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Abstract: The electrochemical conversion of carbon dioxide (CO2) into gaseous or liquid fuels has
the potential to store renewable energies and reduce carbon emissions. Here, we report a three-step
synthesis using Cu–Ag bimetallic nanowire arrays as catalysts for electrochemical reduction of
CO2. CuO/Cu2O nanowires were first grown by thermal oxidation of copper mesh in ambient
air and then reduced by annealing in the presence of hydrogen to form Cu nanowires. Cu–Ag
bimetallic nanowires were then produced via galvanic replacement between Cu nanowires and the
Ag+ precursor. The Cu–Ag nanowires showed enhanced catalytic performance over Cu nanowires
for electrochemical reduction of CO2, which could be ascribed to the incorporation of Ag into Cu
nanowires leading to suppression of hydrogen evolution. Our work provides a method for tuning
the selectivity of copper nanocatalysts for CO2 reduction by controlling their composition.
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1. Introduction

Carbon dioxide (CO2) is one of the end products of fossil fuels combustion. The accelerated
consumption of fossil fuels leads to accumulated CO2 concentration in the atmosphere, which is widely
considered as one reason for negative environmental consequences [1,2]. Electrochemical reduction
can reduce atmospheric CO2 concentration and convert CO2 to a variety of useful chemicals, leading
to significant changes in the utilization of CO2 [3–6]. In particular, the electrochemical reduction of
CO2 in fuels and value-added chemicals, a relatively clean method, provides a promising approach to
this goal [7,8].

Though the electrochemical reduction of CO2 on bulk metal electrodes has been studied for
decades [9], more recent efforts have focused on nanostructured metallic catalysts for their enhanced
catalytic performance over bulk materials [10,11]. Some noble metals, such as Au and Ag, preferably
promote the formation of CO [12–15], whereas Pd and Sn preferably form formate [16,17]. Among the
commonly studied metals, Cu is a unique catalyst that reduces CO2 to produce a variety of hydrocarbon
and oxygenate products [18,19]. However, there are still challenges in the application of CO2 reduction
to hydrocarbons by copper catalysts, such as low energetic efficiency and poor selectivity of desired
products [20,21].

More recently, controlling the composition of nanomaterials has become an efficient way to
improve the catalytic activity and selectivity for electrochemical reduction of CO2 [22]. The bimetallic
approach has shown notable results, as it can influence the d-band center of the active components [23].
For instance, Kim et al. found that the selectivity of products could be controlled by tuning the
composition of gold–copper bimetallic nanoparticles for electrochemical reduction of CO2 [24] Cu
nanowires (NWs), a one-dimensional material, have shown higher activity over polycrystalline Cu for
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electrochemical reduction of CO2 owing to their high surface areas [25]. Bimetallic NWs have attracted
much attention for their enhanced performance over monometallic NWs for catalytic and electrical
applications [26,27]. As Ag is known to be selective for the formation of CO and less expensive
than Au [28], it is rational to introduce Ag into Cu NWs to improve their catalytic performance for
electrochemical reduction of CO2.

In this study, we demonstrate the use of galvanic replacement to synthesize Cu–Ag bimetallic
NW arrays as catalysts for electrochemical reduction of CO2. The Cu–Ag NWs were produced by
galvanic replacement of Cu NWs with silver, and the starting Cu NWs were obtained by a two-step
method involving thermal oxidation of copper mesh and thermal reduction of the grown copper oxide
NWs in the presence of hydrogen. The Cu–Ag NWs exhibited a higher selectivity of hydrocarbons and
oxygenates over Cu NWs for electrochemical reduction of CO2. The enhanced catalytic performance
was attributed to the incorporation of Ag, which could suppress hydrogen evolution.

2. Experimental Section

2.1. Chemicals and Materials

Copper mesh (99.99%, 100 mesh), and carbon dioxide (CO2, 99.999%) were used as received.
Potassium bicarbonate (KHCO3, 99.99%) was purchased from Macklin. Ascorbic acid (99.7%) was
purchased from Sinopharm Chemical Reagent (Shanghai, China). Silver nitrate (AgNO3, 99.9999%)
was purchased from Sigma Aldrich (St. Louis, United States). Hydrochloric acid was purchased from
Shanghai Lingfeng Chemical Reagent (Shanghai, China). Anion exchange membrane was purchased
from Tokuyama (Tokyo, Japan). Unless otherwise noted, all chemicals were used as received.

2.2. Copper Nanowire Array Synthesis

CuO/Cu2O NWs were grown on the copper mesh (100 mesh) adapted by Jiang et al. [29].
A piece of Cu mesh was first washed with 1 mol/L HCl solution for ~30 s to remove the oxide layer.
After rinsing with deionized water and drying under N2 flow, the Cu mesh was placed in a combustion
boat and annealed in a muffle furnace at 600 ◦C for 4 hours. Thermally reduced copper nanowires
were obtained by annealing the CuO/Cu2O NWs at 300 ◦C for 2 h in a flow of forming gas (5%H2/N2,
30 sccm).

2.3. Copper–Silver Nanowire Array Synthesis

The copper NW arrays were immersed in a 20 mL scintillation vial filled with 0.55 mol/L ascorbic
acid first. The solution was stirred rapidly for 5 minutes. To produce Cu–Ag nanowire arrays,
the copper nanowire arrays were immersed in a solution containing 0.5 mmol/L AgNO3, and the
contents were stirred for 3 minutes. Cu–Ag mesh was produced by a similar method, except copper
mesh was used as starting material.

2.4. Material Characterization

Scanning electron microscopy (SEM) images were taken on an FEI Quanta FEG 250 microscope
operated at 30 kV. Energy-dispersive X-ray spectroscopy (EDXS) elemental analyses were conducted
using an EDXS attachment to the JEOL JEM 2100F transmission electron microscope (TEM). Nickel TEM
grids were used for elemental analysis. X-ray diffraction (XRD) patterns were obtained on a Bruker D8
Advance X-ray diffractometer equipped with a Cu Kα source (λ = 1.5406 Å).

2.5. Electrochemical Studies

All electrochemical experiments were carried out in a customized gas-tight three-electrode
electrochemical H-cell and a CHI 660E potentiostat. A Pt plate and an Ag/AgCl were used as
the counter and reference electrode, respectively. A solution of 0.1 mol/L KHCO3 was prepared with
18.2 MΩ deionized water and used as the electrolyte. The pH value was measured at 6.8 when the
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electrolyte was saturated with CO2. CO2 was delivered to the cathode compartment at 10 standard
cubic centimeter per minute (sccm). Before each measurement, the electrochemical cell was allowed
to purge CO2 for 30 minutes, for the CO2 saturation of the electrolyte. The anode and cathode
compartment was separated with an anion exchange membrane. All the applied potentials were
reported versus reversible hydrogen electrode (RHE) potentials using E (vs. RHE) = E (vs. Ag/AgCl) +
0.199 V + 0.059 V × pH with 85% iR drop correction.

The CO2 electrochemical reaction was performed at ambient temperature and pressure.
The gaseous products produced during the reaction were vented into the gas-sampling loop of a
gas chromatograph (GC) with CO2 flow and analyzed online by a GC instrument (GC2060, Shanghai
Ruimin) approximately every 15 minutes. The faradaic efficiency (FE) of gaseous products were
calculated from the equation:

FE (%) = (zFvGp0)/(RToi) × 100%

where z is the theoretical number of e- exchanged to form the gaseous products, v (vol%) is gaseous
products volume concentration in the exhaust gas from the electrochemical cell, G (mL/min) is
the gas flow rate, i is the cell current, F = 96,485 C/mol, p0 = 1.01 × 105 Pa, R = 8.314 J/(mol K),
and T0 = 273.15 K [30].

The liquid products formed during the reaction were analyzed offline by a nuclear magnetic
resonance spectrometer (Bruker Avance 400M, Karlsruher, Germany). For analysis, the electrolyte
was mixed with D2O to form 90%:10% volume ratio solution and a known concentration of dimethyl
sulfoxide as an internal standard. The 1H spectrum was measured with a water suppression method.
FE of liquid products was calculated according to the equation:

FE (%) = znF/Q × 100 %

where z is the theoretic number of e- exchanged to form the liquid products, n is the moles of products,
Q is the total charges applied, and F = 96,485 C/mol [31].

3. Results and Discussion

Figure 1 depicts the three-step synthesis process of Cu–Ag bimetallic NW arrays on the copper
mesh. To prepare Cu NW arrays, a two-step method including thermal oxidation and reduction was
adapted [25,29]. First, CuO/Cu2O NW arrays were synthesized by annealing copper mesh in ambient
air. Then, the subsequent thermal reduction of CuO/Cu2O NW arrays was performed in a flow of
forming gas to form Cu NW arrays. Last, the Cu NW arrays were immersed into an AgNO3 solution
to yield Cu–Ag NW arrays for CO2 reduction. Detailed information about the synthesis can be found
in the Experimental Section.
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Figure 2a,b shows the scanning electron microscope (SEM) images of synthesized CuO/Cu2O
NW arrays. The CuO/Cu2O NWs were mainly grown vertically to the surface of the Cu mesh. Typical
diameters of the produced CuO/Cu2O NWs were in the range of 50–100 nm with lengths up to 30
µm. The SEM images of the thermally reduced Cu NWs are shown in Figure 2c,d. Based on these
images, the thermally reduced Cu NWs generally maintained the dimensions of the CuO/Cu2O
NWs, despite some deformation of the head of the NWs. Additional SEM images can be found in the
Supporting Information.
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Figure 2. Low- and high-magnification SEM images of (a,b) as-synthesized CuO/Cu2O NWs and (c,d)
thermally reduced Cu NWs.

To verify the crystal structure of the Cu mesh, annealed CuO/Cu2O NWs, and reduced Cu
NWs, powder X-ray diffraction (XRD) measurements were made on representative samples. Figure 3
illustrates the XRD patterns of Cu mesh after annealing and reveals characteristic CuO reflections at
32.6, 35.6, 38.8, 48.9, 53.6, 58.3, 61.6, 66.3, 68.2, 72.5, and 75.4◦ (Joint Committee on Powder Diffraction
Standards (JCPDS) card No. 05-0661), Cu2O reflections at 29.7, 36.5, 42.4, 73.6, and 77.4◦ (JCPDS card
No. 65-3288), and metallic Cu reflections at 43.4, 50.6, and 74.3◦ (JCPDS card No. 65-9473). XRD
pattern collected from reduced Cu NWs shows peaks of cubic Cu same as pristine Cu mesh. The XRD
data indicate that annealing copper mesh in air produced high density CuO/Cu2O NWs, while the
subsequent thermal reduction actually made cubic Cu NWs on the copper mesh. Additional details
about these SEM and XRD measurements can be found in the Experimental Section.
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In recent years, galvanic replacement reactions have been applied as a synthetic tool for
bimetallic nanomaterials [32,33]. By dipping Cu NWs into an AgNO3 solution, Cu–Ag NW
arrays were obtained via galvanic replacement of silver according to the following equation [34,35]:
Cu(s) + 2Ag+ → Cu2+ + 2Ag(s). Figure 4a,b shows the representative high-magnification SEM images
of starting Cu NWs and obtained Cu–Ag NW arrays, respectively. The morphologies of these Cu–Ag
NWs were similar to the Cu NWs (i.e., diameter of ~100 nm with length of up to 30 µm), despite
some deposition on the surface of the Cu NWs. The rough surface could be ascribed to the large
lattice mismatch between Cu and Ag [36]. To verify the crystal structure of Cu–Ag NWs, power XRD
measurement was performed. The above metallic Cu diffraction peaks all appeared in the pattern of
Cu–Ag NWs, but a new peak at 38.2◦ was consistent with (111) plane of cubic Ag (JCPDS No. 04-0783),
suggesting some amount of Ag in the Cu–Ag NWs (Figure 4c). At this point, energy-dispersive X-ray
spectroscopy (EDXS) measurement was carried out to determine the elemental information of the
resulted bimetallic NWs. Based on Figure 4c, the Ag–Cu ratio was ~1:10 in the Cu–Ag bimetallic NWs.
The EDXS mapping figure (Figure S3) indicated the uniform distribution of Cu and Ag on the NWs.
The SEM, XRD, and EDXS data together indicated the successful synthesis of Cu–Ag bimetallic NWs.
Detailed information about the synthesis can be found in the experimental section. Additional SEM
images can be found in the supporting information.

Having established the synthesis of Cu–Ag NWs, electrochemical reduction of CO2 was conducted
in CO2-saturated 0.1 mol/L KHCO3 electrolyte at ambient temperature and pressure. CO2 reduction
experiments were performed in an electrolysis cell with the cathode and anode compartment separated
by an anion exchange membrane, preventing the oxidation of CO2 reduction products. The cathodic
compartment was purged with CO2 at a constant flow rate and vented into a gas chromatograph (GC)
for quantification of gaseous products. The liquid products were analyzed by 1H nuclear magnetic
resonance (NMR) spectroscopy after the completion of experiments.

The activity and selectivity of Cu NWs, Cu–Ag NWs, Cu mesh and Cu–Ag mesh for CO2

electroreduction were studied. Figure 5a shows the linear sweep voltammograms (LSV) of Cu NWs in
comparison to the LSV of Cu–Ag NWs, using geometric current density as a comparison standard.
Based on the LSV measurements, the Cu–Ag NWs generally exhibited a higher catalytic activity (larger
negative current density and lower negative onset potential) over Cu NWs. To compare the long-term
performance of each NW, their total geometric current density vs. time at various potentials are shown
in Figure 5b–d, respectively. During the reaction, the decline in current densities for Cu NWs at various
potentials indicates their unstableness for CO2 reduction. This phenomenon was more obvious at more
negative potentials, such as –0.8 V vs. reversible hydrogen electrode (RHE; all potentials reported here
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are with respect to this reference). However, Cu–Ag NWs catalysts exhibited a steady-state current
at constant potentials, which indicates the alloyed NWs were stable in the current electrochemical
reaction conditions. The bimetallic NWs achieved a current density of ~6 mA/cm2 at relatively low
overpotential (−0.6 V), which was even higher than the reported current density by using Ag NWs
and Cu2O-derived films as catalysts [28,37]. The Cu–AG NWs showed higher catalytic activity for
CO2 electroreduction over Cu NWs which could be ascribed to the addition of the Ag ingredient
into Cu NWs, implying the impact of composition effects of Cu NWs catalysts for CO2 reduction.
Additional details about the electrochemical studies can be found in the Experimental Section and
Supporting Information.
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Figure 6 summarizes the faradaic efficiency (FE) of the desired products for the Cu NWs and
Cu–Ag NWs at constant potentials during CO2 electroreduction. Figures S4–S6 summarize the
selectivity of major products in the tests of long-term performance. For gaseous products, Ag–Cu
NWs showed lower selectivity of H2 than the Cu NWs, along with higher selectivity of CO, C2H4,
and C2H2 at all studied potentials. For liquid products, Ag–Cu NWs presented a higher selectivity
of total liquid products over the Cu NWs. For example, the Cu NWs exhibited a H2 FE of 65%, a CO
FE of 8%, and a formate FE of 17%, while the Cu–Ag NWs showed a H2 FE of 46%, a CO FE of 14%,
and a formate FE of 24% at −0.7 V. In general, the Cu–Ag NWs exhibited enhanced catalytic selectivity
of products towards CO2 electroreduction than that of the Cu NWs. The Cu–Ag NWs exhibited the
best catalytic performance among all the studied materials (Figures S7–S12). It is important to note
that the Cu NWs showed similar H2 selectivity as that of the Cu–Ag NWs at −0.8 V; this most likely
reflects the mass transport limitations at high current density (e.g., >10 mA/cm2) rather than the
intrinsic selectivity of these catalysts [18]. The enhancement in catalytic performance of the Cu–Ag
NWs over Cu NWs may originate from different electronic structure by alloying a silver element
into the copper composition [24]. Based on the density function theory (DFT) calculated binding
energy of CO on the metal surface, Ag favors desorption of CO (an important reactive intermediate
in the CO2 electroreduction) on its surface [38]. In addition, Ag adsorbs hydrogen weakly and the
sluggish reaction–intermediate formation slows down the hydrogen evolution reaction [39]. The lower
selectivity of H2, as well as higher selectivity of CO, hydrocarbons, and oxygenates after introducing
Ag into Cu NWs, could be ascribed to the reasons mentioned above.Nanomaterials 2019, 9 7 
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4. Conclusions

In summary, a simple three-step method was used to produce Cu–Ag NW arrays as
electrocatalysts for CO2 reduction. CuO/Cu2O NWs were first grown by thermal oxidation of copper
mesh, then thermal reduction was performed to form Cu NWs. By galvanic replacement with silver,
Cu–Ag NWs were obtained while maintaining similar morphology and structure of the parent Cu NWs.
The Cu–Ag NWs exhibited enhanced catalytic selectivity of hydrocarbons and oxygenates towards
CO2 electroreduction over Cu NWs, attributed to the incorporation of Ag. Our work highlights the
potential opportunity to tune the activity and selectivity of copper catalysts for CO2 electroreduction
by controlling their composition.
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