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Abstract

Objective—High-fat diets result in increased body weight. However, this is not uniform and 

determining the factors that make some animals or individual more susceptible to this diet-induced 

weight gain is a critical research question. The expansion of white adipose tissue (WAT) 

associated with weight gain requires high rates of angiogenesis to support the expanding tissue 

mass. We hypothesized that diet-induced obese (DIO) mice have a greater capacity for WAT 

angiogenesis and remodeling than diet-resistant (DR) mice at a young age, prior to age or diet-

induced obesity.

Design—We measured body weight and body composition by NMR. We compared the 

expression of genes related to lipid metabolism, angiogenesis and inflammation by RT-qPCR and 

PCR arrays. WAT morphology and distribution of adipocyte size were analyzed. The level of 

hypoxia and vascular density was assessed by immunohistochemistry in WAT of young mice.

Results—C57Bl/6 mice were DIO and FVB/N mice DR after 8 weeks on a low fat diet or high 

fat diet (HFD). However, C57Bl/6 mice had lower body weight, lower adiposity, smaller 

adipocytes and decreased leptin and lipogenic genes expression in AT than FVB/N mice at 9 

weeks of age on a chow diet. Despite having smaller adipocytes, the level of hypoxia and the 

expression of pro-angiogenesis genes were higher in WAT of young C57Bl/6 mice than young 

FVB/N mice. In addition, expression of genes related to macrophages and their recruitment, and to 
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proinflammatory cytokines, was significantly higher in WAT of young C57Bl/6 mice than young 

FVB/N mice.

Conclusion—These data suggest that the potential for WAT remodeling in early period of 

growth is higher in C57Bl/6 mice as compared to FVB/N mice and we hypothesize that it may 

contribute to the increased susceptibility to DIO of C57Bl/6 mice.
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Introduction

Obesity is a complex and multifactorial disease. Early identification of obesity-prone 

humans may provide a strategy for preventing or reducing the incidence and severity of the 

disorder. While it is clear that environmental factors such as consumption of calorically-

dense, high-fat diets (HFDs) can lead to increased adiposity, this response is not uniform. 

Rodent experiments make it clear that even when exposed to the same obesogenic diet and 

housed under the same conditions, there are important genetic differences that contribute to 

the susceptibility to gain weight on a HFD.

Modulation of genes related to thermogenesis, such as UCP-1, affects the development of 

diet-induced obesity (DIO) in mice,1 and hypothalamic neural circuits involved with 

regulation of energy balance are altered in offspring of DIO rats.2 Many hypotheses have 

been offered to explain the differences between DIO and diet-resistant (DR) animals. One 

common hypothesis is that differences in the key CNS circuits that regulate energy balance 

differ between DIO and DR animals. Consistent with this, there is an inborn genetic 

disposition to develop leptin or insulin resistance, altered glucose sensing, and disturbed 

metabolism of norepinephrine, serotonin, and dopamine in the hypothalamus of DIO rats.2

An alternative hypothesis is that a key difference between DIO and DR animals relates to 

the ability of white adipose tissue (WAT) to accommodate the storage of increased calorie 

intake. Analogous to tumors, WAT has the capability to quickly expand and proliferate 

throughout adulthood. Also similar to tumors, such expansion is highly dependent on the 

ability to generate new blood vessels3, 4 and as a result, WAT is highly vascularized and has 

angiogenic properties5 that are critical to its ability to expand.3, 4 Interestingly, treatments 

that inhibit WAT angiogenesis potently (but reversibly) reduce body weight and fat mass in 

rodents and non-human primates, indicating that WAT integrity and sustained weight gain 

depends on maintaining WAT vasculature.4, 6, 7

WAT angiogenesis is highly correlated with adipogenesis, inflammation and the need for 

ongoing tissue remodeling. Many different cell types in WAT, including mature adipocytes, 

preadipocytes, pericytes, endothelial cells and inflammatory cells, are involved in the 

capacity for WAT to remodel itself under different circumstances.3, 8 Obese rodents and 

humans have elevated levels of angiogenic factors and macrophages in their WAT.9, 10 Such 

low-grade inflammation is progressively increased in WAT of mice fed a HFD and these 
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changes have been hypothesized to contribute to obesity and insulin resistance.11 The 

surface area of adipocytes reflects their volume and is positively correlated with the number 

of macrophages.11,12 As obesity develops, there is a switch to a more inflammatory 

phenotype in macrophages in WAT.13

In the present work, we hypothesized that at a young age and before exposure to a HFD, the 

WAT of mice that are susceptible to weight gain on a HFD have increased capacity for 

tissue expansion, including the capability of rapid angiogenesis, and that this capacity may 

contribute to the enhanced susceptibility to develop obesity. To this end, we compared the 

ability of two mouse strains to gain weight and undergo WAT remodeling when fed a HFD. 

While C57Bl/6 (C57) mice gained substantially more weight and fat on the HFD than 

FVB/N (FVB) mice, the latter being almost completely resistant to weight gain on the HFD. 

Consistent with this, the capacity for WAT tissue remodeling was far greater in C57 

compared to FVB mice, and this was the case prior to their exposure to the HFD.

Materials and methods

Animals

Male C57 mice and FVB mice obtained from Jackson Labs at 8 weeks of age were housed 

individually in standard mouse cages with a 12-h light/12-h dark schedule. Sixteen of each 

genotype had ad lib access to a high-fat diet providing 40% calories as fat (HFD, 

D03082706, Research diet, Inc.) or a low-fat diet with 4% fat (LFD, D03082705) for 8 

weeks. In two separate experiments, a total of 16 mice of each genotype were fed a chow 

diet and sacrificed at 9 weeks of age after adaptation to the cage for 1 week for gene 

expression or histologic studies. All animal protocols were approved by the University of 

Cincinnati Institutional Animal Care and Use Committee.

Body composition

Body composition was analyzed by an NMR (Echo Medical Systems) on Weeks 0, 8, and 12 

in the first experiment, and at 9 weeks of age in the second study.

Adipocyte tissue morphometry

To determine adipocyte size, the cross-sectional area of adipocytes was determined on 

paraffin-embedded hematoxylin eosin-stained sections of epididymal fat at a magnification 

of 200× by image processing with custom-designed software. The method of determining 

adipocyte size was modified from previous papers using a computer image analysis.14 The 

distribution of adipocyte size was determined by relative frequencies of adipocytes having a 

size within a regular interval. The number of adipocytes was determined by dividing the 

total fat mass by the mean adipocyte size. A total 500 to 1200 adipocytes were used for the 

analysis of the mean adipocyte area and the distribution of adipocyte size for each mouse.14

Immunohistochemistry

To assess the degree of hypoxia in WAT, a Hypoxyprobe™-1 Plus Kit (Hypoxyprobe, Inc.) 

was used. Five mice in each group were intraperitoneally injected with 60 mg/kg of a 

Hypoxyprobe™-1 (pimonidazole HCl) 30 min before being sacrificed. Epididymal fat was 
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fixed in alcoholic zinc formalin (Anatech LTD.) overnight. The AT was embedded in a 

paraffin in pairs containing one C57 and one FVB mouse each per block to minimize any 

differences that might arise during the process of immunohistochemistry and sectioned at 

the thickness of 5 μm. The immunohistochemistry was performed and a total of 200 images 

(5 images per section) were captured at a magnification of 100× (AxioVision 4.6 

microscope; Carl Zeiss). To correlate hypoxia with adipocyte size, the brown color 

signifying hypoxia was selected by using HSL color system (Hue 0-25 and 253-255; 

Saturation 25-255; Luminescence 0-225) and the number and the cross-sectional area of 

adipocytes were concurrently measured in the same field with the software. The degree of 

hypoxia was determined by dividing the area of brown color by the number or the averaged 

cross-sectional area of adipocytes in the same field.

For the detection of PECAM1, sections were incubated overnight at 4 °C with a rat anti-

mouse CD31 antibody (1:500; BD Pharmingen). After incubation with biotinylated anti-rat 

IgG (1:200; Jackson ImmunoResearch Laboratories), sections were revealed with avidin-

biotin complex (1:500; Vector Laboratories). Sections were counterstained with 

hematoxylin and eosin. The numbers of adipocytes and vessels were analyzed by three 

independent individuals blinded to the experimental conditions.

PCR arrays

Mice (8 per condition) were sacrificed after a 1-h fast. The epididymal fat was quickly 

frozen in 2-methyl butane on dry ice. An RT2 First Strand Kit and RT2 Profiler™ PCR Array 

System (SABiosciences Corporation) was used to perform PCR arrays related to 

angiogenesis. Total RNA was isolated using RNAeasy columns (Qiagen) after processing 

with Tri-reagent (Molecular research center, Inc.). The first strand cDNA and the cocktail 

solutions of cDNA including RT2 qPCR Master Mix were prepared for each mouse. PCR 

arrays (eight in each group) were performed using an iCycler (Bio-rad Laboratories). The 

quality control tests for genomic DNA control, reverse transcription control, and positive 

PCR control of each array plates were all passed below the criteria. The array data were 

analyzed using RT2 Profiler PCR Array Data Analysis. The names of all genes are presented 

using official symbol of NCBI in this study (Figures and Supplemental table 2). Three 

housekeeping genes not influenced by the experimental condition (Hsp90ab1, Gapdh and 

Actb) were selected as an endogenous control. The normalization and analysis of data were 

performed according to the instructions (SABioscience Corporation).

Real-time quantitative PCR

Total RNA was isolated from epididymal fat of each mouse in the same way as above, and 

cDNA was synthesized using iScript (Bio-rad). PCR was performed in triplicate using an 

iCycler and the iQ SYBR Green Supermix (Bio-rad Laboratories) or 7900HT Fast Real-

Time PCR system (Applied Biosystems) (Supplemental table 1).14 The expressions of each 

gene were normalized to constitutively expressed L32 and relative expression was 

quantified.14 The names of all genes were presented using official symbol of NCBI in this 

study (Figures and Supplemental table 2).
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Statistics

All data are expressed as mean ± SEM. Data were analyzed by Student’s T-test or two-way 

repeated measures ANOVA followed by Bonferoni’s multiple comparisons using Prism 5.0.

Results

C57 mice are prone to diet-induced obesity whereas FVB mice are resistant

To test whether FVB mice are resistant to diet-induced obesity relative to C57 mice, we 

compared the change in body weight and energy intake by feeding both genotypes a low-fat 

diet (LFD) or high-fat diet (HFD) for 8 weeks. The body weight of C57 mice was lighter 

relative to FVB mice at 9 weeks of age at the start of the experiment (Figure 1A). C57 mice 

increased their weight by 20% after 8 weeks on the HFD compared to those on the LFD. In 

contrast, the FVB mice fed the HFD gained comparable weight as those on the LFD (Figure 

1B). Likewise, the fat mass of C57 mice on a HFD was greater than that on a LFD while that 

of FVB mice on a HFD was not significantly different from that of LFD mice after both 5 

and 12 weeks (Figure 1C). The difference in cumulative energy intake between LFD and 

HFD was significantly greater in C57 mice compared to FVB mice (Figure 1D and 1E). 

Given the lower energy expenditure in C57 mice reported in previous studies,15, 16 these 

data support a greater energy surplus in C57 mice relative to FVB mice. These data confirm 

the differential susceptibility to a HFD between DIO C57 and FVB mice.

Young C57 mice fed chow have smaller adipocytes and lower adiposity than young FVB 
mice

The body weight of C57 mice was actually lower due to both lower adiposity and less lean 

mass relative to FVB mice at 9 weeks of age on a chow diet (Figure 2A and 2B). The cross-

sectional area of individual adipocytes was smaller in C57 mice than FVB mice and there 

were more small adipocytes and fewer large adipocytes in C57 mice (Figure 2C and 2D). 

There was also a trend toward a decrease in the number of adipocytes in C57 mice relative 

to FVB mice (P=0.06). Consistent with the lower adiposity and smaller adipocytes, the level 

of gene expression of Lep was lower in WAT of C57 mice relative to FVB mice (Figure 

2E).

To determine whether the difference in adipocytes between young C57 mice and FVB mice 

is associated with differential adipose lipid metabolism, we compared the expression of 

genes involved in adipogenesis, utilization of fatty acid, lipogenesis and lipolysis in WAT of 

both groups. There was no significant difference between genotypes in expression of genes 

for transcriptional factors involved in adipogenesis such as Pparg2 and Srebf. The 

expression of genes involved in lipogenesis, including Fasn and Acaca were significantly 

lower in C57 mice relative to FVB mice. Lpl and Cd36 are associated with release of fatty 

acids from circulating lipoproteins and uptake by WAT.17, 18 These genes involved in fatty 

acid utilization were significantly lower in WAT of C57 mice relative to FVB mice (Figure 

2G). The expression level of Adrb3 (beta 3-adrenergic receptor) is associated with lipolysis 

and sympathetic activity in WAT,19–21 and is lower in WAT of obese rodents.22 Consistent 

with the lower adiposity of C57 mice, Adrb3 gene expression was higher in WAT of C57 

mice relative to FVB mice (Figure 2G).
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Young C57 mice on a chow diet have higher angiogenic activity in adipose tissue than 
young FVB mice

The growth or regression of vasculature depends on the net balance between angiogenic 

stimulators and angiogenic inhibitors, and the process of angiogenesis comprises modulation 

of migration and proliferation of endothelial cells (ECs), conversion of ECs to pericytes, 

recruitment of pericytes and smooth muscle cells, and stabilization of vessels.23–25 Because 

the expandability of WAT highly depends on its vasculature,4 we hypothesized that C57 

mice, with their tendency to develop DIO when fed a HFD, have a higher angiogenic 

potential in WAT at a young age, prior to exposure to a HFD. To test this, we determined 

the expression of 84 genes involved in the process of angiogenesis by RT-PCR array. A total 

of 32% of angiogenic genes were differentially expressed in WAT between C57 mice and 

FVB mice, with 78% of the significantly changed genes being more highly expressed in C57 

relative to FVB mice.

Genes for growth factors that increase migration and proliferation of ECs or stimulation of 

VEGF such as Vegfa, Egf, Fgf1, Figf, Hgf, and Igf1 were all expressed at higher levels in 

WAT of C57 mice relative to FVB mice, while Pgf, which stimulates angiogenesis only in 

pathologic conditions (Figure 3A),25, 26 was lower. Angpt1, which maintains a normalized 

state of vasculature, was highly expressed in C57 mice while Tek, a receptor for Angpt1 and 

Angpt2, and Angpt2, an antagonist ligand for Tie-2, were not different, indicating that 

stabilization of WAT vasculature and pro-angiogenesis was increased in WAT of C57 mice 

relative to FVB mice.26, 27 However, Ctgf, which is associated with fibrosis, proliferation of 

mesenchymal cells including pericytes and vascular smooth muscle cells, and inhibition of 

VEGF-induced angiogenesis,28, 29 and Pdgfa which is related to proliferation of 

mesenchymal cells and an autocrine regulator of FGF-2 and VEGF, were lower in WAT of 

C57 mice (Figure 3A).30 This may imply that the process of supporting actively sprouting 

vessels is less more active in WAT of C57 mice than FVB mice.

Transcriptional factors such as Epas1(Hif-2alpha), Smad5, Tbx1, and Tbx4 were highly 

expressed in WAT of C57 mice whereas Hif-1alpha was not different between genotyes 

(Figure 3B). Epas1 promotes angiogenesis in response to hypoxia and Smad5 is associated 

with ECs proliferation.31, 32 Tbx1 and 4 are associated with FGF signaling, angiogenesis or 

morphogenesis during development.33, 34 The difference in expression of these transcription 

factors is consistent with a more pro-angiogenic environment in WAT of C57 mice (Figure 

3B).

The expression of Thbs1 and Thbs2, endogenous anti-angiogenic factors, was lower in WAT 

of C57 mice (P=0.07 and P<0.05, respectively; Figure 3C). Other anti-angiogenic factors 

including Col18a1 and Col4a3, a major constituent of basement membrane cleaved by 

MMP-9, tended to be lower (P=0.07) or were significantly lower in WAT of C57 mice 

relative FVB mice (Figure 3C).25, 35 These lower anti-angiogenic factors are also consistent 

with the greater pro-angiogenesis in WAT of young C57 mice. In addition, genes regarding 

degradation of the extracellular matrix such as Mmp9 and Mmp19 were higher in C57 mice, 

favoring angiogenesis, but Mmp2 was lower (Figure 3C).
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Stab1 is expressed by sinusoidal endothelium or alternatively by activated macrophages and 

acts as a scavenger receptor for endocytosis of SPARC, a potent inhibitor of angiogenesis.36 

Expression of Stab1 was higher in WAT of C57 mice. Ptgs1, which is related to enhanced 

tube formation or vasodilation, was also higher in WAT of C57 mice (Figure 3D).37

Although most of the significantly changed genes were pro-angiogenic, some of the genes 

were either anti-angiogenic or have mixed function. Flt-1 is increased by hypoxia, but it is 

not clear whether it mediates VEGF signaling in its intact form, or plays a role as a vascular 

permeability receptor, or sequesters VEGF and subsequently antagonizes VEGF action in a 

soluble form under some circumstances.24, 38, 39 In the present study, WAT of C57 mice had 

higher Flt-1 gene expression relative to FVB mice. Npr1 is related to vasodilatation via 

increased guanylyl cyclase activity and inhibits synthesis and function of VEGF activities.40 

Lect1 contributes to growth of chondrocytes and inhibits angiogenesis (Figure 3D).41, 42 

Npr1 and Lect1 were higher in WAT of C57 mice.

Genes involved in modulation of cell-to-cell contacts, such as Cdh5, Efna1, Efnb2, Ephb4, 

and Pecam1 were not different between C57 mice and FVB mice. In addition, the 

expression of Itgav and Itgab3 genes that are highly expressed in activated ECs25 was not 

different. Consistent with no difference in expression of these genes, the number of vessels 

per adipocyte was not different although the numbers of adipocytes or vessels per field were 

higher in WAT of young C57 mice relative to FVB mice (Figure 4A and B). These data are 

consistent with the hypothesis that the status of ECs does not differ between C57 mice and 

FVB mice maintained on a chow diet.

In sum, the analysis of these gene expression differences indicates little difference in the 

state of WAT ECs interacting with other ECs or pericytes between C57 mice and FVB mice. 

However, WAT of C57 mice had considerably greater expression of angiogenic factors 

compared to FVB mice. In particular, growth factors involved in proliferation and migration 

of ECs were mostly higher in WAT of C57 mice, and anti-angiogenic factors such as Thbs1 

and Thbs2 were lower.

White adipose tissue of young C57 mice is more hypoxic than that of FVB mice

Within a 100 μm distance from capillaries, the exchange of oxygen or nutrients is the result 

of diffusion.5 Hypoxia is a key stimulator of angiogenesis. We therefore hypothesized that 

WAT hypoxia contributes to more pro-angiogenesis in WAT of C57 mice relative to FVB 

mice. To test this hypothesis, we compared the hypoxic area in WAT between C57 and FVB 

mice using immunohistochemistry. Because the staining area in WAT is highly dependent 

on the number and size of adipocytes, we also compared the hypoxic area after adjusting for 

number and size of adipocytes in the same field. The absolute area of hypoxia was 

significantly increased in WAT of C57 mice relative to FVB mice. Importantly, the area of 

hypoxia adjusted for either adipocyte number or size was still significantly increased in C57 

mice relative to FVB mice (Figure 4C). These data suggest that WAT hypoxia may 

contribute to the increased expression of pro-angiogenic genes in WAT of C57 mice relative 

to FVB mice.
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Young C57 mice on a chow diet have more inflammatory adipose tissue relative to young 
FVB mice

Because angiogenesis contributes to tissue remodeling, we hypothesized that low-grade 

inflammation may be associated with the greater weight gain on the HFD in C57 mice. To 

test this hypothesis, we compared the expression of genes related to inflammatory cytokines 

and macrophages in WAT between young C57 and FVB mice. A macrophage marker, 

Emr1, as well as genes related to recruitment of macrophages such as Ccr2 and Itgax, were 

significantly increased in WAT of C57 mice relative to FVB mice. Proinflammatory 

cytokines including Il1b, Il6, Ccl3 and Cxcl2 were significantly increased in WAT of C57 

mice relative to FVB mice while genes related to alternative activation of macrophages such 

as Jag1, Tgfb1 and Mgl2 were not significantly different. However, Arg1 was significantly 

increased in WAT of C57 mice relative to FVB mice (Figure 5).

Discussion

The goal of these studies was to identify potential factors that might contribute to the 

differences observed in weight gain among animals exposed to a HFD. Long-term 

maintenance on a HFD increased body weight and adiposity of C57 mice whereas those of 

FVB mice were not significantly increased. The energy surplus in C57 mice was likely the 

result of both increased energy intake (Figure 1) and decreased energy expenditure.15, 16 

This is consistent with previous data on these strains of mice (Figure 1).16 However, the 

difference of body weight between these strains at a younger age was not consistent with 

what was observed after 8 weeks on the HFD. Specifically, the body weight and adiposity 

were significantly lower in C57 mice relative to FVB mice at 9 weeks of age before 

exposure to a HFD. Consistent with the lower adiposity, leptin gene expression was lower in 

WAT of C57 mice relative to FVB mice and their adipocyte size was smaller. In addition, 

the amount of WAT correlated with expression of genes linked to lipid metabolism, 

including lower Lpl, Cd36, and Fasn, and higher Adrb3 in C57 compared to FVB mice.

The key finding in this study is that young C57 mice have an expression profile consistent 

with greater inflammation and angiogenesis in WAT despite having less body fat than young 

FVB mice. Such data suggest that young C57 mice may already have a higher capacity for 

WAT remodeling.43, 44 The number of AT macrophages is positively correlated with 

increased size of individual adipocytes.12 Interestingly, C57 mice have increased expression 

of inflammatory markers in WAT despite having reduced adipocyte size. WAT remodeling 

dynamically occurs both after acute weight loss or when WAT rapidly grows such as occurs 

in C57 mice exposed to a HFD.43 Since expression of genes associated with WAT lipid 

metabolism correlated with the increased adiposity of young FVB mice (Figure 2G), neither 

fatty acid metabolism nor adipocyte death appears to contribute to increased macrophage 

and proinflammatory cytokine markers in young C57 mice.43, 45

Numerous cell types in WAT, including immune cells, ECs, preadipocytes, and mature 

adipocytes, are involved in the process of tissue remodeling since WAT expansion and 

adipocyte differentiation require an adjusted vascular network and angiogenesis 

precedesadipogenesis.3, 5, 8, 44, 46 In addition, angiogenesis accompanies inflammation, and 

increased macrophage infiltration has been hypothesized to promote angiogenesis in 
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WAT.8, 47 During this process, hypoxia is a critical factor to initiate angiogenesis and it 

induces inflammation in WAT.43 Larger adipocytes suffer from lack of oxygen and nutrient 

transfer because oxygen exchange usually occurs by diffusion through adipocytes.5 Given 

the smaller adipocytes of C57 mice relative to FVB mice, it is an interesting finding that 

levels of hypoxia evidenced by increased pimonidamole adduct staining and gene expression 

of Hif-2alpha are increased in WAT of C57 mice consistent with higher expression of pro-

angiogenic and pro-inflammatory genes. WAT hypoxia in obesity has been observed in 

previous studies.48 Those studies suggest that the increased WAT hypoxia in young DIO 

mice is important in initiating increased angiogenesis and the mild inflammation that 

contributes to the necessary tissue remodeling that allows C57 mice to gain more weight 

when exposed to a HFD.

In this study, several important pro-angiogenic factors including Vegfa, Fgf1, Egf, Hgf, Igf1, 

Figf1 and Angpt1 were highly expressed and anti-angiogenic factors such as Thbs1, Thbs2, 

Col18a1 and Col4a3 were lower in WAT of young C57 mice, suggesting an important 

difference in angiogenic potential between C57 and FVB mice. For example, Vegfa is a key 

target for HIF-1 alpha and plays a critical role in the angiogenic response to hypoxia. Vegfa 

stimulates angiogenesis in WAT and VEGF receptor-2 signaling contributes to both WAT 

angiogenesis and adipogenesis.3, 24 HGF is another WAT pro-angiogenic factor that does 

not directly promote adipocyte differentiation.49 Both VEGF and HGF synergistically 

stimulate neovascularization, endothelial migration and proliferation.50 ANGPT1, which 

stabilizes vessels, also plays a role in vascular remodeling by promoting angiogenesis in 

conjunction with VEGF.51

Of note, the gene expression level of Fgf1 was dramatically upregulated in young C57 mice 

relative to young FVB mice while there was no difference of Fgf2, a potent and common 

angiogenic stimulator. FGF1 simulates adipogenesis in WAT of humans,52 and FGFs are 

well known to stimulate angiogenesis in tumors by increasing VEGF-driven 

neovascularization.25, 26 Although a role of each of these genes in angiogenesis has been 

reported, many of these gene products have also been reported to regulate inflammation and 

adipogenesis.23, 43

Given the growing prevalence of obesity, an important question is why individual’s 

susceptibility to obesity varies. The present study used C57 mice and FVB mice to explore 

differences in WAT that may contribute to this variable response to obesogenic 

environments. While energy balance clearly involves CNS processes that regulate both food 

intake and energy expenditure, growing evidence points to an important role in signals from 

WAT that are related to the status of WAT vasculature.6 Consequently, the one way to view 

the current data is that C57 and FVB mice differ in the capacity of their WAT to expand and 

remodel and that this contributes to the propensity for increased intake and weight gain 

when mice are exposed to a HFD. Further work will be needed to assess the causal 

relationships between adipose tissue remodeling and energy balance (Figure 6).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Changes in body weight, body composition, and energy intake of C57 mice (n=16) and 
FVB mice (n=16) in response to a LFD or a HFD
A) Change in body weight of C57 and FVB mice after 8 weeks on a LFD or a HFD

B) Change in weight gain of C57 and FVB mice after 8 weeks on a LFD or a HFD

C) Body composition of C57 and FVB mice after 12 weeks on a LFD or HFD

D) Change in cumulative energy intake of C57 and FVB mice after 8 weeks on a LFD or a 

HFD

E) Difference in cumulative energy intake between HFD and LFD in each group

* P<0.05. CEI indicates cumulative energy intake.
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Figure 2. 
Differences in body weight (A), body composition (B), mean cross-sectional area (D) and 

relative distribution of adipocyte size (E), adipose leptin gene expression (F), and 

differential expression of genes related to lipid metabolism in white adipose tissue (G) 

between C57 mice (n=8) and FVB mice (n=8) at 9 weeks of age on a chow diet. 

Representative figures of adipocytes (C) in white adipose tissue of C57 mice and FVB mice 

at 9 weeks of age on a chow diet. * P<0.05. Acaca, acetyl-CoA carboxylase 1; Adrb3, beta 

3-adrenergic receptor; Cd36, fatty acid translocase; Fasn, fatty acid synthase; Lpl, 

lipoprotein lipase; Ppar2, peroxisome proliferator activated receptor, gamma 2; Srebf, sterol 

regulatory element binding transcription factor.
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Figure 3. 
Comparison of genes related to angiogenesis in white adipose tissue of C57 mice (n=8) and 

FVB mice (n=8) at 9 weeks of age on a chow diet. All genes displayed are differentially 

expressed between C57 mice and FVB mice (P<0.05). Significantly different growth factors 

(A), transcriptional factors (B), anti-angiogenic factors and matrix metalloproteinases (C), 

and two pro-angiogenic genes and three anti-angiogenic genes (D). Angpt1, angiopoietin 1; 

Col4a3, collagen type IV alpha 3 (tumstatin); Ctgf, connective tissue growth factor; Egf, 

epidermal growth factor; Epas1, endothelial PAS domain protein 1 (Hif-2alpha); Fgf1, 

fibroblast growth factor 1; Figf, c-fos induced growth factor (VEGF-D); Hgf, hepatocyte 

growth factor; Flt-1, FMS-like tyrosine kinase 1 (VEGFR-1); Igf1, insulin-like growth factor 
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1; Lect1, leukocyte cell derived chemotaxin 1; Mmp2, matrix metallopeptidase 2; Mmp9, 

matrix metallopeptidase 9; Mmp19, matrix metallopeptidase 19; Npr1, natriuretic peptide 

receptor 1; Pdgfa, platelet derived growth factor alpha; Pgf, placental growth factor; Ptgs1, 

prostaglandin-endoperoxide synthase 1 (Cox-1); Smad5, MAD homolog 5; Stab1, 

Stabilin-1; Tbx1, T-box 1; Tbx4, T-box 4; Thbs2, thrombospondin 2; Vegfa, vascular 

endothelial growth factor A.
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Figure 4. Comparison of vessel density and adipose tissue hypoxia in white adipose tissue 
between C57 mice and FVB mice at 9 weeks of age on a chow diet
A) Difference in vessel density in white adipose tissue of C57 mice (n=5) and FVB mice 

(n=4) at 9 weeks of age on a chow diet. Vessel density was calculated by dividing total 

number of vessels per field by total number of adipocytes per field (×40). Arrows indicate 

CD31 (PECAM1) staining. Scale bar, 100 μm.

B) Comparison of genes related to the status of endothelial cells (ECs) in white adipose 

tissue of C57 mice (n=8) and FVB mice (n=8) at 9 weeks of age on a chow diet. No 

significant differences in the gene expression were observed between C57 mice (n=8) and 

FVB mice (n=8).

C) Representative figures of adipose tissue hypoxia. Dark brown color indicates the staining 

area of hypoxia. All samples from C57 mice (n=5) and FVB (n=5) mice were processed in 

pairs during all the procedures of immunohistochemistry to minimize the occurrence of 

errors. Hypoxic area was adjusted for either adipocyte number or size in the same field. 

Scale bar, 100 μm.
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* P<0.05. Cdh5, cadherin 5; Efna1, ephrin A1; Efnb2, ephrin B2; Ephb4, Eph receptor B4; 

Pecam1, platelet/endothelial cell adhesion molecule 1; Itgav, integrin alpha V; Itgb3, 

integrin beta 3.
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Figure 5. Differential expression of genes related to inflammation in white adipose tissue of C57 
mice (n=8) and FVB mice (n=8) at 9 weeks of age on a chow diet. * P<0.05
A) The expression of genes of markers for macrophage and recruitment of macrophage

B) Different polarization of macrophage in white adipose tissue of C57 mice and FVB mice. 

M1 and M2 mean the type of macrophage polarization. M1-type macrophages are more 

involved in pro-inflammation and recruitment of macrophage. M2-type macrophages are 

involved in tissue remodeling.

* P<0.05. Arg1, arginase; Ccl2, chemokine (C-C motif) ligand 2; Ccl3, chemokine (C-C 

motif) ligand 3; Ccr2, chemokine (C-C motif) receptor 2; Cxcl2, chemokine (C-X-C motif) 

ligand 2; Cd68, CD68 antigen; Emr1, egf-like module containing, mucin-like, hormone 

receptor-like 1; Ifng, interferon gamma; Il1b, interleukin 1, beta; Il6, interleukin-6; Itgax, 

integrin, alpha X (complement component 3 receptor 4 subunit); Jag1, jagged 1; Mgl2, 

macrophage galactose N-acetyl-galactosamine specific lectin 2; Tgfb, transforming growth 

factor, beta 1; Tnf, tumor necrosis factor
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Figure 6. “Potential” hypothesis of increased inflammation and pro-angiogenesis presumably 
caused by adipose tissue hypoxia despite smaller adipocytes and lower adiposity in young mice
A) The increase in capacity for tissue remodeling resulting from hypoxia may determine the 

development of obesity in the future. Reduced vascular function responding to dynamic 

change of nutrients or gas exchange surrounding adipocytes may result in increased hypoxia 

and subsequent pro-angiogenesis in white adipose tissue despite smaller adipocytes. 

Inflammation is accompanied by angiogenesis.

B) The adequate ability of vasculature to meet the requirements may cause resistance to 

obesity. Reactivity of vasculature responding to the environments may be enough to 

compensate for the rapid increase of need for supplying nutrients or gas exchange. 

Therefore, adipocytes do not need the tissue remodeling for angiogenesis.
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