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Abstract: Thyroid cancer comprises different clinical and histological entities. Whereas differentiated
(DTCs) malignancies are sensitive to radioiodine therapy, anaplastic (ATCs) and medullary (MTCs)
tumors do not uptake radioactive iodine and display aggressive features associated with a poor
prognosis. Moreover, in a majority of DTCs, disease evolution leads to the progressive loss of iodine
sensitivity. Hence, iodine-refractory DTCs, along with ATCs and MTCs, require alternative treatments
reflective of their different tumor biology. In the last decade, the molecular mechanisms promoting
thyroid cancer development and progression have been extensively studied. This has led to a better
understanding of the genomic landscape, displayed by thyroid malignancies, and to the identification
of novel therapeutic targets. Indeed, several pharmacological compounds have been developed
for iodine-refractory tumors, with four multi-target tyrosine kinase inhibitors already available for
DTCs (sorafenib and lenvatinib) and MTCs (cabozantib and vandetanib), and a plethora of drugs
currently being evaluated in clinical trials. In this review, we will describe the genomic alterations
and biological processes intertwined with thyroid cancer development, also providing a thorough
overview of targeted drugs already tested or under investigation for these tumors. Furthermore,
given the existing preclinical evidence, we will briefly discuss the potential role of immunotherapy as
an additional therapeutic strategy for the treatment of thyroid cancer.

Keywords: differentiated thyroid cancer; anaplastic thyroid cancer; medullary thyroid cancer;
radioactive iodine resistance; molecular alterations; targeted therapy; tyrosine kinase inhibitors;
mTOR inhibitors; immunotherapy; clinical trials

1. Introduction

Thyroid cancer represents 2.5% of all cancers and about 90% of endocrine tumors [1]. The incidence
of this neoplasia, three-fold higher in women and in individuals aged 25 to 65 years [2], has increased
by 4.5% per year over the last decade [3], possibly because of diagnostic techniques improvement,
environmental (e.g., radiation, pollution) and lifestyle changes [4,5]. Histologically, thyroid tissue
consists of two different epithelial populations, the follicular and para-follicular [also known as C
(clear)] cells, with different embryological origins and function. Follicular cells, organized in functional
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units called follicles, synthetize and secrete thyroid hormones (thyroxine and triiodothyronine),
whereas C-cells, nestled between the follicles, secrete the hormone calcitonin [6].

Thyroid cancers are classified in follicular-derived and C-cell-derived, according to their cell of
origin. Follicular-derived thyroid malignancies are subdivided in differentiated (DTCs) and anaplastic
(ATCs) thyroid carcinomas. DTCs include the papillary (PTCs) and follicular (FTCs) histotypes,
Hurtle cell thyroid cancers and the more aggressive poorly differentiated carcinomas (PDTCs) [7,8].
ATC accounts for about 2% of all thyroid cancers and is constituted by undifferentiated cells with very
low similarity to normal thyroid tissue [9].

Lastly, medullary thyroid cancer (MTC) stemming from para-follicular C-cells represents 2–5%
of all thyroid carcinomas [10]. It is a neuroendocrine tumor that can be either sporadic (75%) or
familial (25%) the latter defined as part of Multiple Endocrine Neoplasia type 2 (MEN2) syndrome [11].
MEN2 comprises MEN2A, which features familial MTC (FMTC) [12] or MTC plus pheochromocytoma
and hyper-parathyroidism/parathyroid adenoma, and MEN2B also characterized by MTC and
pheochromocytoma, but with mucosal ganglioneuromas and marfanoid habitus.

The vast majority of DTCs usually display an indolent course, and standard upfront treatment
involves surgery followed by adjuvant hormone replacement and radioactive iodine (131I-based RAI)
therapy for high-risk diseases [13]. Despite their overall good prognosis, 10–20% of DTC patients
present distant metastases at diagnosis or will subsequently develop them [14]. The majority of these
patients are eligible for RAI, with a 40% chance of achieving a complete and durable response [15].
However, the remaining 60% display primary or acquired resistance to RAI (RAIR), thus needing
further treatment options [16].

Unlike DTC, ATC grows rapidly and does not maintain the features of follicular cells, including iodine
uptake. Indeed, ATC shows suppression of the sodium iodide symporter (NIS) expression/function and
RAI refractoriness. Hence, radiotherapy and chemotherapy are the only treatment options for this disease,
even though reported outcomes are dismal [17,18].

Since para-follicular cells intrinsically lack 131I avidity, thyroidectomy with subsequent hormone
replacement is the treatment of choice for localized MTC. However, targeted therapies or, less frequently,
chemotherapy may be an option for locally advanced or metastatic patients [19].

Thyroid cancers are characterized by molecular alterations, such as activating/inactivating
mutations, rearrangements and copy number variations in genes responsible for cell proliferation,
differentiation and apoptosis [20]. In recent years, the discovery of disease-specific molecular targets has
led to the approval of new drugs (e.g., sorafenib, lenvatinib, vandetanib and cabozantinib), which are
currently available for metastatic RAIR DTCs and MTCs [21,22]. Aim of this review is to discuss
the molecular alterations associated with DTCs, ATCs and MTCs and provide an update on recently
published studies and ongoing trials testing targeted therapies and immunotherapy in advanced
thyroid carcinomas.

2. Molecular Alterations in Thyroid Cancers

As thyroid cancer progresses, the accumulation of molecular alterations disrupting multiple
normal cell functions results in RAIR development, due to impaired NIS expression [23–25]. Indeed,
dysregulation of different receptor-tyrosine kinase (RTK)-dependent signaling and proliferation
pathways—such as the mitogen-activated protein kinase (MAPK), the phosphoinositide 3 kinase
(PI3K), the Wingless/Integrated (WNT), the p53 and p73 pathways—are involved in the multistep
tumorigenic process of thyroid cancer [25–27] (Figure 1). Alterations of these cascades can be linked
to different mechanisms, including genetic and epigenetic modifications in pathway receptors and
effectors [28,29]. Moreover, distinct, mutually exclusive molecular alterations may be associated with
specific disease stages or histotypes [30].
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Figure 1. Genetic events involved in thyroid carcinogenesis. Papillary thyroid carcinomas (PTC), 
follicular thyroid carcinomas (FTC) and anaplastic thyroid carcinomas (ATC) originate from thyroid 
follicular cells and are characterized by molecular alterations (mutations, deletions, gene fusions) 
involving genes and proteins impinging upon different cellular pathways. The transition from 
PTC/FTC to poorly differentiated (PDTCs) and ATCs is attributed to additional molecular 
alterations. Medullary thyroid carcinoma (MTC) originates from para-follicular C-cells and is 
prevalently characterized by RET or RAS mutations. 

In order to better classify the molecular alterations detected in thyroid cancer, we will initially 
discuss RTK-related upstream signaling pathways involved in tumorigenesis and subsequently 
focus on the effectors of these pathways. Finally, we will describe alterations contributing to thyroid 
carcinogenesis that involve pivotal cellular functions. 

Figure 1. Genetic events involved in thyroid carcinogenesis. Papillary thyroid carcinomas (PTC),
follicular thyroid carcinomas (FTC) and anaplastic thyroid carcinomas (ATC) originate from thyroid
follicular cells and are characterized by molecular alterations (mutations, deletions, gene fusions)
involving genes and proteins impinging upon different cellular pathways. The transition from PTC/FTC
to poorly differentiated (PDTCs) and ATCs is attributed to additional molecular alterations. Medullary
thyroid carcinoma (MTC) originates from para-follicular C-cells and is prevalently characterized by
RET or RAS mutations.

In order to better classify the molecular alterations detected in thyroid cancer, we will initially
discuss RTK-related upstream signaling pathways involved in tumorigenesis and subsequently focus
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on the effectors of these pathways. Finally, we will describe alterations contributing to thyroid
carcinogenesis that involve pivotal cellular functions.

2.1. Alterations in RTKs

Rearrangements, copy number gains and point mutations are the genetic alterations more frequently
observed in RTKs. The main consequence of these alterations is increased protein expression and
downstream activation of different signaling pathways involved in thyroid cancer progression [31–33].

ALK: The anaplastic lymphoma kinase (ALK) may undergo both activating mutations in exon 23
(L1198F and G1201E) [34] and gene rearrangements (especially in PTCs, 1–3%) [35]. While the most
common rearrangement involves the striatin (STRN) gene (STRN-ALK), ALK may also rearrange with
the echinoderm microtubule-associated protein-like 4 (EML4) gene (EML4-ALK) [36,37]. Furthermore,
two novel ALK fusions have been recently identified (GTF2IRD1-ALK and MALAT1-ALK) [30].
Both ALK mutants and cytoplasmic ALK fusion proteins promote the activation of MAPK, PI3K and
JAK/STAT downstream pathways (Figure 2). ALK mutations and rearrangements are mainly found
in PDTCs and ATCs, as they contribute to disease progression and aggressiveness [34,38–40].

NTRK: The Neurotrophic tyrosine kinase receptor (NTRK) gene encodes for the tropomyosine-related
kinase (Trk)-family of proteins known as TrkA (encoded by NTRK1), TrkB (encoded by NTRK2) or
TrkC (encoded by NTRK3). In PTCs, chromosomal rearrangements, due to environmental factors
(e.g., ionizing radiations) cause NTRK fusions with different partners [41]. Cytoplasmic Trk fusion
proteins activate downstream signaling via PI3K, MAPK and phospholipase C-gamma (PLCγ) that
control cell-cycle progression, proliferation, apoptosis and survival (Figure 2). The major NTRK fusions
occur in PTCs between NTRK3 and ETS Variant 6 (ETV6-NTRK3) [41], but have also been identified
in 25% of pediatric PTCs [42]. However, in PTCs, NTRK1 may also rearrange with tropomyosin 3
(TPM3), translocated promoter region (TPR) and trafficking from ER to Golgi regulator (TFG) [43].

RET: The Rearranged during Transfection (RET) proto-oncogene is frequently altered in thyroid cancer.
Specifically, gene translocations identified as RET/PTC rearrangements are prevalent in PTCs (5–25%),
while RET mutations are the primary molecular mechanism underlying MTC tumorigenesis [44].
These events share a common downstream effect as they lead to RET constitutive activation and
improper stimulation of both the MAPK and PI3K pathways (Figure 3). To date, at least 19 different
rearrangements between the 3’ portion of RET (containing the tyrosine kinase domain) and the 5’
portion of partner genes have been described, [30]. The most frequent fusions are RET-PTC1 (60% of
RET-rearranged PTCs), involving the coiled-coil domain-containing gene 6 (CCDC6), RET-PTC3 (30%),
generated by the fusion with the nuclear receptor co-activator 4 (NCOA4) and, less frequently (5%)
RET-PTC2, involving the protein kinase cAMP-dependent type I regulatory subunit alpha (PRKAR1A).
These rearrangements determine loss of the RET transmembrane domain leading to the cytosolic
localization of the protein [45]. While RET recombinations are more frequent in young PTC patients
(45–60%) as well in radiation-related tumors (up to 80%) [46], they have also been identified in PDTCs,
ATCs and MTCs [35].

Several gain-of-function germline or somatic RET mutations arise in hereditary or sporadic MTC
patients, respectively [47,48]. In most cases, mutations causing MEN2A involve cysteines within the
cysteine-rich extracellular domain (exons 10 and 11) at codon 634 (C634R; 80% frequency) or codons
609, 611, 618, 620 and 630 [49]. These single nucleotide variations cause constitutive dimerization and
activation of the receptor, in a ligand-independent manner. The most frequent substitution found
in MEN2B patients (95%) is the M918T mutation in exon 16 that induces constitutive kinase activation
in the absence of dimerization [50]. Other rare mutations involve codons 634, 691, 838, 883 and 904 [48].
In 95% of FMTC patients, mutations occur at codon 620, although rare substitutions have been reported
in other codons, including 611 and 618 [49]. Finally, about 40% of sporadic MTC patients present
a somatic RET mutation that in 80% of cases is M918T [51].
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Figure 2. Schematic overview of ALK, NTRK and RET fusion proteins signaling. The indicated 
fusion proteins activate the JAK/STAT, PI3K, MAPK and PLCγ pathways involved in cell cycle 
progression, survival and differentiation. ALK, anaplastic lymphoma kinase; NTRK, neurotropic 
tropomyosin receptor kinase; RET, rearranged during transfection; RAS, Rat Sarcoma; JAK, Janus 
kinase; STAT, signal transducers and activators of transcription; PI3K, phosphoinositide 3-kinase; 
AKT, V-Akt Murine Thymoma Viral Oncogene Homolog; mTOR, Mammalian Target of Rapamycin; 
BRAF, B-Raf proto-oncogene; MEK, Mitogen-Activated Protein Kinase; ERK, Extracellular 
Signal-Regulated Kinase; PLCγ, phospholipase C-γ; DAG, Diacylglycerol; PKC, protein kinase C. 

Others RTKs: Copy number gains in several other RTKs [epidermal growth factor receptor (EGFR), 
platelet-derived growth factor receptor A/B (PDGFRA/B), vascular endothelial growth factor receptor 1,2 
(VEGFR1,2), Mast/Stem Cell Growth Factor Receptor Kit (c-KIT) and MET Proto-Oncogene, Receptor 
Tyrosine Kinase (MET)] have been identified in different subtypes of thyroid cancer [25,31,52]. These 
alterations are associated with increased phosphorylation of AKT, leading to activation of the PI3K 
pathway [31] (Figure 3). Interestingly, no mutations have been reported in these genes, with the 
exception of a single case of PTC displaying the G735S EGFR point mutation, which causes a 
conformational change of the kinase domain leading to its constitutive activation [53]. Fibroblast 
growth factor receptor 2 (FGFR2) and FMS-like tyrosine kinase 3 (FLT3) missense mutations have been 
identified in 11% and 17% of PDTCs, respectively [54]. Lastly, FGFR2 fusions may occur in PTCs 
with very low frequency (<1%) [30,35], while FGFR4 may be overexpressed in PTCs, FTCs and MTCs 
[52]. 
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Figure 2. Schematic overview of ALK, NTRK and RET fusion proteins signaling. The indicated fusion
proteins activate the JAK/STAT, PI3K, MAPK and PLCγ pathways involved in cell cycle progression,
survival and differentiation. ALK, anaplastic lymphoma kinase; NTRK, neurotropic tropomyosin
receptor kinase; RET, rearranged during transfection; RAS, Rat Sarcoma; JAK, Janus kinase; STAT,
signal transducers and activators of transcription; PI3K, phosphoinositide 3-kinase; AKT, V-Akt
Murine Thymoma Viral Oncogene Homolog; mTOR, Mammalian Target of Rapamycin; BRAF, B-Raf
proto-oncogene; MEK, Mitogen-Activated Protein Kinase; ERK, Extracellular Signal-Regulated Kinase;
PLCγ, phospholipase C-γ; DAG, Diacylglycerol; PKC, protein kinase C.

Others RTKs: Copy number gains in several other RTKs [epidermal growth factor receptor (EGFR),
platelet-derived growth factor receptor A/B (PDGFRA/B), vascular endothelial growth factor receptor 1,2
(VEGFR1,2), Mast/Stem Cell Growth Factor Receptor Kit (c-KIT) and MET Proto-Oncogene, Receptor Tyrosine
Kinase (MET)] have been identified in different subtypes of thyroid cancer [25,31,52]. These alterations
are associated with increased phosphorylation of AKT, leading to activation of the PI3K pathway [31]
(Figure 3). Interestingly, no mutations have been reported in these genes, with the exception of a single
case of PTC displaying the G735S EGFR point mutation, which causes a conformational change of the
kinase domain leading to its constitutive activation [53]. Fibroblast growth factor receptor 2 (FGFR2) and
FMS-like tyrosine kinase 3 (FLT3) missense mutations have been identified in 11% and 17% of PDTCs,
respectively [54]. Lastly, FGFR2 fusions may occur in PTCs with very low frequency (<1%) [30,35],
while FGFR4 may be overexpressed in PTCs, FTCs and MTCs [52].
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Figure 3. Molecules and cellular pathways that contribute to thyroid cancer development. 
Alterations in ALK, RET or other RTKs up-regulate RAS thereby pathologically modulating the 
MAPK and PI3K pathways that favor thyroid cell survival, de-differentiation and improper gene 
transcription. Mutations in the WNT pathway (CTNNB1, AXIN) and in other molecules (TERT, 
PPARγ, HMT, SW1-SNF, TP53) promote oncogenic activity, reduce apoptosis and compromise DNA 
repair (MMR). IDH1 or EIF1AX mutations alter epigenetic mechanisms or cause a defective assembly 
of the 43S-complex, respectively. Additional mutations in specific genes (BRAF, PTEN) promote the 
transition from differentiated to undifferentiated thyroid cancer. * indicates genes directly involved 
in thyroid carcinogenesis 

 

Figure 3. Molecules and cellular pathways that contribute to thyroid cancer development. Alterations
in ALK, RET or other RTKs up-regulate RAS thereby pathologically modulating the MAPK and PI3K
pathways that favor thyroid cell survival, de-differentiation and improper gene transcription. Mutations
in the WNT pathway (CTNNB1, AXIN) and in other molecules (TERT, PPARγ, HMT, SW1-SNF, TP53)
promote oncogenic activity, reduce apoptosis and compromise DNA repair (MMR). IDH1 or EIF1AX
mutations alter epigenetic mechanisms or cause a defective assembly of the 43S-complex, respectively.
Additional mutations in specific genes (BRAF, PTEN) promote the transition from differentiated to
undifferentiated thyroid cancer. * indicates genes directly involved in thyroid carcinogenesis

2.2. Alterations in the PI3K Pathway

Enhanced PI3K signaling is a common feature of thyroid cancer, in particular in the FTC
subtype [25] (Figure 3). Alterations in this pathway involve the GTPase RAS, the alpha catalytic
subunit of phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA), the serine-threonine protein
kinase AKT and the phosphatase and tensin homolog phosphatase (PTEN). While RAS mutations are
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considered an early event in thyroid cell tumorigenesis, alterations in other downstream effectors of
the pathway characterize the less differentiated thyroid cancer histotypes [55].

AKT: Activating mutations in AKT (e.g., the single hotspot E17K mutation promoting constitutive
localization to the plasma membrane) inhibit apoptosis in thyroid cells [39]. AKT copy number
gains have also been reported [31]. As for PIK3CA, AKT mutations represent a late event in thyroid
tumorigenesis; hence, they are more frequent in PDTCs (19%) [56].

PIK3CA: PIK3CA may exhibit activating mutations or undergo copy number gains. Missense
mutations take place in exons 9 and 20 (E542K, E545K and H1047R) and are less frequent than
amplifications occurring at chromosome site 3q26.3 [57]. These events increase PIK3CA protein
expression, yet their tumorigenic role is not well defined. PIK3CA mutations and copy number gains
are mutually exclusive in WDTCs, but can co-occur in less differentiated tumors, where they drive
disease progression [58,59]. PIK3CA alterations are common in ATCs (18%) and less frequent in FTCs
(1%) and PDTCs (2%) [31,39].

PTEN: Alterations involving the tumor suppressor PTEN lead to constitutive activation of the PI3K
pathway, causing an increase in cell proliferation, motility and protein synthesis. PTEN inactivating
mechanisms include mutations, loss of heterozygosis, deletions and epigenetic modifications, resulting
in the loss of PTEN expression [60]. PTEN alterations are described in FTCs [31], and their frequency
increases with thyroid tumor progression (4% in PDTCs and 15% in ATCs) [39].

RAS: The RAS oncoprotein is a common effector of both the PI3K and MAPK pathways, although
RAS mutations in thyroid cancer prevalently alter the PI3K cascade [31]. Alterations can occur in codons
G12, G13 and Q61 and may involve one of the three RAS genes (KRAS, HRAS and NRAS), albeit the
latter is predominantly mutated in thyroid tumors [61]. The effect of these mutations is to lock RAS
in its active GTP-bound form. RAS point mutations mainly characterize FTCs (30–50%), but are also
frequent in RET wild-type sporadic MTCs (10–45%), since point mutations in these two proteins are
mutually exclusive [62]. Furthermore, RAS mutations have also been found in PTCs (5%), PDTCs and
ATCs (both around 25%) [39,61].

2.3. Alterations in the MAPK Pathway

The MAPK pathway is frequently altered in thyroid cancer, particularly in PTCs [63]. In most
cases, mutations involve RAS (previously described) and the B-Raf proto-oncogene (BRAF), in addition
to the upstream receptors described above, which activate different signaling cascades (Figure 3).

BRAF: Alterations in BRAF are an early tumorigenic event in PTCs (40–80%) although they have
also been reported in PDTCs (5–35%) and ATCs (10–50%) [64]. Point mutations in this serine/threonine
kinase activate the MAPK pathway resulting in loss of differentiation, tumor progression and inhibition
of apoptosis [65,66]. The most common BRAF mutation is the V600E substitution, found in 45% of PTCs,
which causes constitutive activation of the proto-oncogene [67]. Rare mutations may occur around
codon 600, the most frequent the K601E substitution, and display an inferior oncogenic potential [30,67].
BRAF fusions have also been found in radiation-associated PTCs and, at a lower frequency, in PDTCs
and ATCs [30,35]. The first to be identified was the AKAP9-BRAF rearrangement, found in 10% of
radiation-induced PTCs, resulting in a fusion protein lacking the auto-inhibitory N-terminal portion of
BRAF that exhibits elevated kinase activity [68].

2.4. Alterations in the WNT Pathway

Mutations in genes encoding members of the WNT signaling pathway—i.e., Catenin Beta 1
(CTNNB1), AXIN1 and Adenomatous Polyposis Coli (APC)—are hallmarks of less differentiated thyroid
carcinomas, in particular, ATCs [69]. Mutations in the transcription factor CTNNB1 are frequent events
(>60%) [70,71], that modify its phosphorylation leading to protein stabilization because of reduced
degradation [69]. These alterations become more frequent with loss of thyroid cancer differentiation
(25% in PDTCs and 60–65% in ATCs) [25] (Figure 3).
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2.5. Alterations in the TP53 Pathway

The tumor suppressor TP53 is a transcription factor involved in the control of the cell cycle and
apoptosis (Figure 3). More than 75% of TP53 mutations are small nucleotide changes that inactivate the
protein’s function. These changes are mostly located in the DNA-binding domain (residues 92–292) [72].
Considering the high prevalence of TP53 mutations in PDTCs (10–35%) and ATCs (40–80%), TP53
inactivation is considered a final step in tumor progression. Indeed, p53 deficiency, in association with
activating mutations of oncogenes, such as RAS and BRAF, accounts for the high proliferation rate and
increased aggressiveness of the more aggressive forms of thyroid cancer [73].

2.6. Other Molecular Alterations in Thyroid Cancer

EIF1AX: Mutations in the eukaryotic translation initiation factor 1A (EIF1AX) cause defects in the
formation of the 43S pre-initiation complex for protein translation (Figure 3). Alterations of this gene
are clustered in exons 2, 5 and 6, and the most common is the A113 splice mutation at the intron
5/exon 6 splice site, followed by a cluster of mutations in exon 2 [74]. EIF1AX mutations were detected
in 1–2% of PTCs, largely occurring in a mutually exclusive manner with BRAF and RAS mutations [30],
and more frequently in PDTCs (11%) and ATCs (9%) in which, on the contrary, they are strongly
associated with RAS mutations [39].

IDH1: Mutations in the isocitrate dehydrogenase 1 (IDH1) gene are highly prevalent in thyroid
carcinoma (16%) in particular in FTCs (5%) and ATCs (11%) [75,76] (Figure 3). Even if the most recurrent
IDH1 mutation involves arginine at codon 132, no R132 amino acid change has been reported in thyroid
tumors. All IDH1 substitutions found in thyroid samples concern five hotspot mutations in exon 4:
G70D, G123R, I130M, H133Q and A134D. For some of these mutants, a reduced enzymatic activity has
been demonstrated, suggesting a potential tumorigenic role of the IDH1 system in thyroid cancer [76].

PPARγ: Peroxisome proliferator activated receptor gamma (PPAR-γ) is a nuclear transcription factor
that enhances apoptosis by activating caspases, up-regulating Bax and down-regulating bcl-2, survivin
and c-myc [77,78]. Besides RAS mutations, rearrangements of the PPARγ gene are the most frequent
alterations found in FTCs (20–50%) and may represent an initiating event in the transformation of
follicular-derived cells [79]. PPARγ fusions may involve PAX8 and CREB3L2, but the PAX8-PPARγ
rearrangement is the most frequent [35,80]. The PAX8-PPAR fusion protein (PPFP) acts as a dominant
negative inhibitor of wild type PPARγ, thereby constitutively activating the transcription of a subset of
PPARγ and PAX8 responsive genes [80] (Figure 3).

TERT: Activating mutations in the promoter of the telomerase reverse transcriptase (TERT) are mostly
a late event in thyroid tumorigenesis [39,81]. They are more common in PDTCs (40%) and ATCs (70%),
even if they can also be found in PTCs (10%) and FTCs (20%) [81], where they are associated with
a poor prognosis [82]. Two mutually exclusive TERT promoter mutations are recurrent in thyroid
cancer, one at position -124 (c228t) and one at position -146 (c250t) upstream of the TERT translation
start site. Both mutations generate a consensus-binding site in the TERT promoter for E-twenty-six
(ETS) transcription factors, which increase TERT transcriptional activities [81] (Figure 3). Finally, TERT
mutations may co-occur with BRAF and RAS mutations in PDTCs and ATCs [82,83].

Additional alterations occurring in advanced follicular-derived thyroid cancer concern: (i) Members of
the DNA Mismatch Repair pathway (MSH2, MSH6, and MLH1), mutated in 2% of PDTCs and 12% of
ATCs that induce a “hypermutator phenotype”; (ii) histone methyl-transferases (HMTs), altered in 7% of
PDTCs and 24% of ATCs; (iii) genes encoding for members of the SWI-SNF chromatin remodeling complex,
mutated in 6% of PDTCs and 36% of ATCs [39]. Finally, specific histone deacetylase (HDAC) subtypes are
associated with different thyroid cancer characteristics and behaviors [84] (Figure 3).

3. Targeted Therapies in Thyroid Cancer

Due to an improved understanding of thyroid cancer biology, in recent years, a plethora of
targeted molecules have been tested while other compounds are currently under investigation. Herein,
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we thoroughly review the current landscape of targeted therapies for thyroid cancer. Ongoing trials
awaiting preliminary results are also reported.

3.1. Tyrosine Kinase Inhibitors

3.1.1. Multi-Target Agents

Several molecules inhibiting tyrosine kinases involved in cell proliferation, survival and
angiogenesis have shown clinical efficacy in both advanced RAIR DTCs and MTCs, while promising
results are also beginning to emerge in ATCs (Figures 4 and 5). To date, four drugs have received
FDA approval, two for advanced RAIR DTCs (sorafenib and lenvatinib) and two for metastatic MTCs
(vandetanib and cabozantinib). However, numerous trials have investigated additional tyrosine kinase
inhibitors (TKIs), whereas many others are currently ongoing (Table 1).
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in each box have been investigated in thyroid cancer and are cataloged according to their receptor kinase
specificity and selectivity. VEGFR, vascular endothelial growth factor receptor; EGFR, epidermal growth
factor receptor; c-KIT, Mast/Stem Cell Growth Factor Receptor Kit; FLT3, FMS-like tyrosine kinase 3; PDGFR,
platelet-derived growth factor receptor; MET, proto-oncogene, receptor tyrosine kinase; RET, rearranged
during transfection; FGFR, fibroblast growth factor receptor; PI3K, phosphoinositide 3-kinase; AKT, V-Akt
Murine Thymoma Viral Oncogene Homolog; mTOR, Mammalian Target of Rapamycin; BRAF, B-Raf
proto-oncogene; MEK, Mitogen-Activated Protein Kinase; ERK, Extracellular Signal-Regulated Kinase.
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Figure 5. Mechanism of action of ALK, NTRK and RET fusion proteins inhibitors. Compounds targeting
the ALK, NTRK and RET fusion proteins are listed in boxes. These drugs inhibit multiple cellular
processes blocking cell cycle progression, survival and differentiation. ALK, anaplastic lymphoma
kinase; NTRK, neurotropic tropomyosin receptor kinase; RET, rearranged during transfection;
RAS, Rat Sarcoma; JAK, Janus kinase; STAT, signal transducers and activators of transcription;
PI3K, phosphoinositide 3-kinase; AKT, V-Akt Murine Thymoma Viral Oncogene Homolog; mTOR,
Mammalian Target of Rapamycin; BRAF, B-Raf proto-oncogene; MEK, Mitogen-Activated Protein
Kinase; ERK, Extracellular Signal-Regulated Kinase; PLCγ, phospholipase C-γ; DAG, Diacylglycerol;
PKC, protein kinase C.
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Table 1. Clinical trials with multi-kinase inhibitors.

AGENT COMBINATION STUDY
POPULATION DESIGN PATIENTS PRIMARY END POINT STATUS IDENTIFIER

Cabozantinib
Lenvatinib
Sorafenib

Vandetanib

Advanced TC Nonrandomized,
Open label, phase II 45 PFS, OS, DLTs Recruiting NCT03630120

Cabozantinib RAIR DTC pretreated
with anti-VEGFR

Randomized,
Double blind, phase III 300 PFS, ORR Recruiting NCT03690388

Cabozantinib RAIR DTC Nonrandomized,
Open label, phase II 43 SP Active, not recruiting NCT02041260

Cabozantinib Ipilimumab
Nivolumab

RAIR DTC pretreated
with anti-VEGFR

Nonrandomized,
Open label, phase II 24 ORR Not yet recruiting NCT03914300

Cabozantinib Atezolizumab LA or M+ Solid Tumors Nonrandomized,
Open label, phase Ib 1000 DLTs, ORR Recruiting NCT03170960

Cabozantinib Recurrent or Refractory
Solid Tumors

Nonrandomized,
Open label, phase I 41 DLTs Active, not recruiting NCT01709435

Imatinib RAIR PTC Nonrandomized,
Open label, phase I 18 EP Recruiting NCT03469011

Lenvatinib Advanced RAIR TC Randomized,
Double blind, phase II 152 ORR, SP Recruiting NCT02702388

Lenvatinib ATC Nonrandomized,
Open label, phase II 34 ORR Terminated NCT02657369

Lenvatinib ATC Nonrandomized,
Open label, phase II 39 * OS Active, not recruiting NCT02726503

Lenvatinib Denosumab Bone M+ RAIR DTC Nonrandomized,
Open label, phase II 35 EP Not yet recruiting NCT03732495

Lenvatinib RAI RAI-sensitive DTC Nonrandomized,
Open label, phase II 30 PFS Recruiting NCT03506048

Lenvatinib Pembrolizumab RAIR DTC Nonrandomized,
Open label, phase II 60 ORR Recruiting NCT02973997

Pazopanib TC Randomized,
Open label, phase II 168 PFS Recruiting NCT01813136

Pazopanib Advanced TC Nonrandomized,
Open label, phase II 152 ORR Active, not recruiting NCT00625846
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Table 1. Cont.

AGENT COMBINATION STUDY
POPULATION DESIGN PATIENTS PRIMARY END POINT STATUS IDENTIFIER

Pazopanib Paclitaxel
RT ATC Randomized,

Open label, phase II 121 * OS, DLTs Active, not recruiting NCT01236547

Sorafenib Adjuvant after RAI Nonrandomized,
Open label, phase II 32 ORR Completed NCT00887107

Sorafenib Advanced.TC Nonrandomized,
Open label, phase II 61 ORR Completed NCT00654238

Sorafenib Advanced.TC Nonrandomized,
Open label, phase II 25 ORR Terminated NCT00095693

Vandetanib Hereditary MTC Nonrandomized,
Open label, phase I/II 17 SP Active, not recruiting NCT00514046

Vandetanib Advanced MTC Randomized,
Double blind, phase III 437 PFS Active, not recruiting NCT00410761

Anaplastic thyroid cancer (ATC); Dose-limiting toxicities (DLTs); Differentiated thyroid cancer (DTC); Efficacy profile (EP); Locally advanced (LA); Medullary thyroid cancer (MTC);
Metastatic (M+); Objective response rate (ORR); Overall survival (OS); Pharmacodynamic (PD); Pharmakinetics (PK); Progression free survival (PFS); Papillary Thyroid Cancer (PTC);
Radioactive iodine (RAI); Radioactive iodine resistance (RAIR); Radio therapy (RT); Safety profile (SP); Thyroid cancer (TC). * number of estimated patients.
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Anlotinib: A multi-target TKI, displaying an affinity for VEGFR 2-3, FGFR 1-4, PDGFR α/β, c-KIT
and RET [85]. After a phase I trial defined an MTD of 12 mg daily in a 2/1 schedule, a phase IIA study
tested the drug on 58 chinese patients with advanced MTC. Partial responses (PR) occurred in 57% of
patients, whereas median PFS was not reached at the time of data cut-off [85,86]. Results from a phase
IIB randomized trial on 91 metastatic MTC patients were recently reported: mPFS was 20.7 months
in the experimental arm and 11 months in the placebo arm (HR 0.53; p < 0.03), with a considerable
benefit in terms of ORR (48% with anlotinib vs. 3.5% with placebo, p < 0.0001). Overall survival data
are still immature. Adverse events were consistent throughout the trials, with hand-foot syndrome,
hypertension and hyper-triglyceridemia representing the more frequent toxicities [87].

Axitinib: A VEGFR1-2-3 inhibitor [88] that also targets PDGFR-β and c-KIT. Its activity in thyroid
tumors of any histology has been explored in two phase-II trials, comprehensively, including 112 patients.
Results were consistent in the two studies, with an ORR of 30% in the first one and of 35% in the second,
and median PFS of 18.1 and 16 months, respectively [89,90].

Cabozantinib: A selective inhibitor of MET, VEGFR-2 and RET [91]. In a phase I trial cabozantinib
showed encouraging results in a cohort of 37 heavily pre-treated MTC patients [92]. These promising
findings were further confirmed in the phase III EXAM study that randomized 330 patients with
hereditary or sporadic advanced MTC to receive cabozantinib 140 mg daily or placebo, demonstrating
a significant PFS benefit for subjects in the experimental arm (11.2 months vs. 4 months, HR 0.28, CI
0.19–0.40, p < 0.001). However, OS did not differ significantly between the two arms. The drug seems
more effective in patients carrying a RET mutation [93,94]. In 2012 FDA approved cabozantinib for the
treatment of advanced MTC [95]. More recently, the potential role of cabozantinib as salvage treatment
in RAIR DTCs progressing on a VEGFR inhibitor has been explored in a phase II trial. Twenty-five
enrolled patients presented a 40% ORR and a 92% disease control rate (DCR), with 12.7 months of
median PFS and 34.47 months of median OS [96].

Imatinib: A multiple kinases inhibitor that targets ABL, c-KIT and PDGFR. This drug was tested
both in advanced or relapsed ATCs and MTCs. A pilot trial with 11 ATC patients with proven PDGFR
overexpression by IHC showed that 800 mg Imatinib/daily determined 2 PR and four assessments of
stable disease [97]. However, in two additional studies, a total of 24 advanced MTCs received imatinib
600 mg daily with dismal results (i.e., no OR and sporadic disease stabilization) [98,99].

Lenvatinib: The drug inhibits several targets, including VEGFR 1-2-3, FGFR 1-2-3-4, PDGFR-α,
RET and c-KIT [100]. Its activity in advanced RAIR DTCs has been proven in a phase II trial
enrolling 58 patients, treatment naïve or pre-treated, and then confirmed in phase III SELECT trial,
which randomized 261 subjects to receive 24 mg lenvatinib daily or placebo. Median PFS was
18.3 months with lenvatinib versus 3.6 months with placebo (HR 0.21; 95% CI 0.14 to 0.31; p < 0.0001),
with a 64% OR rate, including four complete responses (CR). Median OS was not reached at the time
of data cutoff. Most frequent adverse events were hypertension, diarrhea, fatigue, appetite and weight
loss and nausea, with a 14% discontinuation rate [101,102]. Because of its favorable efficacy and safety
profile, in 2015 lenvatinib was granted approval for the treatment of advanced RAIR DTCs and is
currently the preferred therapeutic choice for this disease in the first line setting [103]. The drug
also showed activity in advanced MTCs, since a phase II trial on 59 patients reported 36% OT rates
(CI 24–49%) with 80% DCR (CI 67–89%) and nine months of median PFS (CI seven months-NE) [104].

Motesanib: A VEGFR 1-2-3, PDGFR, RET and c-KIT inhibitor [105] that demonstrated activity
in two phase II trials enrolling RAIR DTCs and MTCs, respectively. Ninety-three patients with advanced
RAIR DTCs received motesanib (125 mg daily)—13 (14%) experienced a PR, whereas 33 additional
patients (35%) had disease stabilization >24 weeks [106]. The second trial recruited 91 patients with
advanced symptomatic or progressive MTCs: only two patients (3%) achieved a PR, while 44 (48%)
had an SD >24 weeks [107].

Pazopanib: A multi-kinase inhibitor targeting VEGFR 1-2-3, PDGFR-α and β, c-KIT and FGFR
1-3-4 [108]. Thirty-seven patients with RAIR DTCs, either pre-treated or TKI naïve, received the
drug—at the daily dose of 800 mg—in a phase II trial. Results were encouraging, with almost 50% ORR,
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durable responses and a median PFS of 11.7 months [109]. Conversely, pazopanib showed negligible
activity in 15 ATCs [110]. Finally, in 35 patients with progressive MTC, the drug demonstrated
moderate efficacy, inducing PR in five patients (14%) and a 9.4 months median PFS [111].

Sorafenib: A multi-kinase inhibitor used against VEGFR 1-2-3, RET, RAF, PDGFR-β, c-KIT and
FLT3 [112]. In a single arm phase II trial, Schneider and colleagues reported 18 months of median
PFS [mPFS (CI 7–29 months)] and 34.5 months median OS (CI 19–50 months) in 31 patients with
advanced RAIR DTC [113]. The subsequent phase III, multicenter, randomized, double blinded,
placebo-controlled DECISION trial enrolled 417 advanced RAIR DTC patients in the first line setting.
It showed significantly longer PFS in the experimental arm (10.8 months) compared with the placebo
arm (5.8 months) [HR 0.59; 95% CI 0.45 to 0.76; p < 0.0001] and a 12% ORR, but failed to demonstrate
a survival benefit in the group of patients treated with sorafenib 400 mg bis in die, which reported
considerable toxicities leading to dose reduction or treatment discontinuation in more than 60% of
cases [114]. Nevertheless, sorafenib is currently approved both by the Food and Drug Administration
(FDA) and European Medicines Agency (EMA) for the treatment of advanced RAIR DTC. Additionally,
in a cohort of 20 pre-treated ATC patients, sorafenib induced durable PR in two patients and stable
disease in five subjects, whereas it led to 1 PR and 14 disease stabilizations in 16 sporadic advanced
MTCs [115,116]. However, the use of this drug in anaplastic and medullary thyroid carcinomas remains
off label.

Sunitinib: A compound that displays a broad spectrum of activity against VEGFR 1-2, c-KIT,
RET, PDGFR-β and FLT3 [117]. Preliminary results from a phase II trial on 33 evaluable patients with
advanced RAIR DTC (n = 26) or MTC (n = 7) receiving sunitinib 37.5 mg on a continuous schedule
indicated that 11 patients (31%) experienced a PR and 16 patients (46%) had SD, with a median time
to progression of 12 months [118]. Another phase II study of continuous sunitinib in 23 RAIR DTC
patients confirmed a good activity profile in this subset of patients. In fact, ORR was 26% and clinical
benefit rate (CBR) 83% [119]. Additionally, the phase II THYSU trial investigated sunitinib activity at
50 mg/daily four weeks on followed by two weeks off, in 71 previously untreated advanced thyroid
carcinomas of any histology. Nine out of 39 evaluable DTC patients had a disease response (1 CR
and 8 PR; ORR 22%), whereas 10 of the 24 MTC patients reported a PR (ORR 38.5%). Of the four
enrolled patients with ATC, only two were evaluable and experienced disease stabilization. PFS was
13.1 months and 16.5 months in DTCs and MTCs, respectively [120].

Vandetanib: A RET, VEGFR 2-3, c-KIT and EGFR inhibitor primarily tested in MTC [121,122].
Preliminary efficacy data came from a phase II trial on 30 locally advanced or metastatic hereditary
MTC patients, 22 of which yielded PR or disease stabilization >24 weeks (73% DCR) with vandetanib
300 mg/daily [123]. The following phase III randomized, placebo-controlled study (ZETA trial) included
331 patients with hereditary or sporadic advanced MTC and confirmed the drug’s efficacy. Median PFS
was 30.5 months in the vandetanib arm compared with 19.3 months in the placebo arm [HR 0.46, CI
0.31–0-69, p = 0.001], while OS results were still immature. Overall, a trend of enhanced efficacy in RET
mutated disease emerged. Diarrhea, skin rash, nausea, hypertension and headache were the most
frequent adverse reactions. Additionally, QT prolongation, potentially evolving in torsade de pointes
and sudden death, represented an infrequent, but critical adverse event [124]. In 2011 vandetanib
was the first FDA-approved drug for the treatment of symptomatic or progressive MTC in patients
with unresectable, locally advanced, or metastatic disease. A special “black box” warning about
QTc prolongation risk exists, hence the drug can only be prescribed by certified physicians [125].
Even though vandetanib is not indicated in advanced RAIR DTCs, it has been tested in a phase II
randomized trial in this population, demonstrating a good activity profile (median PFS 11.1 months vs
5.9 months in patients receiving placebo, HR 0.63, 95% CI 0.54–0.74, p = 0.008) [126]. A phase III trial
(VERIFY, NCT01876784) randomizing 238 subjects with RAIR DTC to receive vandetanib or placebo
completed accrual, but no results are yet available.



Genes 2019, 10, 709 15 of 33

3.1.2. Single-Target Agents

Although multi-kinase inhibitors represent the most studied agents for the treatment of
thyroid cancer, several drugs selectively blocking a single altered protein may also be effective
in oncogene-addicted disease (Figure 6). Different trials have already investigated the role of single
target agents, whereas many others are still ongoing (Table 2). However, in the absence of a reliable
predictive biomarker, the use of single-target molecules generally leads to unsatisfactory results.
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Figure 6. Strategies that target downstream mediators of receptor tyrosine kinases. RTK stimulation
causes signaling activation that is blocked by inhibition of downstream mediators decreasing cell cycle
progression, survival and differentiation. The panels report the downstream mediators inhibitors
used in thyroid cancer stratified according to their molecular target specificity and selectivity. VEGFR,
vascular endothelial growth factor receptor; EGFR, epidermal growth factor receptor; c-KIT, Mast/Stem
Cell Growth Factor Receptor Kit; FLT3, FMS-like tyrosine kinase 3; PDGFR, platelet-derived growth
factor receptor; MET, proto-oncogene, receptor tyrosine kinase; RET, rearranged during transfection;
FGFR, fibroblast growth factor receptor; PI3K, phosphoinositide 3-kinase; AKT, V-Akt Murine Thymoma
Viral Oncogene Homolog; mTOR, Mammalian Target of Rapamycin; BRAF, B-Raf proto-oncogene;
MEK, Mitogen-Activated Protein Kinase; ERK, Extracellular Signal-Regulated Kinase.

Apatinib: Two small chinese trials evaluated apatinib, a selective VEGFR-2 inhibitor, in 30 patients
with advanced RAIR DTC. The drug showed promising activity, both in terms of thyroglobulin levels
reduction and tumor shrinkage [127,128]. Hence, further studies (phase II and III) assessing the role of
apatinib for RAIR DTC treatment are currently ongoing (Table 2).

Dabrafenib and Trametinib: Combining a BRAF inhibitor (dabrafenib) with a MEK inhibitor
(trametinib) may be an effective strategy for BRAFV600E mutated ATC, as reported in a phase II trial
recruiting 16 pre-treated ATC patients. The reported 69% ORR, including a CR, along with the estimated
90% rate of ongoing responses at 12 months, represent unprecedented results for this aggressive
disease [129,130]. Clinical trials employing dabrafenib in combination with trametinib or lapatinib are
ongoing (Table 2).
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Table 2. Clinical trials with single target agents.

TARGET AGENT COMBINATION STUDY
POPULATION DESIGN PATIENTS PRIMARY END POINT STATUS IDENTIFIER

ALK

Alectinib RET-rearranged NSCLC or
RET-mut TC

Non-Randomized, Open
Label, Phase I/II 78* MTD, ORR Active, not recruiting NCT03131206

Ceritinib M+ or LA ATC
Single Group

Assignment, Open Label,
Phase II

100* Development of
progression Recruiting NCT02289144

BRAF

Dabrafenib Trametinib Recurrent TC Randomized,
Open label, phase II 53 ORR Active, not recruiting NCT01723202

Dabrafenib Trametinib
RAI

M+ RAIR with RAS or BRAF
mutation

Nonrandomized,
Open label, phase II 87 ORR Recruiting NCT03244956

Dabrafenib Lapatinib TC with BRAF mutation Nonrandomized,
Open label, phase I 18 DLTs Active, not recruiting NCT01947023

Vemurafenib Neoadjuvant-Advanced TC Nonrandomized,
Open label, phase II 24 EP Active, not recruiting NCT01709292

MEK

Selumetinib Olaparib
Solid tumors with Ras pathway
alterations, and ovarian tumors

with PARP resistance

Nonrandomized,
Open label, phase I 90 DLTs Recruiting NCT03162627

Selumetinib 131I Recurrent or M+ TC Randomized,
Double blind, phase II 60 ORR Recruiting NCT02393690

Trametinib Paclitaxel Advanced ATC Nonrandomized,
Open label, phase I 12 PFS Recruiting NCT03085056

Trametinib Pazopanib Advanced Solid Tumors (DTC,
STS and Chol)

Nonrandomized,
Open label, phase I 89 DLTs, SP Completed NCT01438554

Trametinib RAI RAS mutant or RAS/RAF
wild-type, RAIR and/or M+ TC

Nonrandomized,
Open label, phase II 35 PFS, ORR Recruiting NCT02152995

NTRK

Entrectinib
LA or M+ Solid Tumors

harboring NTRK1/2/3, ROS1,
or ALK Rearrangements

Non-Randomized,
Open Label, Phase II 300* ORR Recruiting NCT02568267

Entrectinib Solid tumors with or without
TRK, ROS1 or ALK Fusions

Non-Randomized,
Open label, Phase I 65* MTD, RP2D, ORR Recruiting NCT02650401

Larotrectinib Solid Tumors Harboring
NTRK Fusion

Non-Randomized, Open
Label, Phase II 320* ORR Recruiting NCT02576431

LOXO-195 Patients with previously
treated NTRK Fusion cancers

Single Group
Assignment, Open label,

Phase I/II
93* MTD, recommended

dose, PR, CR Recruiting NCT03215511
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Table 2. Cont.

TARGET AGENT COMBINATION STUDY
POPULATION DESIGN PATIENTS PRIMARY END POINT STATUS IDENTIFIER

PPAR-γ Efatutazone Paclitaxel Advanced ATC Nonrandomized,
Open label, phase II 19 ORR Active, not Recruiting NCT02152137

VEGFR-2

Apatinib RT Inoperable or RAIR TC Nonrandomized,
Open label, phase II 20 PFS Recruiting NCT03300765

Apatinib RAIR DTC Randomized,
Double blind, phase III 118 PFS Recruiting NCT03048877

Apatinib Locally Advanced/M+ DTC Nonrandomized,
Open label, phase II 20 EP Recruiting NCT03167385

Apatinib Local Progressive/M+ RAIR Nonrandomized,
Open label, phase II 40 ORR Recruiting NCT03199677

Anaplastic thyroid cancer (ATC); Cholangiocarcinoma (Chol); Complete response (CR); Dose-limiting toxicities (DLTs); Differentiated thyroid cancer (DTC); Efficacy profile (EP); Locally
advanced (LA); Maximum Tolerated Dose (MTD); Medullary thyroid cancer (MTC); Metastatic (M+); Non small cell lung cancer (NSCLC); Objective response rate (ORR); Overall survival
(OS); Pharmacodynamic (PD); Pharmacokinetics (PK); Progression-free survival (PFS); Partial response (PR); Radioactive iodine (RAI); Radioactive iodine resistance (RAIR); Radiation
therapy (RT); Recommended phase 2 dose (RP2D); Safety profile (SP); Soft tissue sarcoma (STS); Thyroid cancer (TC). * number of estimated patients.
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Selumetinib: The drug targets MAP kinases MEK-1 and 2 and reversed iodine refractoriness in 8
of 20 patients with metastatic thyroid cancer, as assessed by 124I-PET. Selumetinib-treated patients
subsequently received RAI achieving PR (n = 5) or SD (n = 3) after the radio-metabolic treatment.
Additionally, the NRAS mutation seems to be a predictive biomarker of selumetinib efficacy [131].
Further studies are ongoing (Table 2).

Vemurafenib: A selective BRAF inhibitor, which showed promising results in a phase II trial
conducted on 51 patients with advanced RAIR PTC displaying BRAFV600E. The study population
comprised two cohorts according to previous treatment with an anti-VEGFR. Ten out of 26 (38.5%) TKI
naïve patients achieved a PR, whereas nine patients (35%) maintained an SD for six months or longer,
determining a 73% CBR, with a median PFS of 18.2 months. In the second TKI-exposed cohort, six of
the 22 evaluable patients (27%) experienced a PR, while other six had SD for at least six months (CBR
54.6%) and a median PFS of 8.9 months [132]. A further study is ongoing (Table 2).

3.1.3. ALK Inhibitors

Due to its oncogenic activity, ALK represents a potential therapeutic target in many solid
and hematologic cancers [133,134]. Currently, the therapeutic options for ALK-rearranged tumors
include first- (crizotinib) or second-generation (ceritinib, alectinib and brigatinib) inhibitors or
immunotherapeutic drugs directed against activated ALK (Figure 5). Ongoing trials employing
ALK inhibitors are described in Table 2.

Ceritinib: A second-generation inhibitor that overcomes secondary resistance, due to acquired
ALK mutations, amplification or activation of alternative—ALK-independent—survival pathways
(e.g., EGF, IGF, RAS/SRC and AKT/mTOR signaling pathways) [134–136]. A study by Guan at al
demonstrated limited efficacy of ceritinib in ATC patients with the ALKL1198F mutation in full-length
ALK or the EML4-ALK fusion protein [137]. An additional trial is currently evaluating this drug
in patients harboring ALK mutations or fusions (NCT02289144) (Table 2).

Crizotinib: A second generation TKI targeting ALK, MET and ROS1. This drug has been
extensively investigated in ALK-fusion-positive tumors [138]. One ALK-translocated ATC patient
treated with crizotinib achieved a PR [139].

Jun Ho Ji and colleagues reported a dramatic response with crizotinib in an advanced MTC patient
harboring an ALK fusion (NCT01121588) [140]. Additionally, in a phase Ib study (PROFILE 1013;
NCT01121588), which enrolled 44 ALK-positive metastatic patients, one individual diagnosed with
MTC experienced a PR lasting 16.1 weeks [138].

3.1.4. NTRK Inhibitors

Selective inhibition of TRK signaling may be useful for patients with thyroid tumors that harbor
an oncogenic NTRK translocation. Currently, four first and second generations TRK-inhibitors
(entrectinib, larotrectinib, LOXO-195 and TPX-0005) have been developed and tested in clinical
trials [141,142] (Table 2) (Figure 5).

Entrectinib: A pan-TRK inhibitor with additional activity against ROS1 and ALK [143]. A phase
I/Ib study in children or young adults (aged 2–22 years) with or without NTRK, ROS1 or ALK fusions
(STARTRK-NG, NCT02650401) and a phase II “basket trial” in adults with the same rearrangements
(STARTRK-2, NCT02568267) enrolled patients with thyroid cancer. Results are still pending.

Larotrectinib: An ATP-competitive pan-TRK inhibitor, which received agnostic approval by the
FDA for patients with advanced solid tumors harboring an NTRK gene fusion [144]. Fifty-five patients
received larotrectinib in three different trials: A phase I in adults (NCT02122913), a phase I/II in pediatric
patients (SCOUT, NCT02637687) and a phase II in adolescents and adults (NAVIGATE, NCT02576431),
including five patients (9%) with thyroid cancer [145]. Although data specifically concerning the
thyroid population are unavailable, promising results emerged in the intention-to-treat population,
whit a 75% ORR (95% CI, 61% to 85%) and 71% of patients free from progression at 12 months. Median
DOR and PFS were not reached after a median follow-up of 8.3 months and 9.9 months, respectively.



Genes 2019, 10, 709 19 of 33

LOXO-195: A selective TRK inhibitor specifically developed to overcome acquired resistance that
may occur in subjects receiving larotrectinib or other TRK inhibitors [145]. LOXO-195 is currently
under evaluation in a phase I/II trial (NCT03215511) enrolling patients with NTRK-rearranged
tumors—including thyroid cancer—previously treated with a TRK inhibitor.

3.2. PI3K/AKT/mTOR Pathway Inhibitors

Activation of the PI3K/AKT/mTOR pathway is a common feature in thyroid cancer [31,146,147].
Preclinical and clinical data suggest that targeting this pathway can be an effective strategy for the
treatment of patients with advanced RAIR DTCs and MTCs [148]. To date, several trials have employed
mTOR inhibitors in thyroid cancer (Table 3), whereas the phase II MATCH studies are testing PI3K
(e.g., taselisib, copanlisib) and AKT-inhibitors (e.g., capivasertib) (Figure 6).

Buparlisib: A pan-class I PI3K inhibitor that failed to show a significant PFS benefit in 43 advanced,
RAIR DTCs. Despite a reduction in tumor growth, the drug did not induce any objective response
in the overall population, and 48.8% of patients had progressed after six months. The decrease in tumor
growth may suggest an incomplete inhibition of the PI3K oncogenic pathway [149].

Everolimus: A phase II trial tested this mTOR inhibitor in 38 patients with advanced RAIR DTC.
The authors reported an 81% DCR and a median PFS of 47 weeks [150]. Two additional phase II studies
analyzed everolimus safety and efficacy on seven subjects with MTC, 28 patients with metastatic
or locally advanced DTC and seven individuals with ATC. Five patients (71.4%) showed SD, and 4
(57.1%) had an SD lasting >24 weeks [151]. In the second study, 17 patients (65%) showed SD; in 15 of
these 17 patients (58%), the response lasted >24 weeks. Median PFS and OS were 9 and 18 months,
respectively [152]. A further phase II trial evaluated everolimus efficacy in patients with RAIR thyroid
cancer and correlated tumor mutational profiling with response. Median PFS were 12.9, 13.1 and 2.2 for
DTC, MTC and ATC cohorts, respectively, and patients with mutations in the PI3K pathway appeared
to benefit most from drug treatment [153].

Since activation of the somatostatin receptor (SSTR1-5) also inhibits PI3K/AKT signaling,
the somatostatin analog pasireotide has been tested in combination with everolimus [154]. Pasireotide
activates SSTRs, in particular, subtype 2, which is the most expressed somatostatin receptor in thyroid
cancers [155]. In a phase II trial, 19 patients with advanced MTC began pasireotide, achieving a median
PFS of 36 months (95% CI 19.5–52.5). Seven patients with tumor progression received everolimus
in combination with pasireotide, experiencing a median PFS of nine months (95% CI 0–21.83) [156].
Another phase II trial combining pasireotide with everolimus completed accrual and results are still
awaited (Table 3).

Sirolimus: A retrospective study reported that this drug combined with cyclophosphamide
generated PFS rates comparable to the standard of care for RAIR DTC. One-year PFS probability was
0.45 in the sirolimus plus cyclophosphamide cohort and 0.30 in the control population [157].

Temsirolimus: In a phase II trial temsirolimus was combined with sorafenib for the treatment of
36 RAIR thyroid cancer patients. Radiographic response rate was the primary endpoint. A PR was
observed in 22% of cases, stable disease in 58% and progressive disease in 3% of patients. Individuals
with any prior systemic treatment had a response rate of 10% compared to 38% for subjects with no
prior systemic treatment [158].
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Table 3. Clinical trials with mTOR inhibitors.

AGENT COMBINATION STUDY
POPULATION DESIGN PATIENTS PRIMARY END POINT STATUS IDENTIFIER

Everolimus LA or M+ TC Nonrandomized,
Open label, phase II 40 ORR Completed NCT01164176

Everolimus RAIR TC Nonrandomized,
Open label, phase II 33 PFS Active, not Recruiting NCT00936858

Everolimus Lenvatinib M+ DTC progressed on
Lenvatinib alone

Nonrandomized,
Open label, phase II 40 PFS Recruiting NCT03139747

Everolimus Neratinib
Advanced Cancer with
EGFR/HER2 Mut/Ampl,

HER3/4 Mut

Nonrandomized,
Open label, phase I 120 DLTs Recruiting NCT03065387

Everolimus Pasireotide RAIR DTC and MTC Randomized,
Open label, phase II 42 ORR Completed NCT01270321

Everolimus Sorefenib M+ DTC progressed on
Sorafenib alone

Nonrandomized,
Open label, phase II 40 ORR, PFS Active, not Recruiting NCT01263951

Everolimus Sorefenib
Advanced TC never
treated with m-TOR

inhibitor or Sorafenib

Nonrandomized,
Open label, phase II 41 ORR Active, not Recruiting NCT01141309

Everolimus Sorefenib Advanced RAIR
Hurthle Cell TC

Randomized, Open
label, phase II 34l PFS Recruiting NCT02143726

Everolimus Vatalinib Advanced Solid Tumors Nonrandomized,
Open label, phase I 96 DLTs, SP Completed NCT00655655

Sirolimus Ciclofosfamide M+ or RAIR DTC Nonrandomized,
Open label, phase II 19 ORR Recruiting NCT03099356

Sirolimus Grapefruit juice Advanced Malignancies Nonrandomized,
Open label, phase Ib 41 PK Completed NCT00375245

Temsirolimus Bevacizumab
Valproic Acid

Advanced or M+
Malignancy or Other

Benign Disease

Nonrandomized,
Open label, phase I 216 DLTs Recruiting NCT01552434

Temsirolimus Vinorelbine Unresectable or M+
Solid Tumors

Nonrandomized,
Open label, phase I 19 DLTs, ORR Completed NCT01155258

Dose-limiting toxicities (DLTs); Differentiated thyroid cancer (DTC); Locally advanced (LA); Medullary thyroid cancer (MTC); Metastatic (M+); Objective response rate (ORR);
Pharmacokinetics (PK); Progression-free survival (PFS); Radioactive iodine resistance (RAIR); Safety profile (SP); Thyroid cancer (TC).
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3.3. PPAR-γ Agonist—Efatutazone

Different studies suggest that PPAR-γ agonists may inhibit tumor growth through the induction
of terminal cell differentiation, cell cycle arrest, apoptosis, and angiogenesis inhibition [78,159].
Efatutazone, is a PPAR-γ agonist evaluated in combination with paclitaxel in a phase I study accruing
patients diagnosed with ATC. Safety, potential effectiveness, and maximally tolerated dose were the
end point of this trial. Results demonstrated that the combination was safe, with no dose-limiting
toxicities (DLTs) and preliminary evidence of efficacy. Thus, these findings supported the addition of
efatutazone to paclitaxel in patients with advanced ATC [160]. A further clinical trial is ongoing, but
not yet recruiting (Table 2).

3.4. Histone Deacetylase Inhibitors—Valproic Acid

Several studies have shown that histone deacetylase (HDAC) inhibitors display promising effects
for the treatment of several malignancies as they inhibit tumor proliferation, induce apoptosis, cell
cycle arrest, and cancer differentiation [161–163].

In a phase II study valproic acid (VA) was administered to 13 patients with RAIR thyroid cancer of
follicular origin. The primary endpoint of the study was to determine VA antitumor activity by evaluating
measurable tumor response and/or decreased thyroglobulin levels. VA did not decrease tumor size and
only generated a modest decrease in serum thyroglobulin levels. The secondary endpoint was to determine
if VA could increase RAI uptake by the tumor cells, but results were disappointing [164].

4. Immunotherapy Landscape in Thyroid Cancer

In the last decade, the detailed understanding of the mechanism employed by cancer cells to elude
the immune system have fostered a renewed interest for immune based-therapies [165]. Although thyroid
carcinomas are not deemed to be “immunogenic” and display a low median tumor mutational burden
(about 0.4 mutations/Mb) [166], several observations indicate a possible rationale for the use of immune
checkpoint inhibitors in these tumors [167]. Indeed, immune cell infiltration, including natural killer cells,
macrophages, mast cells, dendritic cells and T regulatory cells (Tregs) [168–170] has been reported in DTCs.
Importantly, the relative amount of tumor-infiltrating lymphocytes and T-regs in primary thyroid cancer
seems to correlate with prognosis [168,171]. Furthermore, the expression levels of programmed death 1
(PD-1) and programmed death ligand (PD-L1) correlate with higher risk of disease recurrence and reduced
DFS [172,173]. To date, PD-L1 expression represents the most useful predictive biomarker to determine
immunotherapy efficacy in thyroid tumors [168,174,175], with PD-L1 positivity ranging from 6.1 to 82.5%
in PTCs and from 22.2% to 81.2% in ATCs [176].

Immune Checkpoint Inhibitors

Several clinical trials are investigating immune checkpoint inhibitors in thyroid cancer both alone
or in combination with other drugs. A phase Ib trial tested the anti PD-1 antibody pembrolizumab on
22 PD-L1-positive patients with RAIR thyroid tumors. Clinical benefit rate was 50% (95% CI 28–72%),
even though seven patients experienced early progression (32%; 95% CI 14–55%). Median PFS was
seven months (95% CI 2–14 months), whereas median OS was not reached at the time of data cut-off

(95% CI 22 months to NR) [177]. Based on these promising results, a phase II basket trial is currently
ongoing (NCT02628067). Another study is testing the combination of the anti PD-1 nivolumab and the
anti CTLA-4 ipilimumab in RAIR DTCs (NCT03246958).

Immunotherapy is also being evaluated in ATC. However, while the results of a phase II trial employing
pembrolizumab are awaited for October 2019 (NCT02688608), a recently presented study failed to demonstrate
any efficacy for the combination of the anti-PD-L1 durvalumab with the anti CTLA-4 tremelimumab and
stereotactic radiation therapy in 12 patients with ATC [178]. Additional clinical trials are ongoing to establish if
immune checkpoint inhibitors may prove of clinical benefit for thyroid cancer (Table 4).
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Table 4. Clinical trials with immune checkpoint inhibitors.

TARGET AGENT COMBINATION STUDY
POPULATION DESIGN PATIENTS PRIMARY ENDPOINT STATUS IDENTIFIER

PD-1

Pembrolizumab M+ or LA ATC Single Group Assignment
Open label, phase II 20 RR Recruiting NCT02688608

Pembrolizumab Recurrent or M+ MTC
Nonrandomized

Parallel Assignment
Open label, phase II

32 DLTs Recruiting NCT03072160

Pembrolizumab Patients with rare cancer types
Single Group
Assignment,

Open label, phase II
350 ORR Recruiting NCT03012620

Pembrolizumab Advanced Solid Tumors
Single Group
Assignment,

Open label, phase II
1350 ORR Recruiting NCT02628067

Pembrolizumab Docetaxel
Poorly Chemo-responsive

Thyroid and Salivary
Gland Tumors

Nonrandomized,
Parallel Assignment
Open label, phase I

46 RR Recruiting NCT03360890

Pembrolizumab Docetaxel
Doxorubicin ATC Nonrandomized,

Open label, phase II 3* OSR Active, not Recruiting NCT03211117

Pembrolizumab Lenvatinib RAIR DTC
Single Group
Assignment,

Open label, phase II
60 CRR Recruiting NCT02973997

PD-1 and
CTLA-4

Nivolumab
Ipilimumab RAIR DTC, ATC, MTC

Randomized,
Parallel Assignment
Open label, phase II

54 RRR Recruiting NCT03246958

PD-L1

Atezolizumab

Bevacizumab
Cobimetinib

Paclitaxel
Vemurafenib

ATC, PDTC
Nonrandomized,

Parallel Assignment
Open label, phase II

50 OS Recruiting NCT03181100

Atezolizumab Cabozantinib M+ ATC
Nonrandomized

Sequential Assignment
Open label, phase I-II

1000 DLTs Recruiting NCT03170960

Durvalumab TC Single Group Assignment
Open label, phase I 11 DLTs Recruiting NCT03215095

PD-L1 and
CTLA-4

Durvalumab+
Tremelimumab M+ ATC Single Group Assignment

Open label, phase 13 OS Active, not Recruiting NCT03122496

Anaplastic thyroid cancer (ATC); Complete remission rate (CRR); Dose-limiting toxicities (DLTs); Differentiated thyroid cancer (DTC); Locally advanced (LA); Medullary thyroid cancer
(MTC); Metastatic (M+); Objective response rate (ORR); Overall survival (OS); Overall survival rate (OSR); Poorly differentiated thyroid cancer (PDTC); Radioactive iodine resistance
(RAIR); Radiographic Response Rate (RRR); Response rate (RR). * number of actual patients.
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5. Conclusions

In the last few years, a rapid advance in the knowledge of the molecular mechanisms underlying
thyroid tumorigenesis along with the identification of pivotal driver genes contributing to disease
progression has led to the introduction of several biological therapies, including TKIs, monoclonal
antibodies and antibody-drug conjugates [179–183].

In this wide landscape of potentially targetable genomic alterations, RTKs modulating angiogenesis,
proliferation and differentiation have represented the most easily druggable targets. Indeed, small
molecules blocking these receptors have provided significant survival benefits for both RAIR DTCs
and MTCs. However, these benefits have come at the cost of meaningful clinical and financial
toxicities [184,185].

While additional studies are currently investigating other RTK-directed TKIs in DTCs and MTCs,
the use of these drugs in ATC has been largely unsatisfactory. On the contrary, the combination
of BRAF and MEK inhibitors has generated unprecedented response rates in patients diagnosed
with these aggressive thyroid carcinomas, and validation of the published preliminary results is
eagerly awaited with the hope that it may provide durable benefits comparable to those reported
in BRAF-mutant melanoma.

Finally, despite not being classified as a highly immunogenic, preliminary findings suggest
a possible benefit from immune checkpoint inhibitors in thyroid cancer, although these data are still
immature. As in other types of solid tumors, it remains to be established which patients will derive
meaningful benefits from this therapeutic approach [186].
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