motion, etc. In ad-
dition to these context-defined cues, local information
likely plays a role, e.g., the presence of L, X, and T
junctions. Craft et al. (2007) showed that such local infor-
mation (using the example of T junctions) can be incor-
porated into a recurrent network that has an overall
structure similar to ours (although their model works on
highly abstracted input information and is not image com-
putable).

Another class of available information is based on dif-
ferences in image statistics on the two sides of the border.
These differences can be quantified in the spectral do-
main and they contribute significantly to figure-ground
segmentation in natural scenes (Palmer and Ghose, 2008;
Ramenahalli et al., 2014). Although Williford and von der
Heydt (2016) did not find an influence of local edge struc-
ture on the border ownership responses in nonhuman
primate visual cortex, the edge profile is known to be used
by humans to distinguish foreground from background
(Von der Heydt and Pierson, 2006; Palmer and Ghose,
2008). The parallel architecture of our model (as well as
that of the primate visual system) makes it easy to add
these additional channels, as well as others, to the exist-
ing three channels (intensity, red-green, blue-yellow). This
remains the topic of future work.

One criticism addressed at many computational mod-
els is that they are “tailor-made” to explain one particular
phenomenon. While their performance may be impressive
in this regard, it is clear that a biological nervous system
needs to cope with more than one task. The model we are
presenting in this study is designed to primarily explain
border ownership coding, the phenomenon for which we
have quantitative neurophysiological data. The model,
indeed, explains these data quite convincingly. In addi-
tion, as we have shown in Model performance for contour
detection and figure-ground assignment: comparison
with standard benchmarks, the model’s performance is
also competitive with state-of-the-art computational
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models that have been specifically designed for two dif-
ferent standardized tasks: contour detection and figure-
ground assignment in a benchmark data set of natural
scenes. We find it very encouraging that our simple model
with a minimal number of tuned parameters (many orders
of magnitude less than standard machine-learning algo-
rithms) can explain several intermediate-vision processes
simultaneously.

Grouping neurons
There is as yet no direct neurophysiological evidence

for grouping neurons, although previous studies have
found neurons in V4 that respond to contour segments of
various curvatures (Gallant et al., 1996; Pasupathy and
Connor, 2002; Brincat and Connor, 2004). Our choice of
an annular, donut-shaped grouping cell kernel is a sim-
plification which, prima facie, seems ill-suited to represent
objects like thin, elongated shapes or concave shapes. A
standard representation of complex shapes in computer
vision is the medial axis transform which can generate a
skeleton-type abstraction of any shape (Blum, 1967;
Hung et al., 2012). Previous work has shown that the
population activity of grouping cells is a close approxima-
tion of the medial axis transform (Ardila et al., 2012) and
thus can represent any arbitrary shape. Furthermore, al-
though we do not make use of the population activity in
this study, in practice we find that the combination of
scale invariance and recurrent processing allows the
model to accurately predict figure-ground relationships in
natural scenes. We also do not rule out the possibility that
other types of grouping neurons may also exist, including
those that respond to straight contours (Hu and Niebur,
2017), gratings (Hegdé and Van Essen, 2007), illusory
surfaces (Cox et al., 2013), or 3D surfaces (He and Na-
kayama, 1995; Hu et al., 2015). For the sake of simplicity
in this proof-of-concept study, we do not attempt to
model the whole array of grouping neurons that may exist.

Furthermore, there is indirect evidence showing the
potential influence of grouping cells on the spike timing of
border ownership selective neurons in extrastriate cortex.
Martin and von der Heydt (2015) showed that action
potentials of border ownership selective neurons that rep-
resent the same object are more synchronized than those
neurons that represent different objects (see also Dong
et al., 2008). This is exactly what is expected if the former
group of cells receives common input from grouping cells
that represent one object while neurons coding for differ-
ent objects receive input from different grouping cells that
fire independently.

Grouping neurons may also interact with higher-level
object recognition centers, such as inferotemporal cortex,
as familiarity with certain objects such as faces may
influence figure-ground assignment. This is currently an
area of active research (Ko and von der Heydt, 2018).
Furthermore, grouping neurons may be multi-modal, in
that they respond to many different features that may aid
the scene segmentation process, such as disparity, mo-
tion, etc. In fact, experimental results show that border
ownership selective neurons have consistent border own-
ership tuning across 2D luminance and 3D disparity cues

(Qiu et al., 2005). We have not yet incorporated these
additional features into our model, but this represents a
potential area of future research.

Scope and limitations of the model
Our model assigns distinct roles to the different visual

areas, e.g., edge processing in V1 by simple cells, figure-
ground assignment in V2 by border ownership selective
cells, and grouping of proto-objects, possibly in V4. Neu-
rons in these different areas have additional ranges of
selectivity than the ones we assign them in our model. Our
model also produces a rough approximation of the time
course of border ownership coding through a rate-based,
iterative process. As such, it does not allow us to study
the dynamics of the recurrent network at a finer timescale.
For example, the attention-dependent modulation of
spike-spike synchrony between border ownership neu-
rons that are part of the same object is of particular
interest (Martin and von der Heydt, 2015; Wagatsuma
et al., 2016). Furthermore, we focused more closely on the
border ownership cell activity in our model and did not
specifically study the grouping cell responses of our
model, but the combined activity of grouping cells across
scales could be used to study a wide range of other visual
phenomena, including object segmentation and visual
saliency.
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