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Simple Summary: Acquired resistance to chemotherapy by cancer cells is the predominant factor in
chemotherapy failure, which ultimately leads to disease progression and death. Recent studies have
presented compelling evidence of the various mechanisms and pathways through which cancer cells
have developed resistance to drugs. This review summarises the mechanisms pertaining to 5-FU
resistance and discusses ongoing efforts to prevent chemotherapy resistance in cancer cells and to
re-sensitise them to cancer drugs.

Abstract: 5-Fluorouracil (5-FU) plus leucovorin (LV) remain as the mainstay standard adjuvant
chemotherapy treatment for early stage colon cancer, and the preferred first-line option for metastatic
colon cancer patients in combination with oxaliplatin in FOLFOX, or irinotecan in FOLFIRI regimens.
Despite treatment success to a certain extent, the incidence of chemotherapy failure attributed to
chemotherapy resistance is still reported in many patients. This resistance, which can be defined
by tumor tolerance against chemotherapy, either intrinsic or acquired, is primarily driven by the
dysregulation of various components in distinct pathways. In recent years, it has been established
that the incidence of 5-FU resistance, akin to multidrug resistance, can be attributed to the alterations
in drug transport, evasion of apoptosis, changes in the cell cycle and DNA-damage repair machinery,
regulation of autophagy, epithelial-to-mesenchymal transition, cancer stem cell involvement, tumor
microenvironment interactions, miRNA dysregulations, epigenetic alterations, as well as redox im-
balances. Certain resistance mechanisms that are 5-FU-specific have also been ascertained to include
the upregulation of thymidylate synthase, dihydropyrimidine dehydrogenase, methylenetetrahy-
drofolate reductase, and the downregulation of thymidine phosphorylase. Indeed, the successful
modulation of these mechanisms have been the game plan of numerous studies that had employed
small molecule inhibitors, plant-based small molecules, and non-coding RNA regulators to effec-
tively reverse 5-FU resistance in colon cancer cells. It is hoped that these studies would provide
fundamental knowledge to further our understanding prior developing novel drugs in the near
future that would synergistically work with 5-FU to potentiate its antitumor effects and improve the
patient’s overall survival.

Keywords: 5-fluorouracil; 5-FU; chemotherapy drug resistance; colon cancer; thymidylate synthase;
thymidine phosphorylase; dihydropyrimidine dehydrogenase; methylenetetrahydrofolate reductase;
overcoming chemotherapy drug resistance

1. Introduction

Colorectal cancer remains as the third leading cause of cancer-related mortality world-
wide, with 1.8 million new patients diagnosed and 900,000 deaths reported annually [1].
Men are reported to be more susceptible to the disease, with 2.56 million cases reported

Biology 2021, 10, 854. https://dx.doi.org/10.3390/biology10090854 https://www.mdpi.com/journal/biology

https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0001-8024-1100
https://dx.doi.org/10.3390/biology10090854
https://dx.doi.org/10.3390/biology10090854
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/biology10090854
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology10090854?type=check_update&version=2


Biology 2021, 10, 854 2 of 34

in 2018 alone in comparison with the 2.19 million cases reported in women [2]. Most of
these cases concern the elderly population, with 70% of cases occurring in individuals
above 65 years of age [3]. Risk factors can either be attributed to environmental factors
that include poor dietary habits, lack of physical activity, cigarette smoking, and alcohol
consumption, or hereditary with pre-existing genetic predispositions.

Since its discovery in 1957, the infusional administration of 5-fluorouracil potentiated
with leucovorin has been the mainstay preferred combinational chemotherapy option
for solid tumors such as colorectal cancer as well as breast, stomach, and head and neck
cancers [4,5]. For patients with advanced disease, 5-FU/LV combined with oxaliplatin
(FOLFOX) or irinotecan (FOLFIRI) served as the first-line treatment with considerable
improvement in patient’s relapse rate (RR) and overall survival (OS) despite the added
toxicity. Being a fluorinated analog of uracil, 5-FU exerts its cytotoxic effects through
the inhibition of thymidylate synthase (TYMS) that subsequently impairs cellular DNA
synthesis functions in tumor cells [5]. Fluorinated byproducts of 5-FU metabolisms, that
include fluorouridine triphosphate (FUTP) and fluorodeoxyuridine triphosphate (FdUTP)
may also be misincorporated into RNA and DNA of tumor cells to further disrupt protein
translation and expression. To further minimize the risk of disease relapse, targeted therapy
with the use of agents such as anti-EGFR cetuximab and anti-angiogenesis bevacizumab
may be additionally prescribed for patients in advanced stages [6]. Despite best efforts, the
reported response rate of 5-FU as a single agent treatment is still fairly limited at between
10–15%. In comparison, the use of a FOLFOX or FOLFIRI regimen may see a significant
improvement with reported objective response rate (ORR) of approximately 50% [7,8]. For
patients treated with 5-FU-based regimens, the 3- and 5-year survival rates are reported
to be at 72.2% and 60%, respectively [9,10]. However, considering that the first diagnoses
of most patients are commonly of late presentations, it is alarming to note that the overall
5-year survival rate of these patients with advanced disease is still at a mere 18.3% [11].
It is thus crucial for more studies to be conducted to improve our best knowledge of the
possible reasons behind 5-FU chemotherapy failure.

Chemotherapy failure that leads to disease progression and death is often the mani-
festation of chemotherapy resistance. Chemoresistance is defined by increased tumor cells
tolerance against chemotherapy agents, as the pro-survival strategies against its directed
cytotoxic effects. In this review, we will discuss new knowledge concerning the various
mechanisms that may contribute to 5-FU resistance, particularly in colonic adenocarci-
nomas. These resistance mechanisms can be “classical”, as it may also concern other
antineoplastic agents in contributing to the incidence of multidrug resistance (MDR), or
“5-FU-specific”. We will also discuss recent approaches that are being investigated in the
effort to enhance 5-FU sensitivity and overcome resistance.

2. Mechanisms of Action of 5-Fluorouracil

It was initially discovered that uracil is metabolized more rapidly than any other
pyrimidine nucleotides in pre-neoplastic and hepatoma rats when compared to healthy
rats [12]. The finding later encouraged a joint collaborative effort to synthesize a new class
of antitumor compounds that could potentially exert its antitumor effects by targeting
uracil metabolism in tumor cells [4]. The resulting compound is 5-FU as a heterocyclic
compound with the structure almost identical to pyrimidine, but with a fluorine atom
substituted from hydrogen at the C-5 position [13].

Following intravenous injection, only 1–5% of prodrug 5-FU is metabolized into active
cytotoxic metabolites with approximately 20% being subjected to urinal excretion while the
remaining 80% is rapidly degraded in the liver [14]. Degradation of 5-FU is facilitated by
the enzyme dihydropyrimidine dehydrogenase (DPD) that catabolizes the conversion of
5-FU into 5,6-dihydro-5-fluorouracil (DHFU) as the inactive metabolite [15]. The catabolism
process then continues with the conversion of DHFU to α-fluoro-β-ureidopropionic acid
(FUPA) by dihydropyrimidinase (DPYS), and subsequently, its decarboxylation and deami-
nation reactions to α-fluoro-β-alanine (FBAL) by β-ureidopropionase (UPB1). Anabolic
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pathway begins with the rapid entry of 5-FU into cells via a similar transport mechanism
as uracil prior its conversion to either substrate fluorouridine monophosphate (FUMP) or
fluorodeoxyuridine (FdUR) (Figure 1). Conversion to FUMP is catalyzed by the enzyme
orotate phosphoribosyltransferase (OPRT) in the presence of phosphoribosyl pyrophos-
phate (PRPP). FUMP is then phosphorylated to fluorouridine diphosphate (FUDP), prior
to another phosphorylation process that converts it to either active metabolite FUTP or
into fluorodeoxyuridine diphosphate (FdUDP) by the enzyme ribonucleotide reductase
(RNR) [16]. Being a fluorinated analogue of RNA nucleotide, FUTP can be misincorporated
into the RNA of tumor cells and cause RNA damage. Given the central role of RNAs in
protein translation, the protein expression of 5-FU-treated cells tend to be severely dis-
rupted that promote the activation of cellular autophagy and apoptosis machinery [17].
In the meantime, FdUDP is further phosphorylated to active metabolite FdUTP and is
misincorporated into the DNA of tumor cells to alternatively cause DNA damage. Prodrug
5-FU conversion to FdUR is facilitated by the enzyme thymidine phosphorylase (TYMP)
prior to further phosphorylation to active metabolite fluorodeoxyuridine monophosphate
(FdUMP). FdUMP may then form a stable ternary complex with enzyme TYMS along
with 5,10-methylenetetrahydrofolate (CH2THF) as a methyl donor to irreversibly inhibit
the enzymatic activity of TYMS [18]. This in turn prevents the conversion of substrate
deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) that
results in deoxynucleotide pool imbalances, and ultimately, in the arrest of cellular de novo
DNA synthesis and repair.
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3. Classical Mechanisms of Resistance
3.1. Alterations in Drug Transports

Figure 2 summarizes the mechanisms of 5-FU resistance in colon cancer. The increased
rate of intracellular drug exports reduces drug bioavailability within cells and is considered
a major factor in the development of multi-drug resistance. Drug exports are predominantly
facilitated by ATP-hydrolyzing, unidirectional transmembrane efflux pumps, notably, the
ATP–binding cassette (ABC) transporters [19]. Overexpression of ABC proteins, however,
presents an unfavorable implication on the prognosis of colon cancer patients receiving
5-FU treatment with studies reporting both negative and positive correlations [20–23].
Nonetheless, incidence of 5-FU resistance is still consistently motivated by elevated levels
of ABC transporters, that includes ABCB1 [P-glycoprotein (P-gp) or MDR1] [24,25]; ABCG2
[breast cancer resistance protein (BCRP)] [26,27]; ABCC1 [multidrug resistance-associated
protein (MRP1)] [28,29]; ABCC3 [20], and ABCC2 [30]. Surprisingly, in one study, 5-FU
resistance in colon cancer cells was instead attributed to the loss of ABCB4 [31]. ABC trans-
porters are substrate-specific that only conforms to structural changes upon binding with
recognizable ligands facilitated by the hydrophobic transmembrane domain (TMD) [32].
Meanwhile, the nucleotide-binding domain (NBD), harnesses energy from ATP hydrolysis
to allow these substrates to translocate across the cellular membrane. Studies that aim to
explore the upstream influencers of ABC transporters remain scarce. It was determined
that the transcription factor hairy and enhancer of split-1 (HES1) regulates the expression
of ABCC1 and ABCC2 [30]. In other studies, ABCB1, ABCC1, and ABCG2 overexpression
were found induced by not only transcription factor X-box binding protein (XBP1) but
together with inositol-requiring enzyme 1 α (IRE1α), an endoplasmic-reticulum-localized
protein that is activated upon endoplasmic reticulum stress [25]. CDK2-associated cullin
domain 1 (CAC1) and antisense non-coding RNA (ncRNA) in the INK4 locus (ANRIL)
influence on ABCB1 and ABCC1 were also demonstrated in recent studies, with ANRIL
promoting their bindings with Let-7a microRNA (miRNA) precursor [27,33].
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In addition to drug export, reduced drug accumulation within resistant cells may also
be the outcome of decreased drug uptake. Unlike ATP-mediated drug efflux, the mecha-
nism of drug influx into tumor cells can simply be via passive diffusion and is facilitated by
a group of proteins belonging to the solute carrier (SLC) transporter superfamily [34]. The
entry of 5-FU as an analogue of nucleoside is primarily facilitated by the SLC28 family, or
also known as the “concentrative nucleoside transporters” (CNTs), and the SLC29 family,
or also known as the “equilibrative nucleoside transporters” (ENTs) [35,36]. To the best of
our knowledge, only one study had been conducted to investigate the link between these
nucleoside transporters with 5-FU chemoresistance in colon cancer. It was concluded that
high human ENT 1 (hENT1) level in tumor tissue is correlated with poor clinical response
to 5-FU, supported by in vitro findings [37]. Similar findings were later observed in studies
concerning pancreatic cancer, whereby, overexpression of hENT1 were associated with
lower 5-FU chemosensitivity [38]. Surprisingly, the expression of SLCs such as SLC37A1,
SLC22A3, and SLC39A7 were raised in tumors of colon cancer patients and are associated
with poor patient prognosis and disease progression [39–41]. Higher SLC expression may
have allowed for enhanced nutrient intake to support accelerated tumor growth.

3.2. Evasion of Apoptosis

Apoptosis or programmed cell death is a regulated form of cell death triggered
upon exposure to irreversible damage or upon cellular senescence. In tumorigenesis,
apoptosis is suppressed in an orchestrated manner through upregulations of anti-apoptotic
proteins B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), B-cell lymphoma-
w (Bcl-W), and induced myeloid leukaemia cell differentiation protein (Mcl-1), and the
downregulation of pro-apoptotic proteins Bcl-2 associated X protein (Bax), Bcl-2 interacting
protein (Bim), Bcl-2 homologous antagonist/killer (Bak), BH3-interacting domain death
agonist (Bid), and NOXA in the intrinsic mitochondrial apoptotic pathway to promote
sustained tumor growth [42–46]. The equilibrium between these pro-apoptotic and anti-
apoptotic proteins modulate the gateway of apoptosis and is implicated in drug resistance.
Resistance to 5-FU typically involves the activation of nuclear factor kappa-light-chain-
enhancer of activated B cells with signal transducer and activator of transcription 3 (NF-
κB/STAT3) signaling pathway that not only promote the expression of anti-apoptotic Bcl-2,
X-linked inhibitor of apoptosis (XIAP), and inhibitor of apoptosis protein (IAP) survivin,
but also the expression of anti-proliferative proteins cyclin D1, vascular endothelial growth
factor (VEGF), and c-Myc [47–49]. These 5-FU-resistant cells exhibited higher levels of Bcl-2,
Bcl-xL, Mcl-1, and XIAP expression by which re-sensitization to 5-FU has been achieved
through its inhibition which subsequently promotes the upregulation of Bax and Bcl2-
associated agonist of cell death (Bad) expression [11,50]. Mechanistically, the activation of
Bcl-2 and Bcl-xL expression drive constant retrotranslocation of pro-apoptotic proteins Bax
and Bak away from the mitochondria into the cytosol to prevent its oligomerization that
may result in mitochondrial outer membrane permeabilization (MOMP) [51]. MOMP event
will release cytochrome C from the mitochondria into the cytosol and trigger a cascade
of caspase-mediated apoptosis involving pro-caspase-9, and executioner caspase-3/7.
Accordingly, pro-apoptotic BAX expression was suppressed in resistant cells [52]. Recent
studies have also associated phosphoinositide 3-kinases with protein kinase B (PI3K/AKT)
signaling pathway activation with upregulation of Bcl-2 and caspase-3, together with
the downregulation of Bax and cleaved-caspase-3 with decreased tumor cell sensitivity
towards 5-FU cytotoxicity [53]. Interestingly, these pathways may have been triggered
concurrently as demonstrated in 5-FU-resistant LS174 colon cancer cells with the activations
of JAK/STAT3, MAPK, PI3K/AKT, and NK-κB signaling pathways altogether [28]. Bcl-
2 related ovarian killer (BOK) is another pro-apoptotic protein that has been recently-
characterized. In their studies, Srivastava and colleagues (2019) had reported BOK to be a
positive regulator of uridine monophosphate synthase (UMPS) in the metabolism of 5-FU,
and that BOK inhibition had resulted in decreased tumor cell sensitivity towards 5-FU
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treatment [54]. Accordingly, patients receiving 5-FU therapy observed diminishing levels
of BOK protein, suggesting a feedback mechanism triggered by tumor cells for survival.

Resistance may also be mediated through the extrinsic apoptosis pathway that triggers
cascading caspase activation via cell-surface death receptors. The extrinsic pathway is
pro-caspase-8-dependent, and its regulations in colon cancer involve the p53-mediated acti-
vation of death factors such as Fas and tumor necrosis factor alpha (TNF-α) [55]. Tumor cell
tolerance against chemotherapeutic agents is usually the consequence of intrinsic pathway
activation rather than extrinsic, albeit certain studies have demonstrated otherwise [56,57].
In a study, decreased expression of Fas, Fas ligand (FasL), and pro-caspase-8 were deter-
mined in colon cancer cells upon 5-FU treatment, suggesting the promotion of resistance
through the extrinsic pathway [58]. Indeed, reduced levels of Fas and pro-caspase-8 were
observed in 5-FU-resistant colon cancer cells [59,60]. Interactions by binding between Fas
and FasL allow the recruit of adaptor protein Fas-associated death domain (FADD) that
triggers the activation of pro-caspase-8, and subsequently, executioner caspase-3/7 that
initiates the apoptosis process. Interestingly, Fas/FasL dysregulation also allows tumor
cells to remain unrecognized by Fas+ lymphocytes and evade immune response [61]. Di-
minishing Fas expression coupled with CD133+CD24lo tumor cells phenotype is correlated
with decreased survival of colon cancer patients [62].

3.3. Changes in Cell Cycle and DNA-Damage Repair Kinetics

In eukaryotic cells, cellular proliferation and division can be divided into five well-
characterized phases; G0 (cellular quiescence), G1 (physical and organelles developments),
S (DNA synthesis), G2 (protein expression production), and M (mitotic division) [63].
The transition between phases is coordinated by oscillating levels of cyclins and cyclin-
dependent kinases (CDKs) that act as “molecular checkpoints” responsible for the main-
tenance of genomic integrity and stability throughout the cell cycle. It is established that
5-FU exerts its cytotoxic effects in tumor cells primarily through inhibition of DNA syn-
thesis. This is evident in the significant arrests of G1/S and S phases of cell cycle, as
well as reduced G2/M phase population in colon cancer cells post-5-FU treatment [28,64].
5-FU-resistant cells typically exhibit attenuated effects of 5-FU cytotoxicity with a higher
population of cells detected in both G1/S and S phases when compared to 5-FU-susceptible
cells [27,28,65,66]. When DNA synthesis remains unimpaired, 5-FU-resistant cells may also
observe a higher population of G2 phase cells when compared to 5-FU-susceptible cells [26].
Prolonged G1 and S phases may provide sufficient time for tumor cells to counteract against
5-FU-induced DNA damage through activation of DNA repair pathways.

Progression of cell cycle is generally dependent on the absence or presence of DNA-
damage response (DDR). It is especially pertinent in 5-FU treatment whereby FdUTP
misincorporation into DNA bases may trigger base excision repair (BER) and the mismatch
repair (MMR) pathways activation to excise false nucleotides from sequences. This in turn
collapses the DNA replication forks to induce lesions that are described as double-stranded
DNA break (DSB) resulting in DDR [67]. Two major pathways for DSB repair have been
characterized, namely, the homologous recombination (HR) and the non-homologous
end-joining (NHEJ) pathways. NHEJ typically serves as the major DSB repair pathway
that is presented in all cycle stages, while HR functions are only limited to the late S and
G2 phases of the cell cycle [68]. Inhibition of HR via targeting Rad51, an essential protein
for DSB repair, led to an enhancement of 5-FU response [69].

In 5-FU-resistant cells, NHEJ activities are reported to be higher via the upregulation
of its mediators that ultimately contribute to increased DNA damage repair and resistance
to apoptosis [70,71]. These responses, nonetheless, are orchestrated by members of the
PI3K family, namely, ataxia-telangiectasia mutated (ATM) and ATM- and Rad-related
(ATR) kinases [72]. These kinases facilitate the recruitment of repair mediators into the
DNA-damaged sites while stalling cell cycle progression in G1, S, or G2 phases through
the activation effector checkpoint kinase (Chk1 and Chk2). It has been demonstrated
that DNA damage invoked by 5-FU treatment activates ATM/ATR-mediated Chk1/Chk2
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upregulation that leads towards S and G2M phases cell cycle arrest, respectively, and
ultimately in cellular apoptosis [73–76]. Conversely, the absence of ATM/ATR-mediated
Chk1/Chk2 activations is observed in 5-FU-resistant that hinders apoptosis.

3.4. Involvement of Autophagy

When under metabolic or replication stress, tumor cells may also undergo autophagy
that sequesters damaged organelles or proteins into lysosomes for degradation as the
protective catabolic mechanism to prevent further cellular damage and to maintain cellular
homeostasis [77]. Replication stress that is induced by 5-FU therapy typically reflects
in pro-survival autophagy response in 5-FU-resistant cells marked by increased activa-
tions of Beclin-1 and microtubule-associated proteins 1A/1B light chain 3B II (LC3-II)
expression, following mammalian target of rapamycin (mTOR) pathway activation [78–80].
Beclin-1 facilitates the formation of LC3-II autophagosome from LC3-I that interacts with
phosphatidylethanolamine (PE), autophagy-related genes 3 (Atg3), and Atg7 to allow
for binding and degradation of erroneous substrates induced by 5-FU treatment [77]. In-
terestingly, there are growing number of studies that had attribute 5-FU resistance with
autophagy inhibition instead [81–84]. It is due to these contraindicatory data that the thera-
peutic potential of autophagy modulation is still a subject of ongoing debates as autophagy
involvement can be both pro-survival and pro-death. It is postulated that autophagy
inhibition serves as the protective mechanism for resistant cells to avoid autophagic cell
death [85].

3.5. Epithelial-to-Mesenchymal Transition (EMT)

A hallmark of cancer progression and metastasis is the increased capability of cancer
cells to migrate and invade neighboring and distant tissues. This is commonly achieved
following a morphogenetic process termed as epithelial-to-mesenchymal transition (EMT)
in which epithelial cells losses its epithelial traits and acquire mesenchymal properties
through cytoskeleton remodeling [86]. EMT is not only a well-known risk factor that
is associated with tumor metastasis in the liver of colon cancer patients that leads to
poor patient prognosis but is also associated with poor treatment response [87–90]. Over
the years, growing literature has demonstrated the link between EMT events and 5-FU
resistance as higher and reduced expression of mesenchymal and epithelial markers,
respectively, were consistently reported in 5-FU-resistant cells. In these studies, levels
of vimentin, zinc finger protein SNAI1 (SNAIL), phosphorylated nuclear factor NF-κB
p65 subunit (p–p65), ten-eleven translocation methylcytosine dioxygenase 1 (TET1), and
naked cuticle 2 (NKD2) were found to be significantly upregulated [48,91,92]. In contrast,
the expression of E-cadherin, β-catenin, transcription factor 4 (TCF4), and Axin were
downregulated. The transition can be mediated through several signaling pathways that
include NF-κB, Wnt, and Akt following stimulation from transcription factors [e.g., twist-
related protein 1 (TWIST1) and zinc finger E-box-binding homeobox 2 (ZEB2)], non-coding
RNAs [e.g., metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), SLC25A25-
AS1, and miR-23b), and epigenetic alterations (e.g., promoter methylation of TWIST1/2,
ZEB2, and SNAI1/2) [93–98]. Interestingly, the activations of these EMT factors may also
influence the regulation of other resistance mechanisms. For instance, the overexpression
of SNAIL has been demonstrated to be capable of upregulating the expression of ABC
transporter, ABCB1, to promote resistance [24]. Other studies have also reported increased
stemness of tumor cells following the activation of EMT factors TWIST1 and ZEB2 [98,99].

3.6. Involvement of Cancer Stem Cells

Cancer stem cells (CSCs), also known as “tumor-initiating cells”, are a small subpopu-
lation of cancer cells within tumors that have attained stem cell-like characteristics such as
self-renewal and multi-directional differentiation capabilities [100]. There is growing evi-
dence demonstrating the pivotal role of CSCs in tumor initiation, progression, metastases,
and cancer recurrence, aside from contributing to intra-tumor heterogeneity [101–104].
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CSCs are poorly differentiated in nature and possess the ability to remain quiescent in the
G0 phase of the cell cycle, thus, helping them to escape from chemotherapy insults, which
typically targets highly-proliferating and mature cancer cells [105]. Recent studies have also
demonstrated the ready capability of CSCs to promote EMT via transcription factor ZEB2
even when untreated [99]. Furthermore, colon CSCs when under chemotherapy stress,
may directly prompt the activation of other resistance pathways. These include raised Bcl-2
and Bcl-xL that inhibit apoptosis [106,107]; higher expression of ABC transporters such as
ABCC2, ABCC3, and ABCG2 that promote drug export from the cell [20,108]; overexpres-
sion of DNA repair gene O6-methylguanine-DNA-methyltransferase (MGMT) [109,110];
and the alteration of cell cycle checkpoint via phosphorylation of ATM, Chk1, and Chk2
proteins [111]. Akin to other 5-FU-resistant colon cancer cells, colon CSCs may also pro-
mote 5-FU resistance within the tumor microenvironment via the activation of PI3K/AKT
signaling pathway that regulates cell growth and apoptosis [112,113]. Wnt signaling also
plays a critical role in mediating drug resistance in CSCs as p300/β-catenin binding has
been shown to promote differentiation while CREB-binding protein/β-catenin binding is
necessary for potency maintenance of CSCs [114,115]. The knockdown of β-catenin may
not only result in increased drug sensitivity through diminishing levels of CSCs’ stemness
but also in the inhibition of EMT activities [116].

Indication on the plausible involvement of colon CSCs to 5-FU resistance was first
implied when isolated colon cancer cells presented with colon CSCs marker CD133 showed
increased resistance towards apoptosis following 5-FU exposure when compared to CD133–

cells [117]. Indeed, as demonstrated in recent studies, these CD133+ together with CD44+

cells do exhibit CSC-like phenotypes with increased viability, colony formation, migration,
and invasion rates, alongside resistance towards apoptosis [104,118,119]. Interestingly, it
has been shown that only a small subset of CD133+ cells is implicated with 5-FU resistance,
such as in CD133+CD24lo cells [120]. Nonetheless, higher expression of CD133 has been
correlated with poor prognosis in stage II and III colon cancer patients [121,122]. In contrast,
a higher level of CD44 presents an increase in risk for colon cancer as well as a worse
overall survival of patients [123–125]. Aside from CD133, CD44, and CD24, the knockdown
of other putative colon CSCs stemness such as aldehyde dehydrogenase (ALDH1) [126]
and CD166 [127,128] have also exhibited increased cellular 5-FU-mediated cytotoxicity.

CSCs are also a major determining factor that contribute towards intra-tumoral hetero-
geneity. In theory, it is postulated that CSCs are placed at the apex of the division hierarchy,
capable of undergoing both symmetric and asymmetric divisions that may differentiate
into different types of cancer cells when triggered by environmental stimuli [129]. This
results in a phenomenon known as clonal evolution, by which a single tumor may feature
distinctive subpopulation of tumor cells carrying a wide range of genetic variation. 5-FU
therapy is an example of an environmental stimulus that may drive tumor evolution. In one
study, it was shown that 5-FU treatment promotes T>G mutation in human small intestinal
organoids cultures, causing subsequent 5-FU treatment to become less cytotoxic [7]. The
mutation is perhaps a pro-survival feedback mechanism for the tumor cells to adapt to the
cytotoxic environment. To make things more complicated, clonal variation also accounts
for tumor protein 53 (p53) mutational status in patients that have likewise been shown to
influence 5-FU chemosensitivity [130].

3.7. Interactions within the Tumor Microenvironment

Almost all mammalian cells, including tumor cells, are in constant communication
with their respective microenvironment for the maintenance of cellular homeostasis and
general survival [131]. For tumor cells, its interaction with its tumor microenvironment
(TME) such as with supporting extracellular matrix (ECM) [132,133]; neighboring stro-
mal cells which include cancer-associated fibroblasts (CAFs) [134], mesenchymal stem
cells (MSCs) [135], and blood and lymphatic networks [136,137]; together with immune
cells such as tumor-associated macrophages (TAMs) [138,139], natural killer cells (NK
cells) [140,141], and T/B lymphocytes [142–144] have been the highlights of many re-
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searchers due to its fundamental role in colon cancer progression and metastasis. The
significance of TME in mediating 5-FU drug resistance has also gained attention in recent
years due to its crosstalk influence on tumor cell behavior. For instance, in one study,
chemokine C-X-C motif ligand 13 (CXCL-13) is found highly-expressed in the TME of
5-FU-resistant colon cancer cells as well as in sera of 5-FU-resistant patients associated
with worse clinical outcome [145]. Although the mechanism as to how CXCL-13 partic-
ipates in 5-FU resistance was not stated, it is highly plausible that resistance is achieved
through piggybacking the same pathways responsible in promoting tumor growth, mi-
gration, and invasion in CXCR5-expressing colon cancer cells; through the activation of
PI3K/AKT/mTOR and Wnt/β-catenin signaling pathways [112,146,147]. Nonetheless, it
was shown that CXCR-5 knockout mice exhibited an increased number of infiltrating B-cells
that had contributed towards improved drug response. Meanwhile, a direct connection
between CXCL12/CXCR4 axis and Wnt/β-catenin signaling in enhancing 5-FU resistance
can be observed in other studies [148–150]. CXCL-13 and CXCL-12, as chemokines, may
also recruit T-regulatory cells into the microenvironment that would aid in 5-FU tolerance.
This is evident in the CCL20/CCR6 axis as its overexpression in resistant patients has been
associated with increased TFCD4+ infiltration from tumor-infiltrating lymphocytes (TILs)
via forkhead box protein O1 (FOXO1)/CEBPB/NF-κB pathway [151]. Secreted transform-
ing growth factor beta (TGF-β) may further facilitate resistance by prompting SMAD3
nuclear translocation that promotes neovascularization [152]. A higher level of TGF-β
may also promote TAMs polarization, specifically by M2 macrophages that secrete CCL22
to confer 5-FU resistance via the PI3K/AKT pathway [153,154]. Paradoxically, improved
disease-free survival is observed in stage III colon cancer patients expressing a high level
of M1 macrophages, suggesting a synergistic effect through immunogenic death with 5-FU
via TNFα/TRAIL [155].

Tumor cells also interact with other stroma cells, such as with CAFs that actively par-
take in ECM deposition and remodeling despite their dual-role as both pro-tumorigenic and
tumor-suppressive [156]. Aside from recruiting TAMs, transformed CAFs may secrete cy-
tokines such as IL-6, IL-8, IL-17, TNF-α, and VEGF that does not only contribute towards tu-
mor aggressiveness but also in therapy response such as in 5-FU treatment [157–159]. Based
on in vitro data, survival advantage gained can be attributed to AKT, mitogen-activated
protein kinases 14 (P38), and Survivin nuclear translocation; elevated expression of CD44,
β-catenin, leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), and ABCG2;
STAT3 augmentation; alongside PI3K/AKT and Janus kinase (JAK)/STAT pathways ac-
tivation. CAFs may also promote tumorigenesis and 5-FU resistance through generating
CSCs, resulting in a plethora of resistance pathways previously discussed [158,160]. While
CAFs appear as an excellent target for anticancer drugs, conflicting data have also been
presented in recent years that strongly suggest its role as a tumor suppressor [161,162].

As a molecular vehicle that exports a selective repertoire of DNA, RNA, proteins,
lipids, and metabolites from one cell to another, the role that exosomes as extracellular
vesicles play in mediating communication between tumor and stroma cells is undeniably
extensive. In recent years, circulating exosomes have been demonstrated to mediate 5-FU
resistance through the transfer of CAFs secretomes [163], transcription factor phosphory-
lated STAT3 (p-STAT3) [164], glycoprotein Wnt [165], circular RNAs circ_0000338 [166],
as well as microRNAs such as miR-210 [167], miR-21 [168], and miR-145 [169]. Further-
more, exosomal marker tumor-associated glycoprotein 72 (TAG72) have been correlated
with 5-FU-resistant patients, indicating its prognostic potential as a novel, non-invasive
evaluation tool to predict patient’s response to 5-FU-based therapy [170].

3.8. Epigenetic Alterations

Epigenetic modification refers to the heritable changes that do not directly affect the
DNA sequence per se, but rather its accessibility and chromatin structure, attributed to
incidences of DNA methylation and histone modifications that lead to the dysregulation
of gene expression [171]. In colon cancer, dysregulation that elicits genomic instability
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causing tumor initiation can derive from gene promoter CpG island methylation as ob-
served in tumor-suppressors Krüeppel-like factor 6 (KLF6), KLF4, and zinc finger protein
726 (ZNF726) silencing; through direct hypermethylation of one allele demonstrated in
human mutL homolog 1 (hMLH1) and cyclin-dependent kinase inhibitor 2A (CDKN2A);
and through DNA hypomethylation such as in the case of LINC00460 that promotes
metastasis [172–175].

Certain methylation processes may also contribute to incidence of 5-FU resistance,
aside from tumor progression. It was shown that protocadherin-17 (PCDH17) silenc-
ing via promoter methylation does not only suppresses its role as a tumor-suppressor
in inducing apoptosis, but also in inducing JNK-dependent autophagic cell death upon
5-FU treatment in colon cancer [83]. Higher expression of PCDH17 is thus correlated
with better OS of 5-FU-treated patients. In one study, integrated analysis of methylation
profiling and protein-protein interaction (PPI) revealed that 5-FU resistance conferred
through promoter hypermethylation can be a multitude, ranging from the involvement
of p53 and epidermal growth factor receptor (EGFR) signaling pathways (e.g., EGFR and
IGFBP3), drug metabolism through cytochrome P450 [e.g., cytochrome P450 3A5 (CYP3A5)
and glutathione S-transferase P (GSTP1)], as well as in pyrimidine metabolism [e.g., cy-
tidine deaminase (CDA)] [176]. Compelling evidence has been presented that linked
miR-181a/135a/302c promoter hypermethylation, 5-FU tolerance, and microsatellite insta-
bility/microsatellite stable (MSI/MSS) status in colon cancer cells. In their studies, Shi and
colleagues (2018) had demonstrated significant CpG island hypermethylation in promoter
regions of miR-181a/135a/302c in cancer tissues of MSI patients when compared to MSS
patients [177]. Interestingly, demethylation in vitro exerted reinforced 5-FU sensitivity in
MSI phenotypic cells via targeting pleiomorphic adenoma gene 1 (PLAG1). Although
most studies have reported negative correlations between gene hyper-/hypo-methylation
and poor patient prognosis through resistance, such as in BCL2/adenovirus E1B 19 kDa
protein-interacting protein 3 (BNIP3) facilitated by DNA methyltransferase 1 (DNMT1)
enzyme [178]; miR-26b via P-gp down-regulation [179]; DNMT3A and DNMT3B overex-
pression [180]; CCNE1, cyclin D1 binding protein 1 (CCNDBP1), paraoxonase 3 (PON3),
as well as DEAD-box helicase 43 (DDX43) and cell adhesion molecule L1-like I (CHL1)
via the mitogen-activated protein kinase (MAPK) apoptosis and PI3K/AKT proliferation
pathways, respectively [181]; and osteopontin splicing isoform c via methyl-CpG binding
protein 2 (MeCP2) [182], there are studies that had reported otherwise; WNT5A [183];
and NME/NM23 nucleoside diphosphate kinase 2 (NME2) [184]. Histone modifications
are another common cause for epigenetic alterations and can be observed in the histone
methylation H3K9me9 dysregulation and H3K27 PCAF-mediated histone acetylation
of p53 [66,185]. Histone deacetylases are essential enzymes required for the reversible
acetylation of histone. Its degradation via deubiquitinase USP38, specifically by histone
deacetylase 3 (HDAC3), is also implicated in 5-FU resistance as epigenetic regulation via
H3K27 acetylation is implied [186].

3.9. Dysregulations of miRNAs

MiRNAs are small, non-coding RNA molecules that have been implicated in various
biological processes including colon tumorigenesis due to its capability to regulate gene
expression post-transcriptionally via base-pairing with complementary mRNA. These
micRNAs include miR-20a, -182, -122, -425-5p, -221, -200, and -215-3p, that amongst oth-
ers, target TGF-β, nucleic acid-binding protein 1 (NABP1), fructose-biphosphate aldolase
(ALDOA), FOXO, quaking homolog, KH domain RNA binding (QKI), Ras association
domain family member 2 (RASSF2), and forkhead box M1 (FOXM1) to influence tumor
cell proliferation, migration and invasion, apoptosis, cell cycle, as well as DNA-damage
repair [187–193]. A plethora of miRNA species that regulates tumor cell response towards
5-FU in colon cancer have also been described over the years (Table 1). MiR-532, for
instance, may bind directly to the 3′UTR regions of ETS proto-oncogene 1 (ETS1) and
transglutaminase 2 (TGM2) to suppress its expression and inhibit further Wnt/β-catenin
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signaling activation [194]. When factoring in p53 activation that is also induced by miR-
532-3p, significant restoration in 5-FU sensitivity can be observed attributed to increased
cell cycle arrest and early apoptosis. Bioinformatic analysis revealed miR-494 to be corre-
lated with 5-FU resistance through DNA topoisomerase IIA (TOP2α) overexpression [195].
Although the mechanism of resistance was not stated, the role of TOP2α that maintains
the topological status of chromosome during DNA replication and transcription may have
facilitated enhanced tumor cell proliferation and DNA-damage repair in 5-FU-resistant
cells [196].

Table 1. MiRNAs that mediate 5-FU resistance in colon cancer cells through the modulation of various pathways.

miRNA Resistance Expression Mechanism Ref

miR-361 Underexpressed Upregulation of ABCC10/5 expression regulated by FOXM1 [197]
miR-27a Overexpressed Modulation of DPYD expression [198]
miR-200c Underexpressed Enhanced Bcl-2 expression [199]

miR-587 Overexpressed Downregulation of PPP2R1B expression that increases AKT
phosphorylation and XIAP expression [200]

miR-22 Underexpressed Promotes autophagy via BTG1 upregulation [201]
miR-224 Underexpressed Suppressed apoptosis via repressed E2F activity [94]
miR-375 Underexpressed Upregulate TYMS expression [202]

miR-31 Overexpressed Downregulation of KANK1 that abrogate CXXC5-mediated
apoptosis [203]

miR-204 Underexpressed Directly targets HGMA2 that activates the PI3K/Akt signaling
pathway [204]

miR-214 Underexpressed Downregulation of HSP27 [205]

miR-543 Overexpressed Upregulation of PTEN that activates the PI3K/AKT signaling
pathway [206]

miR-15b Underexpressed Downregulations of NF-κB1 and IKK-α targets [207]

miR-106a Overexpressed Downregulation of TGFβR2 that promotes EMT and inhibit
apoptosis [208]

miR-206 Underexpressed Enhanced Bcl-2 expression [209]
miR-532 Underexpressed Promotes Wnt/β-catenin signaling activation [194]
miR-494 Underexpressed Upregulation of TOP2α that facilitates DNA-damage repair [195]

miR-125b Underexpressed Induction of Sp1/CD248 expression [210]
miR-377 Underexpressed Induction of BRD4 expression [211]
miR-139 Underexpressed Modulation of NOTCH1, Bcl-2, and AMFR expression [212]
miR-27b Underexpressed Upregulation of ATG10 that promotes autophagy [213]

Regulation of miRNAs can be influenced by other genes and proteins. For instance, re-
duced levels of miR-125b have been demonstrated to result in toll-like receptor 2 (TLR2)/6
and TLR5 overexpression [214]. Subsequently, miR-125b-5p downregulation induces speci-
ficity protein 1 (Sp1)-mediated activation of CD248 that does trigger not only tumor cells
metastases but also 5-FU chemoresistance. Up-regulation of lncRNA POU6F2-AS2 is shown
to inhibit miR-377 expression, leading towards BRD4 upregulation which in turn promotes
tumor cell proliferation, cell cycle progression, and reduced 5-FU cytotoxicity [211]. In a
different study, sponging miR-139-5p attributed by LINC00152 overexpression has been
linked to diminishing 5-FU-induced apoptosis in colon cancer cells via notch homolog 1,
translocation-associated (NOTCH1), Bcl-2, and autocrine motility factor receptor (AMFR)
regulations [212]. Recent studies on other microRNAs include miR-27b-3p that acts as a
tumor-suppressor. By regulating ATG10, a protein essential for autophagosome formation,
it markedly increases the sensitivity of colon cancer cells to 5-FU in vivo [213].

3.10. Redox Imbalances

The role reactive oxygen species (ROS) plays in regulating various signaling pathways
that may initiate tumorigenesis, differentiation, and apoptosis have been widely docu-
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mented [215]. Elevated levels of ROS due to redox imbalance characterized by increased
free radical hydroxyl radical (•OH), hydrogen peroxide (H2O2), hydroperoxyl radical
(HO2•), and superoxide anion (O2•−) can induce DNA damage, cell cycle arrests, as well
as autophagy via oxidative stress [216,217]. ROS may also influence tumor cell response
to chemotherapy. In a recent study, the inhibition of nuclear factor erythroid 2-related
factor 2 (Nrf2) as the key transcription factor in the regulation of cellular redox homeostasis
has resulted in the re-sensitization of 5-FU in colon cancer cells [218]. Nrf2 inhibition
triggered by FoxO3 upregulation caused a significant reduction in TR1 expression that in
turn, elevates intracellular ROS. Synergistic interaction between ROS with 5-FU to further
trigger apoptotic cell death in resistant cells was further supported in another study by
Yan and colleagues (2019) [217]. It was determined that increased intracellular ROS had in-
duced AMP-activated protein kinase (AMPK) signaling pathway activation that promotes
autophagy initiation and reverse 5-FU resistance in colon cancer cells.

4. Mechanism of Resistance by Key 5-Fluorouracil Enzymes
4.1. Amplification of Thymidylate Synthase

Inhibition of thymidylate synthase enzymatic activity has been the hallmark cytotoxic
mechanism of 5-FU treatment. Under normal physiological conditions, TYMS is responsible
for the irreversible methylation of dUMP to dTMP with the aid from CH2THF as the methyl
donor [219]. The absence of TYMS thus, hinders the production of nucleolar thymidine as
an essential DNA nucleoside, leading towards de novo DNA synthesis impairment within
cells. Given that tumor cells are associated with accelerated rates of DNA replication and
repair due to increased genomic instability, it is thus more affected than healthy cells [220].
A growing amount of evidence has presented the prognostic value of TYMS, as reduced
expression denotes improved patient response and OS to 5-FU-based therapy [221,222].
This corresponds to early studies by which an inverse relationship is observed between
TYMS expression and 5-FU chemosensitivity [223,224]. Accordingly, increased TYMS
amplification has been recognized as a primary determinant in the development of 5-FU
resistance (Table 2) [225].
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Table 2. Recent evidence on the correlation of thymidylate synthase (TYMS), thymidine phosphorylase (TYMP), dihydropyrimidine dehydrogenase (DPD), and methylenetetrahydrofolate reductase
(MTHFR) expression with 5-FU chemosensitivity in colon cancer cell lines and patients.

Enzyme Resistance Mechanism Recent Evidence Outcome

Thymidylate synthase

TYMS overexpression
via gene amplification

through CNV and
tandem repeats

• Resistance in patients with 5′-UTR 2R/3G, 3C/3G, and 3G/3G
polymorphisms [226].

• Increase disease relapse in patients with 3′UTR ins/LOH polymorphism
[227].

• TYMS copy number gains in patients treated with 5-FU [7].
• Increased TYMS expression in 5-FU-resistant colon cancer cell line [228].
• TYMS knockdown enhances 5-FU chemosensitivity in colon cancer cell line

[202].

Restored level of dTMP

Thymidine phosphorylase TYMP suppression via
loss-of-function

• Meta-analysis: poor patients’ prognosis when TYMP is suppressed [229].
• Increase disease recurrence in patients with TYMP underexpression [230].
• Low TYMP expression is associated with reduced patients’ relapse-free

survival (RFS) [231].
• Low TYMP is associated with poor patient outcome [232].
• Low TYMP is associated with shorter patients RFS and increased risk of

disease recurrence [233].
• TYMP upregulation is associated with enhanced 5-FU accumulation and

response in colon cancer cell line [234].

Reduced intra-tumoral
concentration of active

5-FU metabolite

Dihydropyrimidine
dehydrogenase

DPD upregulation via
polymorphism

• DPD is upregulated in 5-FU-resistant mice [235].
• DPD downregulation demonstrated anti-5-FU resistance in colon cancer cell

line [236].
• DPDI-1, ethynyluracil DPDI-2, S-1 DPDI-3, and BOF-A2 DPDI-4 was

demonstrated as effective DPD inhibitors that can potentiate 5-FU [237].
• DPD polymorphism profile may serve as an independent risk factor of 5-FU

chemosensitivity [226].
• DPD upregulation is observed in 5-FU-resistant mice [238].

Methylenetetrahydrofolate
reductase

MTHFR upregulation
via polymorphism

• Patients with rs1801131 point mutation are associated with shorter OS and
disease-free survival (DFS) [239].

• MTHFR 1298 A/A and heterozygous MTHFR 677 C/T genotype is
associated with 5-FU resistance in colon cancer cell lines [240].



Biology 2021, 10, 854 14 of 34

Underlying mechanisms leading towards TYMS amplification have been attributed to
the incidence of copy number variation (CNV) and tandem repeat polymorphism within
the 5′-untranslated regions (5′-UTR) of TYMS gene. Due to its polymorphic nature, the
5′-UTR region is inclined to contain a double (2R) or triple (3R) 28 base-pair tandem repeats,
as well as G > C single nucleotide polymorphism (SNP) that may significantly affect TYMS
translation. In recent studies, 5-FU chemotherapy efficacy was found markedly reduced by
50% in patient cohort afflicted with 5′-UTR 2R/3G, 3C/3G, and 3G/3G polymorphisms,
when compared to 5′-UTR 2R/2R, 2R/3C, and 3C/3C carriers [226]. While in separate
studies, the loss of heterozygosity (LOH) was factored in as well, reporting lower risk
of disease recurrence and death for patients with 2G/3G, 2G/LOH, and 3C/LOH geno-
types [227]. Although no correlation between 3′-UTR polymorphism and 5-FU efficacy was
found in the study conducted by Qihong Nie and colleague (2019), it was established by
Ntavatzikos and colleagues (2019) that the presence of 3′-UTR ins/LOH is an independent
indication for increased risk for disease relapse and death. The phenomenon of TYMS copy
number gain upon 5-FU administration in colon cancer patients has also been reported,
suggesting the mechanistic approach behind acquired 5-FU resistance is through selective
pressure [7]. It is plausible that TYMS overexpression is the negative feedback response
of tumor cells to overcome the competitive inhibitory binding of FdUMP as the active
substrate of 5-FU.

4.2. Suppressed Expression of Thymidine Phosphorylase

Thymidine phosphorylase, or also known as platelet-derived endothelial cell growth
factor (PD-ECGF) is another crucial enzyme in the metabolism of 5-FU, involved in the
conversion of 5-FU to FdUR prior to its phosphorylation by thymidine kinase (TK) to
FdUMP [241]. TYMP overexpression may promote increased intracellular concentration
of active 5-FU metabolite, thus enhancing its efficacy. Even so, its direct correlation in
5-FU treatment outcome was previously a subject of debate as certain studies linking
elevated expression with worse patient prognosis [242–244]. Recent studies later conclu-
sively determined that TYMP overexpression may only benefit early-stage patients in
prolonging time to disease progression, relapse-free survival, and OS [229–233,245]. This
is supported by experimental studies in which enhanced 5-FU cytotoxicity is observed in
conditions where TYMP is upregulated in colon cancer cells and xenograft mice [234,246].
Accordingly, reduced levels of TYMP may contribute to the development of acquired
5-FU resistance [247]. Poor patient outcomes observed in advanced-stage patients despite
elevated levels of TYMP may be attributed to the dual role of TYMP in promoting angiogen-
esis and metastasis, aside from its role in 5-FU metabolism [222,231]. Such discrepancy may
be the result of contrasting treatment regimens between primary and metastatic tumors as
the administration of oxaliplatin, irinotecan, and capecitabine alongside 5-FU may provoke
TYMP expression [248,249].

Little to no evidence has been presented to attribute TYMP dysregulation with genetic
changes of TYMP gene [250]. Genetic variations of TYMP are generally linked with the in-
cidence of mitochondrial neurogastrointestinal encephalomyopathy syndrome (MNGIE) as
an autosomal recessive disorder that affects the gastrointestinal and nervous systems [251].
The condition is due to the loss of function of TYMP gene following homozygous mutations
c.1283 G > A, and c.1284 T > A, as well as mutations in DNA polymerase subunit gamma
(POLG) and ribonucleotide reductase regulatory TP53 inducible subunit M2B (RRM2B)
genes that lead to TYMP deficiency [252–254]. Interestingly, increased TYMP expression
has been reported in cases of local inflammations such as rheumatoid arthritis and psoriasis,
suggesting its plausible causal link with stress conditions such as hypoxia in the tumor mi-
croenvironment [255,256]. Indeed, TYMP overexpression may promote adaptive responses
mediated by the hypoxia-inducible factor (HIF-1) pathway that prevents hypoxia-induced
apoptosis that is triggered upon continuous chemotherapy [229,242,257]. Consequently,
attenuation of 5-FU chemosensitivity can be observed across varying tumor cells exposed
to hypoxic conditions, including colon cancer cells [258–260].
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4.3. Overexpression of Dihydropyrimidine Dehydrogenase

Dihydropyrimidine dehydrogenase serves as the initial rate-limiting enzyme in the
catabolism of prodrug 5-FU to inactive DHFU and is responsible for approximately 80%
of 5-FU degradation in the liver after bolus infusion. Consequently, DPD moderates
the bioavailability and concentration of plasma 5-FU that inversely correlates with 5-FU
treatment response in treated patients. In DPD-deficient patients, increased risk and
severity of 5-FU-induced toxicity as a result of active 5-FU metabolites accumulation has
been described [261,262]. Accordingly, increased intra-tumoral DPD expression may lead
to reduced concentration of 5-FU metabolites and subsequently, in the development of 5-FU
resistance [237,263]. This has been shown evidently in colon cancer cells where higher levels
of DPD activity are observed in the liver of nude mice xenografted with 5-FU-resistant
HT-29 cells when compared to nude mice xenografted with 5-FU-sensitive HT-29 cells [235].
Successful in vitro and in vivo reversal of 5-FU resistance in colon cancer cells through
DPD inhibition has also been reported in recent studies [236]. Patients displaying heighten
adverse events of 5-FU-induced toxicity are often screened for DYPD*2A polymorphisms,
particularly in splice site variants 1905 + 1G > A, c.1601G > A (p.Ser534Asn), c.2194 G > A
(p.Val732I1e) [264]. Corrected 5-FU treatment dose is accordingly administered to patients
assessed positive for DYPD*2A mutations if the occurring adverse events are deemed
intolerable. Despite the toxicity, certain DYPD mutations offer improved tumor response
to 5-FU treatment (Table 3) [226].

4.4. Overexpression of Methylenetetrahydrofolate Reductase

Inhibition of TYMS is achieved through stable ternary complex formation between
TYMS, FdUMP, and CH2THF. The availability of CH2THF for binding, however, is tightly-
regulated by the enzyme methylenetetrahydrofolate reductase (MTHFR) that catalyzes
the irreversible conversion of active CH2THF to 5-methylenetetrahydrofolate (5-MTHF)
as the essential folate for DNA methylation [267]. Given that TYMS inhibition serves as
the principal mechanism behind 5-FU cytotoxicity, MTHFR has been regarded as a factor
that may influence the efficacy of 5-FU therapy. It is postulated that MTHFR underex-
pression may contribute towards enhanced 5-FU efficacy due to a higher concentration
of CH2THF substrate while its overexpression may manifest in 5-FU resistance. Two
common polymorphism variants with the outcome of MTHFR enzymatic deficiency have
been identified, namely, the rs1801133 (C677T) and rs1801131 (A1298C) [269]. Positive
correlation between MTHFR polymorphisms and colon cancer patient’s response to 5-FU
treatment is often reported involving variant A1298C with C677T seeing 5-FU benefits only
exclusively in refractory cases [239,270,271]. Interestingly, in vitro studies have implicated
both polymorphisms in the development of 5-FU resistance in colon cancer cells [240].
Nonetheless, several studies had reported no correlation between MTHFR polymorphism
and tumor response rate in early-stage patients, supported by in vitro models [272–275].
These variabilities may be contingent with interpatient variability in folate status and
treatment history, as better treatment response was reported for MTHFR-mutated patients
receiving 5-FU monotherapy when compared to patients with a history of FOLFOX or
FOLFIRI treatment [274].
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Table 3. Heterogeneity in DPD expression can be contributed by various single nucleotide polymorphisms (SNPs) that leads to differing 5-FU response outcome in colon cancer patients.

SNP Gene Genotype Outcome Remark Ref

c.1905 + 1 DYPD*2A G > A

• 50% DPD reduction in heterozygous carrier
• <25% DPD reduction in homozygous carrier
• 40–80% 5-FU clearance in heterozygous carrier

• 0.1% in African American population
• 1% in Caucasian population
• 1.6% in European population

[15,264]

c.2846 D949V A > T

• 30% DPD reduction in heterozygous carrier
• 39–59% DPD reduction in homozygous carrier
• 40–80% 5-FU clearance in heterozygous carrier

• 0.1% in African American population
• 1.1% in Caucasians
• 0.7% in European population

[265,266]

c.1679 DYPD*13 T > G
• 68% DPD reduction in heterozygous carrier
• <25% DPD reduction in homozygous carrier • 0.07–0.1% in Caucasian population [267]

c.1129–5923 HapB3 C > G • 35% DPD reduction in heterozygous carrier
• 41–65% DPD reduction in homozygous carrier • 4.7% in European population [267,268]c.1236 G > A

DPYD*5 T85C T > C • 39% reduction in 5-FU efficiency • 16% in late-stage patients [226]

DPYD*9A A1627G AG + -GG • 100% reduction in 5-FU efficiency • 9% of late-stage patients [226]
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4.5. Overexpression of Methylenetetrahydrofolate Reductase

Inhibition of TYMS is achieved through stable ternary complex formation between
TYMS, FdUMP, and CH2THF. The availability of CH2THF for binding, however, is tightly-
regulated by the enzyme methylenetetrahydrofolate reductase (MTHFR) that catalyzes
the irreversible conversion of active CH2THF to 5-methylenetetrahydrofolate (5-MTHF)
as the essential folate for DNA methylation [267]. Given that TYMS inhibition serves as
the principal mechanism behind 5-FU cytotoxicity, MTHFR has been regarded as a factor
that may influence the efficacy of 5-FU therapy. It is postulated that MTHFR underex-
pression may contribute towards enhanced 5-FU efficacy due to a higher concentration
of CH2THF substrate while its overexpression may manifest in 5-FU resistance. Two
common polymorphism variants with the outcome of MTHFR enzymatic deficiency have
been identified, namely, the rs1801133 (C677T) and rs1801131 (A1298C) [269]. Positive
correlation between MTHFR polymorphisms and colon cancer patient’s response to 5-FU
treatment is often reported involving variant A1298C with C677T seeing 5-FU benefits only
exclusively in refractory cases [239,270,271]. Interestingly, in vitro studies have implicated
both polymorphisms in the development of 5-FU resistance in colon cancer cells [240].
Nonetheless, several studies had reported no correlation between MTHFR polymorphism
and tumor response rate in early-stage patients, supported by in vitro models [272–275].
These variabilities may be contingent with interpatient variability in folate status and
treatment history, as better treatment response was reported for MTHFR-mutated patients
receiving 5-FU monotherapy when compared to patients with a history of FOLFOX or
FOLFIRI treatment [274].

5. Reversal Strategies

Over the years, various approaches have been undertaken in attempts to promote
increased colon cancer tumor cells’ sensitivity towards 5-FU treatment that would ulti-
mately improve patient’s prognosis. Based on the resistance mechanisms discussed, it can
be summarized that reduced levels of TYMS, DPD, MTHFR, as well as increased levels of
TYMP would greatly benefit in 5-FU re-sensitization as these enzymes are directly involved
in its metabolism and degradation. In the meantime, increased drug influx, apoptosis
events, DNA-damage repair, and cell cycle progression, together with reduced drug efflux
and autophagy activity would not only aid in reversing 5-FU resistance, but also in the
incidence of MDR. Although seemed fairly straightforward, strategies to overcome resis-
tance through actualizing these reverse mechanisms have remained a significant challenge
owing to the high complexity and heterogeneity of tumor cells that are not just between
individuals, but also in between tumor cells within the same microenvironment attributed
to clonal evolution. A plethora of small molecule inhibitors (SMIs), non-coding RNAs,
and plant-derived small molecules have nonetheless been investigated in recent years for
its potential to overcome 5-FU resistance given the circumstances. Considerable advance-
ments in the field of genomics, proteomics, and metabolomic through high-throughput
technologies in recent years have also allowed for resistance profiling in between patients
that would aid in personalized medicine to minimize the risk of chemotherapy failure.

5.1. Small Molecule Inhibitors

Table 4 summarizes the small inhibitors that can enhance 5-FU chemosensitivity. Most
of the compounds described having worked synergistically with 5-FU to potentiate its cyto-
toxicity effects and overcome its resistance falls under the class of small molecule inhibitors.
HDAC inhibitors such as depsipeptide and valproic acid (VPA) for instance, are capable of
potentiating the antitumor activity of 5-FU in colon cancer via the induction of caspase-3/7
activation, MHC class II gene expression, cell cycle arrest by cyclin-dependent kinase
inhibitor 1A (CDKN1A) upregulation, and extensive TYMS downregulation [275,276]. The
use of VPA has however, been controversial due to its dual role functions of downregulating
and upregulating TYMP and TYMS expression, respectively. Synergistic interactions be-
tween VPA and 5-FU were only observed in p53wt and p53mut colon cancer cells, but not in
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p53– cells. Considering that TYMP upregulation may only benefit patients in earlier stages
of cancer due to its adverse role in promoting angiogenesis in advanced stages and that p53–

cells are often associated with advanced stages, the use of VPA would appear paradoxical.
Further downregulation of TYMS can also be achieved through co-treatment with mitogen-
activated protein kinase kinase (MEK) inhibitor cobimetib, FOXM1 inhibitor thiostrepton,
and heat shock protein 90 (HSP90) inhibitors such as luminespib and ganetespib [277–281].
Interestingly, U0126 as inhibitors of MEK may also restore 5-FU chemosensitivity through
the generation of more γH2AX foci and diminishing the expression of DNA excision repair
1 (ERCC1), aside from suppressing TYMS expression [282]. Based on the resistance mecha-
nisms discussed, certain SMIs recently studied may also be considered as potential agents
to potentiate 5-FU cytotoxicity effects. Patients evaluated with higher expression of ABC
transporters such as ABCC1, ABCB1, and ABCG2 for instance, may benefit significantly
from 5-FU therapy when co-administered with uracil analogue U-332 that may abrogate
the expression of all three transporters [283]. Alternatively, patients assessed with DPD
overexpression commonly associated with incidence DYPD*2A polymorphisms may con-
sider the use of 5-FU together with JTE-013 to effectively inhibit S1PR2 as the upstream
regulator of DPD expression [236]. Gimeracil is another reversible inhibitor of DPD, known
to be combined alongside oteracil potassium and tegafur as prodrug 5-FU, in a preparation
simply termed as S-1 [284]. Stage III colon cancer patients receiving S-1 plus oxaliplatin
reported a slight improvement in 3-year DFS when compared to patients receiving only
tegafur-uracil plus leucovorin. Other small molecule inhibitors studied to be effective in re-
versing 5-FU in colon cancer cells may include phospholipase A2 inhibitor quinacrine that
enhances c-Jun N-terminal kinase (JNK1)-dependent Nrf2 degradation, and DNA methyl-
transferase inhibitor decitabine that demethylates TYMP promoter (Table 4) [285,286]. For
patients with advanced disease, TYMP inhibitor such as tipiracil may not only potentiate
the antiproliferative effects of 5-FU but also impede the progression of metastasis [287].
Interestingly, tipiracil has already been actively-used alongside other molecules in the U.S.
Food and Drug Administration (FDA)-approved compound TAS-102 for the treatment of
metastatic colon cancer.

Table 4. Small molecule inhibitors that have been recently demonstrated to be capable in potentiating 5-FU chemosensitivity
in colon cancer cells.

Small Molecule Inhibitor Target Mechanism Ref

Depsipeptide
HDAC

Elevation of MHC class II expression and cellular
apoptosis [275]

Valproic acid (VPA) Modulation of TYMS and TYMP expression [276]
Suberanilohydroxamic acid

(SAHA) Decreased TYMS mRNA and protein expression [288]

Cobimetinib
MEK

Decreased TYMS expression [280]
Selumetinib Abrogation of TK1 expression [289]

U0126 Generation of more γH2AX foci, diminishing
ERCC1 and TYMS expression [282]

Thiostrepton FOXM1 Suppression of TYMS expression and the regulation
of TK-1 and TYMPS expression [281]

Luminespib
HSP90

Downregulation of TYMS [277,278]
Ganetespib Not stated [279]

Apatorsen HSP27 Accelerated apoptosis [290]

Ibrutinib
BTK

Inhibition of TGFB1 protective response and
induction of pro-apoptotic E2F expression [291]AVL-292

Trimethylglycine STAT6 Increased E-cadherin marker and decreased ERCC1
expression [292]

JTE-013 S1PR2 Downregulation of DPD expression [236]

Gimeracil DPD Downregulation of DPD expression [293]
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Table 4. Cont.

Small Molecule Inhibitor Target Mechanism Ref

Quinacrine Nrf2 Increases the susceptibility of tumor cells to 5-FU
under hypoxic conditions [285]

Tipiracil TYMP Downregulations of TYMP [118]

F5446 SUV39H1 Increased Fas expression and FasL-induced
apoptosis [293]

Aminooxyacetic acid
(AOAA)

Hydrogen
sulfide Downregulations of TYMS and EREG expression [294]

SLC-0111 Carbonic
anhydrase IX Not stated [295]

AT7519 CDK Not stated [296]

Ribavirin Eif4E
Increased cell cycle arrest at G2/M phase via
increased cyclin B1, p-histone (Ser10), and Mad2
expression

[297]

Diethylaminobenzaldehyde
(DEAB) ALDH1 Not stated [126]

5.2. Plant-Derived Small Molecules

The high toxicity and lack of specificity of many synthetic resistance-reversing agents
have also motivated studies to highlight the plausible potentials of the natural dietary
bioactive compound such as flavonoids to combat drug resistance. In fact, nearly half
of newly identified compounds and newly discovered drugs were derived from studies
on natural products [298]. Sophorae flavescens or shrubby sophora, is a plant with a long
history of use in traditional Chinese medicines to elicit antioxidants effects and immunity
enhancement. When co-treated with 5-FU in colon cancer cells, compound Sophora injec-
tion had also improved 5-FU cytotoxic effects by downregulating the expression of P-gp
and ABCG2 that resulted in an increase in drug accumulation within treated cells [26].
Induction of sensitivity may also likely be attributed to the inhibition of EMT and NF-κB
pathways mediated by oxymatrine as one of the many bioactive components contained in
Sophora injection [92]. Similar resistance-reversing effects were observed in oxaliplatin-
treated cells, suggesting the potential of Sophora in reversing MDR. Correspondingly,
phytosterol β-sitosterol, although it has only been shown to reverse oxaliplatin resistance
in oxaliplatin-resistant cells, it may also work to reverse 5-FU resistance due to its poten-
tial in MDR modulation through the downregulation of BCRP expression [299]. Natural
phenol curcumin is the bioactive compound responsible for the bright yellow pigment of
turmeric. It was demonstrated that 5-FU therapy, when combined with curcumin, exhib-
ited increased activation of 5-FU-triggered apoptosis in 5-FU-resistant cells through the
effective inhibition of the Wnt signaling pathway and EMT activity mediated by curcumin
treatment [91]. Downstream effects by these plant-derived small molecules may also be
achieved through the regulations of non-coding RNAs. Ethanolic extract of fruit spike
Spica Prunellae has shown to enhance 5-FU sensitivity in colon cancer cells by upregu-
lating the expression of miR-494, which in turn, downregulates TOP2α expression [195].
Meanwhile, fruit-originated lignan schizandrin A may enhance 5-FU chemosensitivity by
upregulating miR-195 that inhibits the PI3K/AKT and NF-κB signaling pathways [300].
Additionally, phenolic compound Kaempferol may work to impede the production of ROS
and modulate the expression of JAK/STAT3/MAPK/PI3K/AKT, and NF-κB to reverse
5-FU resistance [28]. Recent studies on other plant-derived small molecules include the
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traditional Chinese medicine herbal formula Huang Qin Ge Gen Tang that modulates the
E2F1/TS pathway, green tea extracted polyphenol epigallocatechin gallate that upregulates
miR-155 to suppress MDR1 expression, β-elemene that can induce pro-death autophagy,
and xanthonoid α-mangostin that have been successful in enhancing 5-FU cytotoxicity in
colon cancer cells [59,81,301,302].

5.3. Non-Coding RNAs Regulators

In ovarian cancer cells, lncRNA taurine upregulated 1 (TUG1) overexpression has
been implicated in the promotion of cellular proliferation and inhibition of apoptosis,
suggesting its plausible involvement to also mediate tumorigenesis and chemoresistance in
colon cancer cells [303]. Indeed, the knockdown of TUG1 has demonstrated enhanced 5-FU
chemosensitivity via the downregulation of TYMS expression in colon cancer cells [228].
Similarly, knockdowns of PVT1, colon cancer-associated transcript 1 (CCAT1), and X-
inactive specific transcript (XIST) in 5-FU-resistant colon cancer cells have also resulted
in the successful restoration of 5-FU sensitivity [304–306]. Growing evidence has come to
suggest lncRNAs exerting their transcriptional effects through functioning as competing en-
dogenous RNAs (ceRNAs) by competitively binding onto miRNA sequence sites [307]. In
TUG1-mediated resistance, increased TYMS expression was achieved through the suppres-
sion of miR-197-3p via ceRNA sponging, while in CCAT1-mediated resistance, a significant
decrease in miR-218, miR-143, and miR-153 expression have been observed. H19 imprinted
maternally-expressed transcript (H19) is another lncRNA reported to induce 5-FU resis-
tance. Instead of regulating TYMS, H19 may sponge miR-194-5p to trigger the autophagy
process via the SIRT1 enzyme [308]. Effective inhibition of these lncRNAs can be achieved
through small interfering RNAs (siRNAs), RNA destabilizing elements (RDEs), antisense
oligonucleotides (ASOs), and ribozymes; all of which had been demonstrated to target
lncRNAs with high specificity [309,310]. In fact, recently, patisiran represents the world’s
first siRNA-based drug that is FDA-approved for the treatment of hereditary transthyretin-
mediated amyloidosis via transthyretin (TTR) gene silencing [311]. Additionally, recent
advancement in miRNA therapy that saw the successful completion of phase II clinical
trial for miR-122 antagonist as an effective antiviral agent against hepatitis C virus (HCV)
infection may also be exploited to achieve enhanced 5-FU chemosensitivity [312]. Perhaps,
microRNAs previously discussed to be upregulated in 5-FU-resistant cells such as miR-27a,
miR-587, miR-31, miR-543, and miR-106a can also be silenced via miRNA repressors for
its therapeutic potentials. Meanwhile, microRNA mimics can be applied to overexpress
downregulated miRNAs such as miR-361, miR-200c, miR-22, miR-224, and many others.
MesomiR-1 and MRG-201 are examples of miRNA mimic currently in phase I of clinical
trial for the treatment of malignant pleural mesothelioma and keloid scar tissue formation,
respectively [313]. NcRNA delivery strategies in vivo for translational applications have
also been looked at in recent years following promising effectiveness of ncRNAs in vitro
studies. In their paper, Wang and colleagues (2019) have recognized the reported low
bioavailability and transfection efficiency, as well as the occurrence of off-target effects
associated with these nucleic acid drugs in vivo. They have underlined several approaches
that may benefit to overcome these challenges [314]. They include the use of nanoparti-
cle and oncolytic adenovirus delivery systems, as well as the structured modification to
subjected ncRNAs. For instance, engineered-exosomes for targeted co-delivery of miR-21
inhibitor have demonstrated to be effective in reversing 5-FU resistance in vivo [315].

5.4. Targeted Immunotherapy

It has been established that TILs are involved in chemotherapy response as elevated
levels of chemokine CXCL-13 is determined in sera of 5-FU-resistant patients [145]. Knock-
down of CXCL-13 resulted in re-sensitization of tumor cells with a significant increase in
the number of B-cell infiltrating into the tumor cells. Furthermore, these resistant cells
also highly-express chemokine CCL20 that promotes the recruitment of regulatory T cells
(Tregs) via FOXO1/CEBPB/NF-κB signaling, suggesting that CCL20 inhibition may pro-
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mote enhanced 5-FU chemosensitivity [151]. Indeed, dendritic cell therapy may appear as
a useful strategy in this scenario as it provokes anti-tumor response through the increased
number of dendritic cells (DCs) that may present tumor antigens to these lymphocytes. In
one study, the use of 5-FU plus oxaliplatin with CD1d-MC38/α-GC tumor vaccine that
promotes DC maturation had synergistically delayed tumor growth rate and increased
the survival time of tumor-bearing mice [316]. Tumor cells may also escape immune cells
through the secretion of immunosuppressive factors, such as TGF-β and IL-6, as well as
through the recruitment of Tregs [152,158]. Recent studies have also demonstrated the up-
regulation of PD-L1 as the ligand for immune checkpoint programmed cell death-1 (PD-1)
in 5-FU-treated cells promoted the abrogation of T-cell proliferation via the inhibition of
PI3K/AKT signaling pathway [317,318]. Surprisingly, the use of PD-1 inhibitor Nivolumab
alongside 5-FU, has instead promoted increased tumor cells tolerance against 5-FU [319].

6. Conclusions

Resistance to 5-FU, either intrinsic or acquired, can be attributed to various underlying
mechanisms that may influence its cellular bioavailability, metabolism, and antitumor
effects within tumor cells. These mechanisms are mostly driven by various aberrantly-
expressed genes and proteins as the pro-survival response of tumor cells to tolerate 5-
FU-induced cytotoxicity. Since tumor responses to 5-FU treatment may vary between
individuals due to genetic heterogeneity and clonal evolution of tumor microenvironment,
the practice of personalized medicine is perhaps the best way forward in the effort to
overcome 5-FU resistance and improve 5-FU treatment response in colon cancer patients.
The dysregulated tumor response to 5-FU treatment can be profiled in each patient and can
be independently restored to regular function to overcome 5-FU resistance.
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