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Objective: Numerous communication support systems based on reminiscence therapy
have been developed. However, when using communication support systems, the
emotional assessment of older people is generally conducted using verbal feedback
or questionnaires. The purpose of this study is to investigate the feasibility of using
Electroencephalography (EEG) signals for automatic emotion recognition during RT for
older people.

Participants: Eleven older people (mean 71.25, SD 4.66) and seven young people
(mean 22.4, SD 1.51) participated in the experiment.

Methods: Old public photographs were used as material for reminiscence therapy.
The EEG signals of the older people were collected while the older people and young
people were talking about the contents of the photos. Since emotions change slowly
and responses are characterized by delayed effects in EEG, the depth models LSTM
and Bi-LSTM were selected to extract complex emotional features from EEG signals for
automatic recognition of emotions.

Results: The EEG data of 8 channels were inputted into the LSTM and Bi-LSTM models
to classify positive and negative emotions. The recognition highest accuracy rate of the
two models were 90.8% and 95.8% respectively. The four-channel EEG data based
Bi-LSTM also reached 94.4%.

Conclusion: Since the Bi-LSTM model could tap into the influence of “past” and
“future” emotional states on the current emotional state in the EEG signal, we found
that it can help improve the ability to recognize positive and negative emotions in older
people. In particular, it is feasible to use EEG signals without the necessity of multimodal
physiological signals for emotion recognition in the communication support systems for
reminiscence therapy when using this model.

Keywords: emotion recognition, EEG signals, Bi-LSTM, older people, reminiscence therapy

INTRODUCTION

Background
Reminiscence therapy (RT) for older people with or without dementia is a rehabilitation
method that activates the brain and has the potential to slow down the functional
decline of the brain and progression of dementia (Yamagami et al., 2007). And
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previous research has found that RT can improve the QoL
(experiencing a good quality of life), communication, cognition
and emotion for older people (Woods et al., 2018). Since
RT can improve the emotion of older people, an effective
emotion assessment/recognition system can be used to evaluate
their emotion in therapy as well as to inform activities
and interventions to improve their mental health. Therefore,
already a number of communication support systems based
on reminiscence therapy have been applied (Sarne-Fleischmann
et al., 2011; Welsh et al., 2018; Carós et al., 2020). However,
when using the communication support systems, emotional
assessment of the older people was usually conducted in the form
of verbal feedback or questionnaires. This type of assessment
is discontinuous and sometimes suffers because of the inability
of individuals to describe their feelings. Automatic emotion
recognition technology provides a continuous, non-invasive
assessment of an individual’s emotional state. Automatic emotion
recognition technology is generally implemented through
facial expressions, audio technology, and physiological signal
recognition. Compared to the other two technologies which
are not sufficiently detailed to recognize emotions, physiological
signals are more responsive to real emotions (Kim, 2007). Among
the various physiological signals, Electroencephalography (EEG)
signals are widely used in emotion recognition because devices
for detecting the signals are non-invasive, low-cost, and wearable
(Sawangjai et al., 2019). However, though EEG systems have been
used in sleep, brain disease diagnosis, and cognitive training, they
have not been applied much in automatic emotion recognition
systems for older people (Marlats et al., 2020; Pineda et al.,
2020; Choi et al., 2021; Dimitriadis et al., 2021). Current publicly
available physiological signal datasets (Koelstra et al., 2011; Liu
and Sourina, 2013; Zheng and Lu, 2015; Zheng et al., 2018;
Lakhan et al., 2019; Bhattacharyya et al., 2020; Sangnark et al.,
2021; Sharma and Bhattacharyya, 2021) for emotion computation
almost always use external methods and based on young people
such as IAPS image libraries, video, and audio (the mentioned
datasets were summarized in Table 1) to evoke emotional
changes. Few studies have implemented active methods to evoke
emotions in older people. There will be differences between
these passive emotional changes and those actively generated
by individuals in realistic scenarios, lowering the emotional
recognition rate in realistic scenarios. Thus, it is necessary
to detect the EEG signals actively generated by older people
during reminiscence therapy to be used for emotion calculation.
Furthermore, with the advancement of deep learning technology,
it is currently possible to automatically learn crucial features from
a lot of data. This provides the possibility of emotion computation
from dynamically collected EEG signals in realistic scenarios.
Therefore, the purpose of this work is to collect EEG signals
from older people during RT, and to explore the feasibility of
applying deep learning models to automatically learn the EEG
signal features of different emotions in order to recognize the
emotions of older people.

Related Works
There are already various available emotion recognition systems.
Here, the main focus is on systems that have been applied to older
people. Lopes et al. (2018) extracted facial features of different

emotions from older people and used support vector machines
for multi-categorization of emotions. It was found that aging has
a negative impact on facial expression recognition, with only a
66.6% recognition rate of sad expressions, whereas the rate of
the younger age group reached 80%. Later, a speech emotion
recognition system was proposed (Boateng and Kowatsch, 2020).
Recordings of 87 older people were input into SBERT (sentence
bidirectional encoder representations from transformers) to
extract the features of the sentences to be put directly into a
SVM classifier. The highest accuracy of emotion recognition in
valence dimension was 57.8%. Therefore, in a later study (Dou
et al., 2020), an emotion recognition model combining features
of expression recognition and speech recognition was proposed
to recognize four categories of emotions: happy, neutral, sad, and
angry. This had an accuracy rate of more than 90%. From the
above-mentioned research on contactless emotion recognition,
it is obvious that firstly, as studies in Freudenberg et al. (2015)
and Lopes et al. (2018) stated, facial expressions become less
distinguishable due to changes in facial features from aging, such
as some wrinkles and folds, which reduce the clarity of facial
expressions in the elderly. Secondly, the speech signal conveys
massive amounts of information and the features that best reflect
emotions are difficult to find accurately and needs to be combined
with other techniques to improve recognition rates. On the
contrary, contact emotion recognition seems to present better
results. Hakim et al. (2018) combined the oxygen saturation
(SpO2) and pulse rate (PR) of older people and input the data
into a SVM classifier to recognize three emotions, happy, sad
and angry. Here they obtained an accuracy of 72.86%. In a later
study, Awais et al. (2020) proposed an IoT-supported emotion
recognition system. By inputting the EMG signals into the LSTM
model, recognition of four emotions, amused, bored, relaxed and
scared, had an average accuracy of 70%. However, by inputting
the physiological signals ECG, BVP, GSR, RSP, SKT, EMG into the
LSTM model, the recognition accuracy of the four emotions was
over 95%. In another study (Meza-Kubo et al., 2016), the IAPS
photo library was used as material to stimulate the emotions of
older people. Alpha, beta and theta waves were extracted from the
EEG signals of older people as input into a neural network to train
an emotion classification model. The trained model was then
used to recognize the emotions of older people while they were
using a cognitive wellness system. The accuracy of two-emotion
recognition, pleasant or unpleasant, ranged from 60.87 to 82.61%.
Because this accuracy range is consistent with other emotion
recognition techniques and less costly than the others, the authors
proposed that it is feasible to recognize emotions for the older
people using EEG signals. Later studies have even combined
physiological signals (blood pressure, sweat, respiratory rate),
facial expressions (camera) and sound (microphone) to recognize
emotions (Castillo et al., 2014). The emotional state is then
transmitted to actuators to achieve a real-time and continuous
monitoring system. The emotions of older people are then
regulated by adjusting music and lights. From previous works
(a summary is shown in Table 2), it was found that the effect of
contact emotion recognition is better than non-contact emotion
recognition and that multimodal physiological signals were
usually better than unimodal physiological signals to recognize
emotion. However, for older people, too many acquisition
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TABLE 1 | Emotion recognition based on different stimulus materials summary.

Signals Subjects
(Age)

Stimuli
/source

Algorithm Emotion model
/features

Highest
accuracy

References

EEGPERMCA 32
(26.9)

DEAP:
Video (60 s)

Multimodal + Naive Bayes
classifier

PAD
Liking

Familiarity

F1-score
60.7%

Koelstra et al.,
2011

EEG 14
(-)

Audio (6 s)
Picture (10 s)
IADS/IAPS

SVM PAD Accu.
87.02%

Liu and Sourina,
2013

EEGPER 43
(16∼34)

Film clip
(1 min)

K-means + multimodal +
SVM classifier

Valence
Arousal

Accu.
V:72.35%
A:68.47%

Lakhan et al., 2019

EEG 15
(23.27)

SEED: Film clip
(4 min)

MFBSE-EWT + ARF
classifier

Negative,
positive, neutral

94.4% Bhattacharyya
et al., 2020

EEG 20
(25.75)

Music
(19–66 s)

SVM
RF

KNN

Favored/non
Familiarity

Response rate

Accu.
84.64

Sangnark et al.,
2021

ECGEEG 23 (26.6)
40 (28.3)

DREAMER
AMIGOS

(movie clip the last
30 s)

SM-SSA + RC (IP/CEC) +
SVM/KNN classifier

PAD Accu.
92.38%

Sharma and
Bhattacharyya,

2021

PER, peripheral physiological signals; MCA, multimedia content analysis; PAD, valence + arousal + dominance dimension; MFBSE-EWT, MHMS (multivariate Hilbert
marginal spectrum) + FBSE (Fourier-Bessel series expansion) + EWT (empirical wavelet transform); ARF, the sparse autoencoder based random forest classifier.

TABLE 2 | Emotion recognition systems applied to older people summary.

Signals (source/stimuli) Subjects
(Age)

Algorithm Emotion
model

Highest
accuracy

References

Contact Non-contact

Expression
(Lifespan database)

778
18–59
60–93

Viola-Jones-
Haar + Gabor + SVM

Neutral
Happiness
Sadness

95.24% 90.32%
88.57%; 84.61%

80%; 66.6%

Lopes et al., 2018

Speech (USOMS-e
database)

87
(71.01)

Pretrained CNN
/BERT/SBERT + SVM

Valence
Arousal

57.8%
47.5%

Boateng and
Kowatsch, 2020

Speech, Expression
(HCI)

5
(50–60)

Bi-LSTM
Xception
Fusion

Negative
Positive

Speech: 91%
Expression: 90%

Fusion: 94%

Dou et al., 2020

EEG
(IAPS)

8
(72.3)

Trained neural network Pleasant
Unpleasure

82.61% Meza-Kubo et al.,
2016

SpO2, PR
(Video)

31
(63.8)

Statistical feature
+ KNN/SVM

Happy; Sad; Angry SVM:72.86%
KNN: 71.93%

Hakim et al., 2018

EMG, ECG, BVP,
GSR, RSP, SKT
(Video/IoT)

30
(-)

LSTM Amused
Bored

Relaxed
Scared

EMG:
F1-score 70%

Fusion:
F1-score 95%

Awais et al., 2020

SpO2, oxygen saturation; PR, pulse rate; HCI, Human-computer interaction; IoT, Internet of Things; about the highest accuracy in the table unless otherwise noted,
all are Accuracy.

devices easily becomes discomforting. With the development
of deep learning, widely used in physiological signals analysis,
the accuracy of emotion recognition has been greatly improved.
This due to the fact that deep learning networks have
better emotion computation capabilities compared to traditional
methods of machine learning (Zheng and Lu, 2015; Thammasan
et al., 2016). Deep learning models can automatically compute
complex features of physiological signals that are easily ignored
by manual feature extraction techniques. Overall, emotional
expression is a multi-component complex process that consists
of three components: internal experience, external expression,

and physiological activation (Keltner and Gross, 1999). For the
emotion recognition system of older people, external expressions
are unreliable due to changes in the morphological features
from facial aging. In contrast, physiological signals are unable
to be suppressed or hidden, providing a reliable response to
psychological feelings. If the EEG signals are collected from
older people as an objective response to their emotions and
supplemented with a completed subjective self-assessment form,
it is possible to reflect emotions from internal experiences
and physiological stimuli, providing richer data for further
emotion calculation.
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Present Work
The main work and contributions to this paper are as following:

(1) Based on realistic scenarios in the implementation of
reminiscence therapy, the EEG signals actively generated by the
emotional response in older people were collected. This can
subsequently be used as an emotional computational dataset for
a conversation support system.

(2) An emotional self-assessment scale was designed for
application to older people. In a conversation system, the effect
of classifying emotions using the ratings of pleasure and stress
was found to be more suitable for classifying emotions in older
people compared to the Valence-Arousal model.

(3) It was found that using EEG signals without the necessity
of multimodal physiological signals for emotion recognition in
the communication support systems for older people during RT
is feasible. At the same time the four EEG signal channels (F7, F8,
T7, T8) near the ear (corresponding to the position of eyewear)
based on Bi-LSTM model resulted in 94.4% accuracy in emotion
recognition. This design proposal improves the possibility of
acquisition of high-quality signals (due to the avoidance of the
hair) and it is possible to reduce the weight of the device which is
beneficial to reduce the discomfort of old people when having to
wear such sensing devices for a long time.

MATERIALS AND METHODS

Materials and Participants
For older people, old public photographs can stimulate
autobiographical memories to achieve the effect of reminiscence
therapy (Wu et al., 2020). Therefore, four themes of old
photographs were collected: Showa era, landscape, food and
festival. Because these four themes of photos are known by
most Japanese older people which can awaken their previous
memories. In order to control the effect of the different photo
types on each older person, all photos were organized in the form
of a questionnaire (details of the photos can be found in the
Supplementary Material), and the older people who participated
in the experiment were asked to answer the questionnaire 1 week
beforehand. The question under each photo was: Would you like
to talk to young people when looking at this photo? (1) want to,
(2) don’t want to (or no feeling). The photos were then divided
into two categories based on the answers (personal preference)
to the questionnaire. Eighteen photos were randomly selected
from each of the two categories corresponding to each older
person to make up the individual reminiscence therapy materials.
And then the older people and young people participating in
the experiment were randomly grouped into pairs. They will talk
around each RT material for 1 min and collect EEG signals from
older people. In addition, in the same period of work (Jiang
et al., 2021), we found that no statistically significant difference
in the personal preference (liking and familiarity) of photos
for the older people on the pleasantness of the conversation.
Therefore the personal preference on photos was not taken into
account as EEG features when evaluating conversation emotion.
The Japanese version of the GDS depression quantification form
(Sugishita and Asada, 2009) was filled out by elderly people before

the experiment. The GDS indicates depressive tendencies when
the score is greater than 6. None of the older people in this
experiment showed depressive tendencies (mean 2.0, SD 1.79;
range 0–5). Details of the information about the materials and
participants on Table 3.

Experiment Procedure
The experiments related to this study were approved by the 116th
and 122nd Kyoto Institute of Technology Ethics Committee
for Scientific Research Involving Human Subjects (No. 2020-18,
and 2021-03). All participants agreed and provided their written
informed consent to participate in this study. The experiment
was conducted in a separate meeting room with a comfortable
environment and soft light. It also has good soundproofing to
minimize the influence of the external environment. Prior to
the conversation, the student explained to the older adult the
entire experiment procedure. Then the older adult was fitted
with an Ultracortex Mark IV electrode cap (PLA, 3d printing,
head circumference 48–58 cm, 10–20 system electrode positions),
the electrodes adjusted to the correct position and the ground
electrodes attached to both ears of the subject. The older adult
and the student were seated next to each other approximately
2 m from the screen. The conversation started with the older
adult’s eyes closed for 1 min for a baseline measurement and
then the two participants talked about the photo displayed on
the screen for 1 min (Figure 1 shows the participants in the
experiment). At this time, the EEG signals from the Mark IV
electrode cap were received by an OpenBCI Cyton biosensor
board, and the signals were transmitted to the computer for real-
time display and recording via the OpenBCI USB dongle. After
the 1-min conversation, the older adult used 30 s to fill out the
self-assessment form (shown in Appendix I and the details can
be found in Supplementary Material), followed by a 10-second
break. After that, the participants talked about the next photo,
for a total of 36 photos. The details of procedure are shown in
Figure 2.

As the OpenBCI Cyton board, which collects physiological
signals, can receive 8 channels of signals with a sampling

TABLE 3 | Experiment summary.

Photo conversation stimuli

Number of photos 36

Photo content Showa era, landscape, food and festival

Photo Conversation 1 min

Experiment information

Number of participants 11 (O) and 7 (Y)

Number of males 6 (O) and 5 (Y)

Number of females 5 (O) and 2 (Y)

Age of participants O: 66–82 (M = 71.25, SD = 4.66);
Y: 20–24 (M = 22.4, SD = 1.51)

Rating scales Arousal, Valence, Stress

Rating values −4–4, −4–4, 1–7

Recorded signals 8-channel 256 Hz EEG

The old people (O) from Silver Human Resources Center, Kyoto, Japan; The young
people (Y) from Kyoto Institute of Technology, Kyoto, Japan.
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FIGURE 1 | Two participants during the experiment.

FIGURE 2 | Detail of the experiment procedure.

frequency of 250 HZ, 8 electrodes were installed on the electrode
cap (the positions marked in red in the upper right corner of
Figure 1, 10–20 system). The corresponding brain region and
names of the electrodes are frontal, F3 and F4; left frontal,
F7; right frontal, F8; left temporal, T7; right temporal, T8;
parietal occipital, P3 and P4. These electrodes were chosen
due to a previous study (Martinez et al., 2013) where the
authors demonstrated through extensive experiments that the
eight channels most suitable for emotion recognition are AF3,
AF4, F3, F4, F7, F8, T7 and T8. Since AF3 and AF4 are not
available in Mark IV and these two positions are more influenced
by eye movements, they were replaced with P3 and P4. These
positions correspond to brain areas related to the function of
short-time verbal logic and short-time mathematical logic which
affect conversation. At the end of the experiment, each subject
was asked to evaluate the comfort of the Ultracortex Mark IV
in terms of weight, electrode pressure, wear time, and device
improvement (shown in Appendix II and the details can be
found in Supplementary Material).

Emotion Classification Model and
Subjects Self-Assessment
In order to distinguish the emotional states of older people by the
emotion recognition system, the EEG signals and the emotional
states must first be corresponded one by one by in the emotion
classification model. Therefore, it is necessary to design an
emotion self-assessment form based on the emotion classification
models. All existing emotion classification models can be divided

into the following two main categories: (1) Discrete emotion
model, such as Ekman’s model (anger, disgust, fear, happiness,
sadness, and surprise) which is very useful for the application of
facial emotion detection; (2) Dimensional emotion model, such
as Hourglass model which consists of 20 categories (half positive
and half negative) in four independent dimensions, each emotion
is presented in a pair of words displaying the distinct similarities
and the differences of emotion (Zad et al., 2021). It can be
found that the dimensional emotion model will express more
emotions than the discrete emotion model and different emotion
models are applicable in different emotion tasks. Therefore, it
is necessary to design the self-assessment form by choosing a
suitable emotion classification model based on task requirements.
Among the already designed self-assessment forms related to our
task, the SAM scale [Self-Assessment Manikin (Lang, 1980)] is a
self-emotion assessment scale using cartoon villain images and
it has been proven to be highly correlated with physiological
signals. It designed based on the PAD model, it has a total of three
dimensions: pleasure, arousal, and dominance. Individuals need
to choose the most suitable picture for their current state in each
dimension. Through a preliminary survey, we found that SAM
scale is too complicated for older people to understand. They had
difficulty understanding the dominance dimension and did not
know how to choose. They tended to choose one of the cartoon
images, overlooking the fact that the position between the two
cartoon images was also an option. Therefore, in this experiment,
we removed the dominance dimension from the SAM and kept
only the pleasure and arousal dimensions (Russell studied the
PAD model and found that these two dimensions can represent
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most of the different emotions, which is also called the Valence-
Arousal (VA) model (Russell et al., 1989). We then converted
the cartoon character into a nine-value scale (values ranging
from −4 to 4, representing “not at all” to “extremely”). It was
proved in related studies that whether or not the older people
felt stress in the conversation was also an important factor that
affects emotions during reminiscence therapy (Iwamoto et al.,
2017). Therefore, we added the stress level rating (values from
1 to 7, indicating “no stress at all” to “extremely”) to the self-
assessment form (shown in Appendix I and the details can be
found in Supplementary Material).

EEG Dataset Classification
To distinguish the emotional states of the older people by
the emotion recognition system, the EEG signals were first
corresponded to the emotion space of the VA model one by
one. Therefore the 396 samples (11 subjects × 36 conversations)
were collected, corresponding to the four quadrants of the VA
model and represented the four emotion categories: (1) Samples
in high valance (pleasure) dimension and high arousal (excited)
dimension represent the happy emotion; (2) Samples in high
valence dimension and medium arousal dimension represent
the relaxed emotion; (3) Samples in low valance (unpleasant)
dimension and high arousal dimension represent the frightened
emotion; (4) Samples in low valance dimension and medium
arousal dimension represent the boredom emotion. However,
as shown in Figure 3 (larger circles and more black shading
represent a larger number of samples), the VA model does not
classify the emotions of older people well. Almost all of them
are distributed in the first quadrant and on the number axis
(241 and 121 samples respectively). Therefore, we replaced the
arousal dimension with the degree of stress. In this case 195 out
of 396 samples were divided into 2 categories as shown in Table 4.
Samples with Pleasure value greater than 0 and Stress value less
than or equal to 1 were considered as positive emotions. While

FIGURE 3 | Distribution of the conversation emotions on the VA model.

TABLE 4 | Distribution of the conversation emotions on PS values.

Classify Conditions Total

Positive Pleasure value > 0 and Stress value ≤ 1 126

Negative Pleasure value < 0 or Stress value > 2 69

samples with Pleasure value less than 0 or a Stress value greater
than 2 were considered as negative emotions.

Emotion Classifiers Based on LSTM and
Bi-LSTM
For the depth model selection, we used LSTM (Long Short-
Term Memory) and Bi-LSTM (Bidirectional LSTM) models to
automatically extract features for sentiment computation on the
binary sentiment data. The reason is that the emotional change
during a conversation is a long-period emotional change and
the current emotional state will be influenced by the previous
emotional state. EEG can reflect the emotional state, thus there
is also a correlation between the EEG responding to the previous
emotion and the EEG of the current emotion. According to
related studies (Li et al., 2016), the contextual information of
EEG can be used in emotion recognition. Therefore, the EEG
data containing emotional changes can be regarded as a feature
sequence containing contextual correlations. First, we chose to
apply the LSTM model to compute the relevance of the contextual
information of the EEG feature sequence to implement sentiment
classification. This is because it has an advantage over the
traditional RNN in the processing and classification of temporally
correlated signals (Hochreiter and Schmidhuber, 1997). There
are three gates in the basic memory unit of the LSTM model:
the input gate (which decides which parts of the new input
information are updated), the forgotten gate (which decides
which parts of the previously stored information are discarded),
and the output gate (which decides the final update and output).
This makes it possible to maintain and transfer the critical
features in the temporal data effectively throughout the long-term
computation of the classification network. However, both RNN
and LSTM are only able to predict the output of the next moment
based on the temporary information of the previous moment.
Emotional changes are generally not dramatic but rather calm
and stable, and it takes time for the potential changes resulting
from emotional changes to be transmitted to the cerebral cortex.
Sometimes there is a lag in the emotional response in the
EEG data, so the emotional state at that moment may also be
related to the “future” state. In order to simultaneously compute
the sequence of the “past” and “future” features of the EEG
data acting on the present emotion, we chose to apply the Bi-
LSTM model to compare with the LSTM model. The Bi-LSTM
is composed of two superimposed LSTM layers, which can be
divided into a forward (“past” state) and a backward (“future”
state) LSTM in the direction of time. The new information
input for each moment is computed independently in the two
LSTM layers, and then jointly input into the output layer for
computation, determining the output result and then updating
(Siami-Namini et al., 2019). The EEG data in the process
of collecting may include noise which must be pre-processed
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FIGURE 4 | The Emotion classification of EEG raw data based on Bi-LSTM.

(described in the next section) and then input into the model.
The basic structural unit of the Bi-LSTM applied in this paper is
shown in Figure 4.

RESULTS

Dataset and Pre-processing
According to the results of emotion classification based on
the self-assessment forms, the corresponding EEG signals
(60 s × 250 Hz × 8 Channels) were also divided into two
categories as shown in Table 4. Thus, the whole EEG dataset
includes 126 positive emotion samples and 69 negative emotion
samples with 2 arrays named dataset 1 (Table 5). There is one
more aspect to consider: the dry electrodes embedded in the cap
may cause head pain after wearing the cap for a long time. This
problem should be alleviated if it is improved in the following
three ways: reducing the weight of the wearable device, reducing
the number of electrodes, and making the system using a soft
textile electrode. Therefore, in order to explore the possibility
of later embedding only 4 electrodes in an easy-to-wear, lighter
portable EEG device to achieve emotion recognition, we extracted
the data from the channels corresponding to F7, F8, T7, and T8
(corresponding to the position of eyewear) to make as dataset
2 and the data from the channels corresponding to F3, F4,

F7, and F8 (corresponding to the position of a headband) to
make as dataset 3.

The whole pre-processing process is carried out using the
SciPy library in python. First, because the format of EEG signals
data collected by OpenBCI GUI in real time was TXT format,
all data first was converted to the CSV format for subsequent
processing. Then the butterworth bandpass (1–45 Hz) was used
to remove major noise and artifacts from the EEG signal.
In addition, the I.F. interference in Kansai, Japan, is 60 HZ,
which is not considered here because the previous step has
been performed. Finally, the EEG signals were detrended with a
Chebyshev I high-pass filter to remove baseline drift.

LSTM and Bi-LSTM Model Results
The training and learning process of the model were done by the
python libraries of keras, sklearn and numpy. The structure of
the LSTM model designed here for EEG data consists of 3 LSTM
layers (64, 32, and 16 units) for mining contextual relevance in the

TABLE 5 | Data arrays for subjects.

Array name Array shape Array contents

Dataset 1 195 × 8 × 15,000 Trials × Channels × Data

Labels 195 × 2 Trials × Label (positive and negative)
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input EEG feature sequence: 2 dropout layers with probability 0.2
to avoid overfitting and a dense layer for integrating information
for binary classification. The structure of the Bi-LSTM model
designed here for EEG data consists of three bidirectional LSTM
layers, each including outputs in the forward LSTM direction
and backward LSTM direction fed in series to the next structure
for mining the influence of “past” and “future” states of the
present state in the EEG feature sequence. The other structures
are consistent with the above LSTM model. All the LSTM layers
in both models have two activation functions, sigmoid is the
activation function for the three gate mechanisms (input gate,
forgotten gate, output gate) and tanh is the activation function
for the input of information and the current hidden state. As
the amount of our available data is small, if we directly divide
data into different sets (training, validation and the test sets), it
will severely damage the data density and the performance of
the model. In this case, cross-validation can be used to solve
this problem (Kale et al., 2011). Therefore, for our dataset, both
models use fourfold cross-validation. All samples (126 positive
samples and 69 negative samples) were randomly divided into
four equal subsets, and one of the four subsets was used as
the validation set (49 samples). The remaining three subsets
were used as the training set (146 samples). This means that
the subsamples in the training and the validation sets were
totally independent but subject-dependent. The cross-validation
is repeated four times to average the results to ensure accuracy.
The structure of the two designed models is shown in Figure 5.

Dataset 1 has a total of 195 samples, each of which consists of
15,000 sample points (60 s × 250 Hz) from 8 EEG channels and
a label. Each sample is divided into 20 segments (3-s), so that the
structure of the dataset 1 became 195 samples, labels, 20 segments
and 3 s× 250 Hz× 8 channels. The Datasets 2 and 3, we also split
each sample of each channel EEG data into 20 3-s segments, so the
structure of the datasets became 195 samples, labels, 20 segments
and 3 s× 250 Hz× 4 channels.

The hyperparameters of the two models for datasets were
set as follows: (1) Loss function: Categorical-cross-entropy; (2)
Optimizer: SGD, RMSprop and Adam optimizer; (3) Learning
rate of optimizer: 0.01, 0.001, 0.000 (it has important impact
on the optimizer); (4) Batch size: 10; (5) Epoch: Epoch = Max
early-stopping epoch (T1, T2, T3, T4). About the early-stopping
method, it is used for the model to obtain the best generalization
performance based on the epoch (Bisong, 2019). Specifically the
method is used to calculate the model’s performance on the
validation set during training and stop training when the model’s
performance on the validation set starts to decline. It was set
up through the karas.callbacks module: EarlyStopping method
(monitor = val_loss, mode = min, mim_delta = 0, patience = 2)
which means during the model training, the validation set has two
consecutive epochs when the loss value does not drop, and then
the training process is stopped. In addition, as four-crossover
validation is used, each time there are four early-stopping epoch
values (T1, T2, T3, T4), the maximum of the four epoch values is
chosen as Epoch.

After comparing the accuracy of validation set with optimizers
having different learning rate and integrating the generalization
ability of the models, the optimal parameters suitable for the

FIGURE 5 | Details of the LSTM and Bi-LSTM models.

models on dataset 1 are obtained: LSTM: SGD optimizer with
the learning rate of 0.001, 30 epochs. The mean accuracy for
dataset 1 is 90.8% in positive and negative emotions; Bi-LSTM:
SGD optimizer with the learning rate of 0.001, 60 epochs (too big
value of the Ir and too small value of the epoch may cross the local
minimum and result in no convergence). The mean accuracy for
dataset 1 is 95.8% in positive and negative emotions. As the result
of the Bi-LSTM model for dataset 1 was better than the LSTM
model, Bi-LSTM model was used for the other datasets. Dataset
2 was inputted into the Bi-LSTM model (RMSprop optimizer
(Ir = 0.0001), batch size = 20, epochs = 40) with the highest
accuracy of 94.4% in positive and negative emotions. And for
dateset3, the Bi-LSTM model (RMSprop optimizer (Ir = 0.0001),
batch size = 20, epochs = 30) reached the highest accuracy rate
of 69.2%. The comparison of the results between datasets and the
parameters of models were shown in Table 6.

Ultracortex Mark IV Electrode Cap
Comfort Evaluation Results
The results of Q1 (mean, 1.54, SD, 0.69) indicated that the weight
of the Mark IV electrode cap is bearable and not too heavy.
The results of Q2 (mean, 2.18, SD, 0.60) indicated that the dry
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TABLE 6 | Comparison of accuracy results between datasets and parameters of models.

Dataset Channels Models Optimizer Accuracy (%) (Epoch)

Ir = 0.01 Ir = 0.001 Ir = 0.0001

1 F3, F4, F7, F8, T7, T8, P3, P4 LSTM SGD 98.3%(10) 90.8%(30) 73.3%(120)

RMSprop – – 81.0%(30)

Adam – – 84.8%(40)

1 F3, F4, F7, F8, T7, T8, P3, P4 Bi-LSTM SGD 98.5%(35) 95.8%(60) 86.7%(180)

RMSprop – – 81.5%(30)

Adam – – 85.6%(20)

2 F7, F8, T7, T8 Bi-LSTM SGD – 93.5%(40) 86.4%(160)

RMSprop – – 94.4%(40)

Adam – – 87.1%(30)

3 F3, F4, F7, F8 Bi-LSTM SGD 64.1 (10) 65.1%(30) 64.6%(100)

RMSprop – – 69.20%(30)

Adam – – 66.1%(15)

“–” represents the loss value of validation set is greater than 1 or accuracy equal to 100% with very few epochs (overfitting). The underlined values, represent the optimal
parameters chosen for the models and the corresponding accuracy of emotion recognition.

electrode is a bit painful and not suitable for prolonged use. The
results of Q3 (mean, 2.73, SD, 0.65) indicated that the subjects
can generally wear Mark IV electrode cap for 30 min to an hour.
The results of Q4 (mean, 2.09, SD, 0.70) suggested that if painless
electrodes are embedded in a more portable wearable device, the
subjects would be willing to wear it for a long time and will not
reject collecting EEG data for emotion recognition. The specific
Q1-Q4 questions and options are shown in Appendix II.

DISCUSSION

Principal Results and Limitations
Emotions generated by the subjects for each of the four quadrants
of the VA model out of 396 samples: 241 samples in the first
quadrant (happy), 1 sample in the second quadrant (panic),
1 sample in the third quadrant (boredom), 2 samples in the
fourth quadrant (relaxed) and 151 samples on the axis, which
indicate that they could not effectively be distinguish as specific
emotions. By removing the arousal dimension and adding the
stress levels, emotions were divided into positive and negative
emotions, 126 and 69 valid samples respectively. This is because
for older people, when seeing old photos, they are more inclined
to recount unforgettable and pleasant memories of the past,
and most of them will generate or amplify positive emotions
(Cappeliez et al., 2008). Meanwhile older people’s mood changes
are not as pronounced and their emotional state shifts to the
negative when they are under pressure that the conversation
is ending early. So, for the conversation support system with
emotion recognition, what needs to be considered is the level
of pleasure brought by the memories and the stress felt during
the conversation.

Dataset 1 (8 channels EEG signals) achieved the highest
recognition accuracy of 95.8% in positive and negative emotions
through the Bi-LSTM model (SGD, Ir = 0.001, batch size = 10,
epoch = 60). And through the LSTM model (SGD, Ir = 0.001,

batch size = 10, epoch = 30) got the accuracy of 90.8%. The
results showed that use of additional layer (backward LSTM) of
training would improve the accuracy of emotion recognition. At
the same time, a phenomenon can be found that the training
speed of Bi-LSTM was slower than LSTM, it means Bi-LSTM
model requires access to more epochs of data to reach the
equilibrium. This also proves from the side that Bi-LSTM
model may be acquiring additional features but LSTM model
is unable to obtain. In addition, by comparing the model in
this work with other models used in prior studies (shown in
Table 7), we found that compared to approaches which used
EEG feature extraction and selection and then inputting the
results into the classifier for emotion classification (Li et al.,
2018; Bhattacharyya et al., 2020), using deep neural networks
(Sheykhivand et al., 2020; Zeng et al., 2020) for automatic
feature extraction and classification seems to perform better;
The second, the multimodal physiological signals are not always
better than unimodal signals for emotion recognition. The study
Sheykhivand et al. (2020) and the proposed method in this
work performed better than studies based on EEG and ECG
signals for emotion recognition. However, it is undeniable that in
small subjects, emotion recognition by multimodal physiological
signals seems to be more advantageous, as shown in previous
study Zeng et al. (2020) the accuracy of emotion prediction
reached 95% with only 5 subjects based on EEG and ECG
signals. Meanwhile, it can be noticed in Table 7 that, the emotion
recognition accuracy of the Bi-LSTM model in this work is less
than the CNN-LSTM model. The main reasons probably are
firstly there are more subjects than this work and secondly the
CNN-LSTM model consists of 10 convolutional layers and 3
LSTM layers, while in this work it consists of 3 bi-directional
LSTM layers. Therefore the trainable parameters in this work are
much lower than the CNN-LSTM. Therefore, the proposed Bi-
LSTM model perform better for emotion recognition in older
people than most model. This indicates that the Bi-LSTM model
is better at recognizing emotions by taking into account the “past”
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TABLE 7 | Comparisons with prior work in emotion recognition.

Network model Physiological signals Subjects (dataset) Accuracy (%)

SVM (Li et al., 2018) EEG 15 (SEED) 90.40%

MFBSE-EWT + ARF (Bhattacharyya et al., 2020) EEG 15 (SEED) 94.4%

CNN-LSTM (Sheykhivand et al., 2020) EEG 14 subjects 97.42%

SM-SSA + RCs (IP/CEC) + SVM/KNN (Sharma and Bhattacharyya, 2021) EEG, ECG 23 (DREAMER)40 (AMIGOS) 92.38%

LSTM (Zeng et al., 2020) EEG, ECG 5 subjects 95.00%

Bi-LSTM (proposed method) EEG 11 subjects 95.80%

MFBSE-EWT, MHMS (multivariate Hilbert marginal spectrum)+ FBSE (Fourier-Bessel series expansion)+ EWT (empirical wavelet transform); ARF, the sparse autoencoder
based random forest classifier; SM-SSA, sliding mode singular spectrum analysis; RCs, reconstructed components; IP, information potential; CEC, centered correntropy.

and “future” emotional states to discern the present emotional
state. Therefore, we can improve the accuracy of the Bi-LSTM
model by further collecting EEG emotion data to learn about
it. Moreover, compared to other physiological signal acquisition
sensors, EEG acquisition devices are very low cost and can
be used to continuously and dynamically collect signals that
reflect the emotions of the elderly for the purpose of monitoring
their emotional changes. Therefore, it is feasible to use EEG
signals without the necessity of using multimodal physiological
signals for automatic emotion recognition of older people in
communication support systems.

According to the results of the Mark IV electrode cap comfort
evaluation, it was found that the current dry electrodes embedded
in the cap cause pain after wearing the cap for a long time. This
problem should be alleviated if it is improved in the following
three ways: reduce the weight of the wearable device, reduce the
number of electrodes, and make it using a soft textile electrode.
The accuracy of dataset 2 (F7, F8, T7, T8) and dataset 3 (F3, F4,
F7, F8) is 94.4 and 69.2% respectively. The reason that the results
of dataset 3 are not as good as dataset 2 is that there are more
hairs at the electrode locations of F3 and F4 and they cannot
easily be in direct contact with the scalp. Therefore, the collected
signals were not as high quality as at the electrode locations of
T7 and T8. Although the highest accuracy of 4-channels (94.4%)
were not better than other studies, it is very close to them. In
future research, we can make these four electrodes into soft textile
electrodes embedded in lightweight eyewear/headband. We can
then collect a large amount of EEG data or combine them with
other easily/comfortably acquirable physiological signals such as
heartrate through a smart watch to improve the accuracy of
emotion recognition.

However, it should be noted that this study is only a
preliminary feasibility study and there are some limitations. Only
the usual pre-processing of EEG signals was done to remove
the major artifacts and noise. In fact, in the conversation, some
movements above the neck may have an effect on the EEG signal.
Initially, we also tried applying independent component analysis
(ICA) to remove the EEG artifacts (motion, EOG and facial
muscle) in the preprocessing stage. However, after pre-processing
the EEG signals with ICA and using them in the models, the
accuracy was found to be around 90%. This is slightly lower than
the EEG signals without ICA. The reason may be the face muscle
activity during the conversation continuously and inevitably has
some effect on the EEG signals. After removing them all, it was

found that some emotional information was also removed. As
such, we decided not to apply ICA to remove the artifacts, and
thus it was not reported in the remaining sections. In fact, similar
result were found in the study Becker et al. (2017), in order to
assess the important of removing EOG artifacts before feature
extraction and classification, the author compared the valence
recognition performance for EEG data with ICA preprocessing
and without ICA. It was found that with ICA preprocessing
has little impact on the classification result. In addition, as the
pre-processed EEG signals were directly input into the LSTM
and BI-LSTM models, there is a possibility that the emotion
features of the conversation may be mixed with other features
generated by brain activity. It is not clear whether the model
learns only the emotional information features in EEG or other
EEG features as well. Considerably more work will need to be
done to determine it.

Conclusion and Future Work
Due to the current prevalent use of subjective emotion evaluation
in communication support systems based on reminiscence
therapy, the feasibility of using EEG for automatic emotion
recognition of old people was explored. It was found that the
VA emotion classification model is not suitable for old people
communication support systems with emotion recognition.
However, using of the pleasure level of RT and the stress level of
the conversation is more conducive to the emotion classification
of older people in the communication support systems. In
addition, the Bi-LSTM model was found to perform better than
most previous work in classification of positive and negative
emotions with an accuracy rate of 95.8% in the subject-dependent
condition. It achieves this by tapping into the influence of “past”
and “future” emotional states in the EEG signal on the present
emotional state. Therefore, considering the demand for comfort
of older people during physiological signals acquisition for
emotion recognition, it is feasible to use EEG signals without the
necessity of multimodal physiological signals in communication
support system for reminiscence therapy. Especially, the four
EEG channels (F7, F8, T7, T8) near the ear (corresponding to the
position of eyewear) based on the Bi-LSTM model resulted in a
decent accuracy rate reaching 94.4% in emotion recognition. This
design proposal improves the possibility of acquiring of high-
quality signals (due to the avoidance of the hair) and allows us
reduce the weight of the device. To further evaluate and improve
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the model proposed in this work, in our later studies, we will
recruit new subjects to create a subject-independent validation
datasets to evaluate the model. Afterwards, we would further
analyze the EEG dataset in the time and frequency domains to
find out which features can better express the emotional changes
of older people, and then use the Bi-LSTM model to explore the
information with more specific emotional features to improve the
emotional recognition performance of the model.
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APPENDIX

I. Self-assessment Form
(1) Did you have fun during the conversation you just had?
−4 to 4, nine ratings, from “not at all” to “extremely”
(2) Did you get excited during the conversation?
−4 to 4, nine ratings, from “not at all” to “extremely”
(3) Did you feel burdened (stressed) by the conversation?
1 to 7, seven ratings, from “not at all” to “extremely”

II. Ultracortex Mark IV Wearable Comfort Evaluation
(1) Do you think the electrode cap is heavy?
A. Not at all-1 B. A little-2 C. Heavy-3 D. Extremely-4
(2) At this point, do you feel any pain where your scalp touches the electrodes?
A. Not at all-1 B. A little-2 C. Painful-3 D. Extremely-4
(3) How long do you think you can wear the Ultracortex Mark IV?
A. No more than 10 min B. 10–30 min C. 31–60 min D. Over 1 h
(4) If soft textile electrodes were embedded in wearable glasses or headbands, would you be willing to wear them for long periods

of time during emotion recognition?
A. Extremely B. A little C. Reluctant D. Totally reluctant
Options A, B, C, D are recorded as 1, 2, 3, 4 points respectively.
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